用户名: 密码: 验证码:
河套灌区含有马铃薯的复种体系建立及资源利用效率的评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内蒙古河套灌区灌溉便利,而且长期形成了大水漫灌和秋浇水习惯,由此并引起了过量施肥,这已导致河套灌区的地下水硝酸盐含量超标严重。但受黄河水源分配等因素的影响,内蒙古河套灌区大水、大肥的局面难以短期内改变。马铃薯是该地区近年来发展较快的作物,但马铃薯根系较浅,因此该地区马铃薯水肥利用率更低。为确保马铃薯产业的可持续发展,如何在地区灌溉制度不变的前提下提高马铃薯的资源利用效率成为亟待解决的问题。河套灌区光热资源丰富,无霜期较长,因此,本研究提出了“浅根作物(马铃薯)+深根作物”高效栽培的设想,即变一季栽培为双季栽培。通过集成覆膜技术、早熟栽培技术、深根系作物栽培技术、茬口选择技术,养分管理技术等建立了内蒙古河套灌区“早熟马铃薯+后作”双季节栽培体系,旨在提高资源利用效率、经济效益、减轻因过量施氮肥导致的地下水污染问题。有关结果如下:
     1.建立的早熟马铃薯与深根系作物双季节栽培体系氮肥回收率、光能利用率、土地利用率、经济效益普遍高于晚熟马铃薯单季节露地栽培,收获后0-160cm土层硝态氮累积量均低于晚熟马铃薯单季节露地栽培。从增加经济净收益、降低土壤硝态氮淋洗风险,提高氮肥回收率、光能利用效率、土地利用效率多角度综合分析,在马铃薯+向日葵、马铃薯+高丹草、马铃薯+大白菜三个体系中,早熟马铃薯覆膜栽培+大白菜体系为最优选择。
     2.在225kg N/hm2施氮量下,与氮肥100%基施相比,氮肥50%基施+50%追施处理促进了农艺性状建成、各器官干物质累积,由此显著提高了马铃薯产量、净收益、氮肥回收率以及水分利用率,降低了晚熟马铃薯收获后土壤硝态氮的累积。
     3.覆膜提高了10cm土深地温、0-20cm土层土壤含水率。覆膜处理降低了马铃薯收获后土壤硝态氮向深层淋洗的风险,提高了马铃薯水分利用效率。覆膜处理提早了早熟马铃薯的生育进程,促进了干物质累积,而且提高了肥料偏生产力、光能利用率以及单株结薯重和块茎单产。覆膜虽然促进了晚熟马铃薯块茎膨大期以前干物质累积,但并未对肥料偏生产力、光能利用率、块茎产量产生显著影响,而且降低了块茎商品率。
     4.在早熟马铃薯+大白菜双季节栽培体系设置了大白菜茬口4水平氮肥田间试验,结果表明:复种茬口施氮量在120kg N/hm2时,大白菜产量、体系净收益达到最大。随复种茬口施氮量的增加,体系光能利用效率、大白菜水分利用效率呈现增加的趋势,氮肥回收率呈现递减的趋势;大白菜体内硝酸盐含量、收获后0-160cm土层硝态氮含量随复种茬口施氮量的增加而增加。大白菜产量、体系净收益与大白菜体内硝酸盐含量、土壤硝态氮累积量之间的矛盾很难协调。
     5.施氮量为225kg N/hm2下,在早熟马铃薯+高丹草双季栽培体系设置了高丹草种植密度试验,结果表明:在80000-250000株/hm2范围内,随着种植密度的增加,高丹草干鲜草产量、高丹草水分利用效率、体系氮肥回收率、体系光能利用率显著提高,高丹草收获后0-160cm土层内硝态氮总累积量呈现递减趋势,进而降低了硝态氮污染地下水的风险。
     6.河套灌区早熟马铃薯费乌瑞它覆膜栽培,各器官氮磷钾浓度随生育期的延长而呈现下降的趋势;全生育期内根茎叶中氮磷钾累积量呈现单峰曲线变化趋势,块茎中氮磷钾累积量随生育期延长呈现上升趋势;河套灌区早熟马铃薯费乌瑞它覆膜栽培生产1000kg块茎,植株所需N、P205、K20分别为3.00kg、1.53kg、6.72kg。河套灌区晚熟马铃薯克新1号单季节露地栽培,190kg N/hm2为推荐施氮量。
Hetao irrigated area of Inner Mongolia has the convenient irrigation. And the long-term flooding irrigation and autumn irrigation adding the excess usage of nitrogen fertilizer, which lead to the local groundwater's nitrate contamination seriously. The excess usage of water and fertilizer at Hetao irrigated area of Inner Mongolia can not be easily altered in the short time because of the Yellow River water distribution. Potato is the fast developing crop at this place. However, the water and nitrogen fertilizer's use efficiencies in the local potato production are even lower because of potato's shallow root system. For ensuring the sustainable development of potato industry, immediate solution is required to improve the resources use efficiencies of potato without changing the flooding irrigation pattern. Hetao irrigated area had abundant solar energy, and long frost-free season, therefore, this research proposed a hypothesis of shallow root crop(potato)+deep root crop culture pattern to improve resources use efficiencies, that was to change mono potato production into double cropping system. An early potato+cover crop double cropping system was established at Hetao irrigated area of Inner Mongolia through the combinational technology applications including plastic mulch, early potato culture, deep root crop culture, selection of the cover crop, and nutrient management to improve the resources use efficiencies, net economic returns and alleviate the nitrate contamination in groundwater. The results were as follows:
     1. The apparent nitrogen recovery ratios, solar energy use efficiencies, land equivalent ratios, net economic returns of the early potato+deep root crop double cropping systems were significantly higher as compared to those of the conventional late potato mono cropping system. The nitrate residual contents within0-160cm soil profile of the early potato+deep root crop double cropping systems were markedly lower than that of the conventional late potato mono cropping system. For the multiple purposes including reducing soil nitrate leaching risk, improving apparent nitrogen recovery ratio, improving solar energy use efficiency, improving land equivalent ratio, improving net economic return, the early potato+cabbage double cropping system (DCS) was the ideal choice compared with early potato+sunflower DCS, or early potato+sorghum hybrid sudangrass DCS.
     2. At the nitrogen fertilizer applied rate of225kg N/hm2with50%basal application+50%top dressing, the potato agronomic traits, dry matter accumulations of different organs were significantly improved compared with those of the same nitrogen fertilizer applied rate with100%basal application for different potato cultivars. Therefore, the potato yields, net economic returns, apparent nitrogen recovery ratios, and water use efficiencies were remarkably improved. The nitrate residual contents within0-160cm soil profile after late potato harvest treated with50%basal application+50%top dressing were markedly lower than those of100%basal application at the nitrogen fertilizer applied rate of225kg N/hm.
     3. The10cm soil temperature,0-20cm soil moisture were significantly improved by plastic mulch. The plastic mulch treatment reduced the risk of nitrate leaching to deeper soil, and improved the water use efficiencies of potatoes. The plastic mulch treatment improved the early potato development process, dry matter accumulation, fertilizer partial factor productivity, solar energy use efficiency, tuber yield per plant, and total tuber yield. Though the dry matter accumulation was improved before late potato bulking stage compared to culture in the open, the plastic mulch treatment had no significant effects on fertilizer partial factor productivity, solar energy use efficiency, and total tuber yield of late potato. And the late potato tuber commodity rate was reduced by plastic mulch.
     4. Four level nitrogen fertilizer rates'effects at after crop were tested within early potato+cabbage double cropping system, and the results showed that:the cabbage yield, the system net economic return were the highest at the nitrogen applied rate of120kg N/hm2. With the nitrogen applied rates increasing, the system solar energy use efficiency, cabbage water use efficiency were significantly improved, but the apparent nitrogen recovery ratio was reduced. Nitrate contents in cabbage and nitrate residual contents within0-160cm soil profile were significantly increased with nitrogen fertilizer increasing at after crop. It was impossible to coordinate between cabbage yield, net economic return, and nitrate contents in cabbage, soil nitrate residual content.
     5. Sorghum hybrid sudangrass (SHS) planting density effect was tested at the nitrogen fertilizer rate of225kg N/hm2, and the results indicated that:in the planting density range of80000-250000plants/hm2, the SHS fresh yield, dry yield, water use efficiency, DCD apparent nitrogen recovery ratio, DCD solar energy use efficiency, were significantly improved with the SHS planting density increasing. The nitrate residuals within0-160cm soil profile after SHS harvest were remarkably reduced with the SHS planting density increasing, therefore reduced the ground water nitrate contamination risk.
     6. The early potato Favorite cultured with plastic mulch at Hetao irrigated area showed that with the extension of growth period, nitrogen, phosphorus, and potassium concentrations at different organs dropped. The total nitrogen, phosphorus, and potassium accumulations in root, stem and leaf showed a unimodal curve, while the nitrogen, phosphorus and potassium in tuber increase with the extension of growth period. To produce1000kg potato tuber with plastic mulch at Hetao irrigated area, the early potato Favorite required N:3.00kg, P2O5:1.53kg, K2O:6.72kg, respectively. The recommended nitrogen fertilizer applied rate for late potato Kexin No.1mono cultured in the open at Hetao irrigated area was190kg N/hm2.
引文
1 宋伯符.充满朝阳的中国马铃薯产业[c].马铃薯产业与高新技术.哈尔滨:哈尔滨工程大学出版社,2002:185-188
    2 谢开云,屈冬玉,金黎平,等.中国马铃薯生产与世界先进国家的比较[J].世界农业,2008:394(5):35-38,41
    3 孙东升,刘合光.我国马铃薯产业发展现状及前景展望[J].农业生产展望,2009:5(3):25-28
    4 屈冬玉,谢开云,金黎平,等.中国马铃薯产业发展与食物安全[J].中国农业科学,2005,38(2):358-362
    5 杨红旗,王春萌.中国马铃薯产业制约因素及发展对策[J].种子,2011,30(5):100-103
    6 李玉阔,张巍.马铃薯生产存在的问题与发展对策[J].现代农业科技,2009,16:1
    7 隋启君,李先平,杨万林.中国马铃薯生产情况分析[J].西南农业学报,2008,21(4):1182-1188
    8 聂洪光.我国马铃薯产业化发展现状及策略[J].农业科技与装备,2010,192(6):118-119
    9 张子义.旱作微垄覆膜沟播马铃薯的养分管理[D].内蒙古农业大学,2011
    10 李凤民.论我国半干旱地区农业生产力与生态系统可持续发展明[J].资源科学,1999,21(9):25-30
    11 郝云凤,李可伟,张培宏,等.巴彦淖尔市马铃薯产业发展现状及对策[C].2007中国马铃薯大会(中国马铃薯专业委员会年会暨学术研讨会)、全国马铃薯免耕栽培现场观摩暨产业发展研讨会论文集,2007,109-111
    12冯兆忠,王效科,冯宗伟,等.河套灌区秋浇水对不同类型农田土壤氮素淋失的影响[J].生态学报,2003,23(10):2027-2032
    13冯兆忠,王效科,冯宗伟.河套灌区地下水氮污染状况[J].农村生态环境,2005,21(4):74-76
    14 Tanner C B, Weis G G and Curwen D. Russet Burbank rooting in sandy soils with pans following deep plowing [J]. American Potato Journal,1982,59:107-112
    15胡博,娜何雅,郝云凤,等.内蒙古杭锦后旗马铃薯氮肥效应的初步研究.马铃薯产业与粮食安全[C].哈尔滨:哈尔滨工程大学出版社,2009,330-333
    16 Roberts TL. Right product right rate right time and right place-the foundation of best management practices for fertilizer[M], Brussels Belgium:IFA International Workshop on Fertilizer Best Management Practices,2007:29-32
    17 Vos J. Nitrogen and the growth of potato crops. In:AJ Haverkort and DKL MacKerron (eds), Potato Ecology and Modelling of Crops under Conditions of Limiting Growth[M]. Kluwer Academic Publishers, Dordrecht.1995,115-128
    18门福义,刘梦芸.马铃薯栽培生理[M].1995.北京:中国农业出版社:17-55
    19 Vos J and Born M. Hand-held chlorophyll meter. A promising tool to assess the nitrogen status of potato foliage[J]. Potato Research,1993,36:301-308
    20 Belanger G, Walsh J R, Richards J E, et al. Residual soil nitrate after potato harvest [J]. Journal of Environmental Quality,2003,32:607-612
    21 Dela Morena I, Guillen A and Garcia del Moral L F. Yield development in potatoes as influenced by cultivar and the timing and level of nitrogen fertilization [J]. American Potato Journal,1994,71:165-173
    22 张宝林,高聚林,刘克礼,等.马铃薯氮素的吸收、积累和分配规律[J].中国马铃薯,2003,17(4):193-198
    23杜珍,陈仁昌.瘠薄地种植马铃薯的氮肥合理施用量[J].马铃薯杂志,1987,1(2):29-32
    24 王玉明.马铃薯氮素营养与施肥[C].土壤肥料与农业可持续发展(自然科学学术论文),2007,217-219
    25 李国培.施氮量和追肥比例对马铃薯营养特性及产量、品质的影响[D].四川农业大学,2009
    26 郑顺林,李国培,袁继超,等.施氮水平对马铃薯块茎形成期光合特性的影响[J].西北农业学报2010,19(3):98-103
    27 陈忠荫,周娜娜.不同氮水平对马铃薯块茎和土壤N03--N含量的影响[J].安徽农业科学,2008,36(16):6857,6871
    28 王季春.不同施氮量对马铃薯的影响[J].马铃薯杂志,1994,8(2):76-80
    29 朱杰辉,何长征,宋勇,等.不同类型土壤中施肥量对马铃薯产量与品质的影响[J].2009,35(4):423-426
    30周娜娜,张学军,秦亚兵,等.不同滴灌量和施氮量对马铃薯产量和品质的影响[J].土壤肥料,11-12,16
    31 何华,赵世伟,陈国良.不同水肥条件对马铃薯肥料N利用率的影响[J].应用生态学报,2000,11(2):235-239
    32 陈瑞英.水氮互作对马铃薯产量和氮素吸收利用特性的影响[D].内蒙古农业大学,2011
    33 郑顺林,袁继超,马均,等.春、秋马铃薯氮肥运筹的对比研究[J].西南农业学报,2009,22(3):702-705
    34 Waterer D. Influence of irrigation, nitrogen and seed piece spacing on yields and tuber size distribution of seed potatoes [J]. Canadian Journal of Plant Science,1997,77:141-148
    35 Zvomuya F, Rosen C J. Evaluation of Polyolefin-coated urea for potato production on a sandy soil[J]. Horticulture Science,2001,36:1057-1060
    36 Belanger G, Walsh J R, Richards J E, et al. Nitrogen fertilization and irrigation affects tuber characteristics of two potato cultivars [J]. American Journal of Potato Research,2002,79:269-279
    37 Zebarth B J, Leclerc Y, Moreau G, et al. Rate and timing of nitrogen fertilization of Russet Burbank potato:Yield and processing quality[J]. Canadian Journal of Plant Science,2004,84:855-863
    38 Long C M, Snapp S S, Douches D S, et al. Tuber yield, storability, and quality of Michigan cultivars in response to nitrogen management and seed piece spacing[J]. American Journal of Potato Research,2004,81:347-357
    39 Hiller L K, Thornton R E. Management of physiological disorders. In:RC Rowe(ed), Potato Health Management. APS Press,St. Paul, MN.1993,87-94
    40 Miller J S,Rosen C J. Interactive effects of fungicide programs and nitrogen management on potato yield and quality. American Journal of Potato Research,2005,82:399-409
    41 Wang-Pruski G, Zebarth B J, Leclerc Y,et al. Effect of soil type and nutrient management on potato after cooking darkening [J]. American Journal of Potato Research,2007, (In press)
    42 Feibert E B G, Shock C C, Saunders L D. Nitrogen fertilizer requirements of potato using carefully scheduled sprinkler irrigation [J]. Horticulture Science, 1998,33:262-265
    43 Amrein T M, Bachmann S, Noti A, et al..Potential of acrylanfide formation, sugars, and free asparagine in potatoes:A comparison of cultivars and farming systems[J]. Journal of Agriculture Food Chemistry.2003,51:5556-5560
    44 Olsson K, Svensson R, Roslund C. Tuber components affecting acrylamide formation and colour in fried potato:Variation by variety, year, storage temperature and storage time[J]. Journal of the Science of Food Agricualture,2004,84:447-458
    45 Millard P. The nitrogen content of potato (Solanum tuberosum L.) tubers in relat ion to nitrogen application-the effect on amino acid composition and yields [J]. Journal of the Science of Food Agricualture,1986,37:107-114
    46 Roberts S, Cheng H H, Farrow F 0. Potato uptake and recovery of ni trogen-15-enr iched ammonium nitrate from periodic appl i cat ions [J]. Agronomy Journal,1991,83:378-381
    47 Joern B C, Vitosh M L. Influence of applied nitrogen on potato. Part II:Recovery and partitioning of applied nitrogen [J]. American Potato Journal,1995,72:73-84
    48 Zvomuya F, Rosen C J. Biomass partitioning and nitrogen use efficiency of 'Superior'potato following genetic transformation for resistance to Colorado potato beetle [J]. Journal of American Society of Horticulture Science, 2002,127:703-709
    49 Maidl F X, Brunner H, Sticksel E. Potato uptake and recovery of nitrogen 15N-enriched ammonium nitrate[J]. Geoderma,2002,105:167-177
    50 Li H, Parent L E, Karam A, et al. Efficiency of soil and fertilizer nitrogen of a sod-potato system in the humid, acid and cool environment[J]. Plant Soil 2003,251:23-36
    51 Zebarth B J, Leclerc Y, Moreau G. Rate and timing of nitrogen fertilization of Russet Burbank potato:Nitrogen use efficiency [J]. Canadian Journal of Plant Science,2004,84:845-854
    52戴庆林,郑海春,王芬棠,等.内蒙古地区化肥施用与肥分利用现状[J].内蒙古农业科技,2000(3):3-5
    53 Tisdale S L, Nelson W L, Beaton J D, et al. Soil Fertility and Fertilizers[M].1993,5th ed. MacMillan Publishing Company
    54 Jensen C, Stougaard B, Oisen P. Simulation of water and nitrogen dynamics at three Danish locations by use of the DAISY model [J]. Acta Agriculturae Scandinavica, 1994,44:73-83
    55 Hill A R. Nitrate and chloride distribution and balance under continuous potato cropping. Agriculture, Ecosystems & Environment,1986,15:267-280
    56 Richards J E, Milburn P H, MacLean A A, et al. Intensive potato production effects on nitrate-N concentrations of rural New Brunswick well water. Canadian Agriculture Engineering 1990,32:189-196
    57 Milburn P, Richards J E, Gartley C, et al. Nitrate leaching from systematically tiled potato fields In New Brunswick, Canada. Journal of Environmental Quality,1990,19:448-454
    58 Gasser M 0, Laverdire M R, Lagace R, et al. Impact of potato-cereal rotations and slurry applications on nitrate leaching and nitrogen balance in sandy soils. Canadian Journal of Soil Science,2002,82:469-479
    59 Vos J, PEL van der Putten. Nutrient cycling in a cropping system with potato, spring wheat, sugar beet, oat and nitrogen catch crops. Ⅱ. Effect of catch crops on nitrate leaching in autumn and winter. Nutrient Cycling in Agroecosystems,2004,70:23-31
    60郑顺林,李国培,杨世民,等.施氮量及追肥比例对冬马铃薯生育期及干物质积累的影响[J].四川农业大学学报,2009,27(3):270-274
    61董茜,郑顺林,李国培,等.施氦量及追肥比例对冬马铃薯块茎品质形成的影响[J].西南农业学报,2010,23(5):1571-1574
    62 卢云香,李德珍,刘小冬,等.施氮量和追肥比例对马铃薯生产效益的影响[J].吉林农业,2011,252(2):93-94
    63陈杨,樊明寿,李斐,等.氮素营养诊断技术的发展及其在马铃薯生产中的应用[J].中国农学通报,2009,25(03):66-71
    64 Cao W, Tibbitts T W. Study of various NH4+/NO3-mixtures for enhancing growth of potatoes[J]. Journal of plant nutrition,1993,16(3):1691-1704
    65 胡云海,蒋先明.氮源对马铃薯微型薯的影响.1991,5(4):199-203,238
    66 张伟.不同形态氮素及苗期补水对旱地马铃薯生长和产量的影响[D].甘肃农业大学,2009
    67 邓兰生,林翠兰,龚林,等.滴灌施用不同氮肥对马铃薯生长的影响[J].土壤通报,2011,42(1):141-144
    68 张美琴,马建华,樊明寿.氮素形态与马铃薯品质的关系[J].中国马铃薯,2008,22(6):321-324
    69 刘飞,诸葛玉平,陈增明,等.控释肥对马铃薯产量、氮素利用率及经济效益的影响[J].中国农学通报,2011,27(12):215-219
    70 刘飞,诸葛玉平,王会,等.控释肥对马铃薯生长及土壤酶活性的影响[J].水土保持学报,2011,25(2):185-188,202
    71 高炳德.马铃薯氮肥施用技术的研究[J].马铃薯杂志,1988,2(2):85-92
    72 张建宁.寒旱山区马铃薯氮磷肥肥效及合理施用研究[J].1995,13(2):73-77
    73 孔令郁,彭启双,熊艳,等.平衡施肥对马铃薯产量及品质的影响[J].2004,3:17-19
    74 郑若良.氮钾肥比例对马铃薯生长发育、产量及品质的影响[J].江西农业学报,2004,16(4):39-42
    75 弓建国,穆俊祥,曹新民.氮磷钾有机肥配合施用对马铃薯产量和品质的影响[J].安徽农业科学,2009,37(17):7935-7937
    76 高媛,韦艳萍,樊明寿.马铃薯的养分需求[J].中国马铃薯,2011,25(3):182-187
    77 Archer J R, Marks M J. Control of nutrient losses to water from agriculture in Europe [J]. Proceedings of Fertilizer Society,1997,405
    78 赵永良.硝酸盐的致甲状腺肿作用(综述)[J].地方病通报,1990,5(2):104-109
    79 浮海梅,金云霄.浅谈地下水硝酸盐污染[J].地下水,2009,31(3):85-87,119
    80 World Health Organization. Guidelines for drinking water quality [M]. Recommendations, WHO, Geneva, Switzerland,1984
    81 毕晶晶,彭昌盛,胥慧真.地下水硝酸盐污染与治理研究进展综述[J].地下水,2010,32(1):97-102
    82 朱济成.关于地下水硝酸盐污染原因的探讨[J].北京地质,1995(2):20-26
    83 袁新民,王周琼.硝态氮的淋洗及其影响因素[J].干旱区研究,2000,17(4):46-52
    84 Fang Q X, Yu Q, Wang E L, et al. Soil nitrate accumulation, leaching and crop nitrogen use as influenced by fertilization and irrigation in an intensive wheat maize double cropping system in the North China Plajn[J]. Plant Soil,2006,284:335-350
    85张学军,赵营,任福聪,等.滴灌条件下施氮量对黄瓜-番茄种植体系中土体NO3--N淋洗的影响[J].干旱地区农业研究,2007,25(4):157-162
    86袁新民,同延安,杨学云,等.灌溉与降水对土壤N03--N累积的影响[J].水土保持学报,2000,14(3):71-74
    8787姜东燕,于振文,许振柱.灌溉量和施氮量对冬小麦产量和土壤硝态氮含量的影响[J].应用生态学报,2011,22(2):364-368
    88胡立峰,胡春胜,安忠民.不同土壤耕作法对作物产量及土壤硝态氮淋失的影响[J].水土保持学报,2005,19(6):186-189
    89杨荣,苏永中.农作制度对黑河中游沙质土壤硝态氮积累及作物产量的影响[J].农业环境科学学报,2011,30(1):120-126
    90尹晓芳,同延安,张树兰,等.关中地区小麦/玉米轮作农田硝态氮淋溶特点[J].应用生态学报,2010,21(3):640-646
    91时秀焕,张晓平,梁爱珍,等.短期免耕对东北黑土硝态氮淋失的影响[J].农业系统科学与综合研究,2010,26(3):344-348
    92陈效民,邓建才,柯用春,等.硝态氮垂直运移过程中的影响因素研究[J].水土保持学报,2003,17(2):12-15
    93同延安,石维,吕殿青,等.陕西三种类型土壤剖面硝酸盐累积、分布与土壤质地的关系[J].植物营养与肥料学报,2005,11(4):435-441
    94 Dominguez J, Bohlen P J, Parmelee R W. Earthworms increase nitrogen leaching to greater soil depths in row crop agroecosystems [J]. Ecosystems,2004,7:672-685
    95 Di H J, Cameron K C, Moore S, et al. Nitrate leaching from dairy shed effluent and ammonium fertilizer applied to a free-draining soil under spray or flood irrigation[J]. New Zealand Journal of Agricultural Research,1998,41:263-270
    96刘光栋,吴文良.高产农田土壤硝态氮淋失与地下水污染动态研究[J].中国生态农业学报,2003,11(1):91-93
    97冯绍元,张自军,丁跃元,等.降雨与施肥对夏玉米土壤硝态氮分布影响的田间试验研究[J].灌溉排水学报,2010,29(5):11-14
    98 McLay C D A, McLaren R G, Cameron K C. Effect of time of application and continuity of rainfall on leaching of surface-applied nutrients [J]. Australian Journal of Soil Research,1991,29(1):1-9
    99 Nielsen N E, Jensen H E. Nitrate leaching from loamy soils as affected by crop rotation and nitrogen fertilizer application[J]. Fertilizer Research,1990,26:197-207
    100 Verloopl J, Boumans L J M, Van Keulen H, et al. Reducing nitrate leaching to groundwater in an intensive dairy farming system[J]. Nutrient Cycling in Agroecosystems,2006,74:59-74
    101 Thorup-Kristensen K, Salmeron Cortasa M, Loges R. Winter wheat roots grow twice as deep as spring wheat roots, is this important for N uptake and N leaching losses[J]. Plant Soil,2009,322:101-114
    102 Li F, Miao Y, Zhang F, et al. In-Season Optical sensing improves nitrogen-use efficiency for winter wheat[J]. Nutrient Management & Soil & Plant Analysis,2009,73:1566-1574
    103于红梅,李子忠,龚元石.不同水氮管理对蔬菜地硝态氮淋洗的影响[J].中国农业科学,2005,38(9):1849-1855
    104隋方功,王运华,长友诚,等.滴灌施肥技术对大棚甜椒产量与土壤硝酸盐的影响[J].华中农业大学学报,2001,20(4):358-362
    105杨治平,陈明昌,张强,等.不同施氮措施对保护地黄瓜养分利用效率及土壤氮素淋失影响[J].水土保持学报,2007,21(2):57-60
    106高艳明,孙权,李建设.氮肥施用量对大白菜硝酸盐累积的影响研究[J].中国生态农业学报,2004,12(2):115-117
    107张贵龙,任天志,李志宏,等.施氮量对白萝卜硝酸盐含量和土壤硝态氮淋溶的影响[J].植物营养与肥料学报,2009,15(4):877-883
    108 Tremblay N, Bouroubi M Y, Panneton B, et al. Development and validation of fuzzy logic inference to determine optimum rates of N for corn on the basis of filed and crop features [J]. Precision Agriculture,2010,11:621-635
    109 Hodges T. Water and nitrogen applications for potato:Commercial and experimental rates compared to a simulation model [J]. Journal of Sustainable Agriculture,1998,13:79-90
    110栾书荣.新型硝化抑制剂DMP-D的研究[D].扬州:扬州大学,2004
    111倪秀菊.几种抑制剂对尿素水解和土壤硝化作用的影响[D].北京:中国农业科学院,2010
    112 Gandeza A T, Shoji S, Yamada I. Simulation of crop response to polyolefin-coated urea. I. Field dissolution[J]. Soil Science Society of America Journal,1991,55:1462-1467
    113 Wang Q, Li F R, Zhao L, et al. Effects of irrigation and nitrogen application rates on nitrate nitrogen distribution and fertilizer nitrogen loss, wheat yield and nitrogen uptake on a recently reclaimed sandy farmland [J]. Plant Soil,2010,337:325-339
    114于红梅,李子忠,龚元石.传统和优化水氮管理对蔬菜地土壤氮素损失与利用效率的影响[J].农业工程学报,2007,23(2):54-59
    115 Stowe D C, Lamhamedi M S, Carles S, et al. Managing irrigation to reduce nutrient leaching in containerized white spruce seedling production[J]. New Forests,2010,40:185-204
    116 Haraguchi T, Marui A, Yuge K, et al. Eff.ect of plastic-film mulching on leaching of nitrate nitrogen in an upland field converted from paddy[J]. Paddy and Water Environment,2004,2:67-72
    117 Gao Y J, Li Y, Zhang J C, et al. Effects of mulch, N fertilizer, and plant density on wheat yield, wheat nitrogen uptake, and residual soil nitrate in a dryland area of China [J]. Nutrient Cycling in Agroecosystem,2009,85:109-121
    118费良军,韩雪冬,贾丽华,等.膜孔灌对玉米不同生育期农田土壤硝态氮运移的影响[J].沈阳农业大学学报,2008,39(5):598-602
    119范凤翠,李志宏,张立峰,等.日光温室番茄灌水量与根层硝态氮淋溶特征及渗漏关系研究[J].植物营养与肥料学报,2010,16(5):1161-1169
    120周茂娟,梁银丽,陈甲瑞,等.地表处理方式对日光温室辣椒水分利用效率及土壤硝态氮、速效磷分布的影响[J].应用生态学报,2007,18(6):1393-1396
    121韦彦,孙丽萍,王树忠,等.灌溉方式对温室黄瓜灌溉水分配及硝态氮运移的影响[J].农业工程学报,2010,26(8):67-72
    122 Al-Assir I A, Rubeiz I G, Khoury R Y. Response of fall greenhouse cos lettuce to clear mulch and nitrogen fertilizer [J]. Journal of Plant Nutrition,1991,14(10):1017-1022
    123 Hou X Y, Wang F X, Han J J. et al. Duration of plastic mulch for potato growth under drip irrigation in an arid region of Northwest China [J]. Agricultural and Forest Meteorology,2010,150:115-121
    124姜慧敏,张建峰,杨俊诚,等.施氮模式对番茄氮素吸收利用及土壤硝态氮累积的影响[J].农业环境科学学报,2009,28(12):2623-2630
    125马腾飞,危常州,王娟,等.不同灌溉方式下土壤中氮素分布和对棉花氮素吸收的影响[J].新疆农业科学,2010,47(5):859-864
    126 Darwish T, Atallah T, Hajhasan S, et al. Management of nitrogen by fertigation of potato in Lebanon [J]. Nutrient Cycling in Agroecosystems,2003,67:1-11
    127仵峰,宰松梅,丛佩娟.国内外地下滴灌研究及应用现状[J].灌溉技术,2004,25(4):25-28
    128康绍忠,张建华,梁宗锁,等.控制性交替灌溉-一种新的农业节水调控思路[J].干旱地区农业研究,1997,15(1):1-6
    129谭军利,王林权,李生秀.不同灌溉模式下水分养分的运移及其利用[J].植物营养与肥料学报,2005,11(4):442-448
    130刘小刚,张富仓,田育丰.交替隔沟灌溉和施氮对玉米根区水氮迁移的影响[J].中国农业科学,2008,41(7):2025-2032
    131杜建军,王新爱,苟春林.保水剂对土壤氮素损失的影响及其环境效应[C].中国环境科学学会学术年会论文集,2010,4:3871-3875
    132姚建武,王艳红,唐明灯,等.施用保水剂对旱地赤红壤持水能力及氮肥淋失的影响[J].水土保持学报,2010,24(5):191-194
    133 Zibilske L M, Bradford J M. Soil aggregation, aggregate carbon and nitrogen, and moisture retention induced by conservation tillage [J]. Soil Science Society of America Journal,2007,71:793-802
    134张海林,孙国峰,陈继康,等.保护性耕作对农田碳效应影响研究进展[J].中国农业科学,2009,42(12):4275-4281
    135江永红,宇振荣,马永良.秸秆还田对农田生态系统及作物生长的影响[J].土壤通报,2001,32(5):209-213
    136 Vos J, Vander Putten P E L, Hussein M H, et al. Field observations on nitrogen catch crops. II. Root length and root length distribution in relation to species and nitrogen supply[J]. Plant and Soil,1998,201 (1):149-155
    137任智慧,陈清,李花粉,等.填闲作物防治菜田土壤硝酸盐污染的研究进展[J].环境污染治理技术与设备,2003,4(7):13-17
    138 Thorup-Kristensen K. Are differences in root growth of nitrogen catch'crops important for their ability to reduce soil nitrate-N content, and how can this be ineasured[J]. Plant and Soi 1,2001,230:185-195
    139 Thorup-Kristensen K. Effect of deep and shallow root systems on the dynamics of soil inorganic N during 3-year crop rotations [J]. Plant Soil,2006,288:233-248
    140 Weinert T L, Pan W L, Moneymaker M R, et al. Nitrogen recycling by nonleguminous winter cover crops to reduce leaching in potato rotations [J]. Agronomy Journal,2002,94(2):365-372
    141 Guo R Y, Li X L, Christie P, et al. Influence of root zone nitrogen management and a summer catch crop on cucumber yield and soil mineral nitrogen dynamics in intensive production systems[J]. Plant Soil,2008,313:55-70
    142 Constantin J, Beaudoin N, Laurent F, et al. Cumulative effects of catch crops on nitrogen uptake, leaching and net mineralization [J]. Plant Soil,2010, on line available
    143 Portela S I, Andriulo A E, Sasal M C, et al. Fertilizer vs. organic matter contributions to nitrogen leaching in cropping systems of the Pampas:15N application in field lysimeters [J]. Plant Soil,2006,289:265-277
    144 Brins fileld R B, Staver K W. Use of cereal grain cover crops for reducing groundwater nitrate contamination in the Chesa-peake Bay region. In Cover Crops for Clean Water. Hargrove W L, Editor[C]. Proceedings of an International Conference West Tennessee Experiment Station,1991:79-82
    145 Yamoah C F, Varvel G E, Waltman W J, et al. Long-term nitrogen use and nitrogen-removal index in continuous crops and rotations[J]. Field Crops Research,1998,57:15-27
    146 Kayser M, MUller J, Isselstein J. Nitrogen management in organic farming: comparison of crop rotation residual effects on yields, N leaching and soil conditions [J]. Nutrient Cycling in Agroecosystem,2010,87:21-31
    147乔俊,颜廷梅,薛峰,等.太湖地区稻田不同轮作制度下的氮肥减量研究[J].中国生态农业学报,2011,19(1):24-31
    148 Zhou S L, Wu Y C, Wang Z M, et al. The nitrate leached below maize root zone is avai lable for deep-rooted wheat in winter wheat-summer maize rotation in the North China Plain [J]. Environmental Pollution,2008,152:723-730
    149春亮,陈范骏,张福锁,等.不同氮效率玉米杂交种的根系生长、氮素吸收与产量形成[J].植物营养与肥料学报,2005,11(5):615-619
    150郭战玲,沈阿林,寇长林,等.河南省不同小麦品种氮效率的差异研究[J].华北农学报,2009,24(2):185-189
    151赵付江,申书兴,李青云,等.茄子氮效率基因型差异的研究[J].华北农学报,2007,22(6):60-64
    152 Mi G H, Chen F J, Wu Q P, et al. Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems [J]. Science China Life Sciences,2010,53(12):1369-1373
    153张维理,冀宏杰,Kolbe H,等.中国农业面源污染形势估计及控制对策Ⅱ.欧美国家农业面源污染状况及控制[J].中国农业科学,2004,37(7):1018-1025
    154刘景辉,王志敏,李立军,等.超高产是中国未来粮食安全的基本技术途径[J].农业现代化研究,2003,24(3):161-165
    155王志敏,王树安.发展超高产技术,确保中国未来16亿人口的粮食安全[J].中国农业科技导报,2000,2(3):8-11
    156王志敏,王树安.集约多熟超高产-21世纪我国粮食生产发展的重要途径[J].农业现代化研究,2000,21(4):193-196
    157李茂,张洪业.中国耕地和粮食生产力变化的省际差异研究[J].资源科学,2003,25(3):49-56
    158刘巽浩.论我国耕地种植指数(复种)的潜力[J].作物杂志,1997(3):1-3
    159林立平.唐代主粮生产的轮作复种制[J].暨南学报(哲学社会科学),1984,1:41-48
    160郭文韬.中国复种制的历史发展[J].世界农业,1986,3:39-42
    161武兰芳,陈阜,欧阳竹.种植制度演变与研究进展[J].耕作与栽培,2002,3:1-5,14
    162左丽君,张增祥,董婷婷,等.耕地复种指数研究的国内外进展[J].自然资源学报,2009,24(3):553-560
    163范锦龙,吴炳方.基于GIS的复种指数潜力研究[J].遥感学报,2004,8(6):637-644
    164史俊通,刘孟君,李军.论复种与我国粮食生产的可持续发展[J].干旱地区农业研究,1998,16(1):51-57
    165马永祥.复种指数刍议[J].作物杂志,2003,4:54
    166刘玉华,张立峰.土地当量比和复种指数的应用研究[J]. 沈阳农业大学学报,1998,29(3):220-223
    167袁德法.复种指数与投入要素平衡问题[J].农业技术经济,1993,6:38-39
    168闫慧敏,刘纪远,曹明奎.近20年中国耕地复种指数的时空变化[J].地理学报,2005,60(4):559-566
    169梁书民.我国各地区复种发展潜力与复种行为研究[J].农业经济问题,2007,5:85-90
    170陈善毅.我国耕地复种指数继续提高的瓶颈与对策[J].安徽农业科学2007,35(21):6560-6561
    171陈奇恩.中国塑料薄膜覆盖农业[J].中国工程科学,2002,4(4):12-15,21
    ]72张其德.作物的大田光能利用效率[J].植物杂志,1988,2:32-33
    173刘玉华,张立峰.不同种植方式土地利用效率的定量评价[J].中国农业科学2006,39(1):57-60
    174杨恒山,曹敏建,曹颖霞,等.内蒙古西辽河平原麦后复种饲料作物研究[J].沈阳农业大学学报,2003,34(3):165-168
    175何余堂,陈兴奎,解玉梅,等.玉米与油菜复种栽培的综合效益分析[J].作物杂志,2007,5:78-80
    176张云影,刘臣,赵岭乐,等.麦茬复种不同饲料作物经济效益的对比试验[J].农业与技术,2005,25(4):67,87
    177张海明,刘景辉,刘国军,等.内蒙古中西部小麦茬复种油用向日葵两熟制种植模式研究[J].华北农学报,2003,18(4):79-81
    178朱练峰,江海东,金千瑜,等.不同复种方式的生产力和效益研究[J].西南农业大学学报(自然科学版),2006,28(6):917-921
    179罗兴录.不同复种方式生产力及生态经济效益研究[J].耕作与栽培,1995,3:7-9,14
    180马宇龙,远征,张华超.内蒙古河套灌区小麦茬地复栽紫花苜蓿的试验研究[J].第二届中国苜蓿发展大会,苜蓿栽培、加工与利用,161-162
    181杨瑞吉,牛俊义,黄文德,等.麦茬复种饲料油菜对耕层土壤团聚体的影响[J].水土保持学报,2006,20(5):77-81
    182黄国勤,黄禄星.稻田玉米复种方式的生态经济效益及其综合评价[J].中国农学通报第2006,22(12):127-132
    183朱练峰,江海东,金千瑜,等.不同粮草复种方式下土壤养分动态研究[J].土壤,2007,39(4):643-642
    184张洪刚,张国正,钟小仙.不同粮草复种方式生态效益分析[J].江苏农业科学,2008,2:158-161
    185岳永华,杨瑞吉,牛俊义,等.复种饲料油菜对麦茬耕层土壤酶活性的影响[J].草业学报,2007,16(6):47-53
    186 Akpinar M G, Ozkan B, Sayin C, et al. An input-output energy analysis on main and double cropping season production [J]. Journal of food agriculture & environment,2009,7(34):464-467
    187 Kristensen H L, Thorup-Kristensen K. Uptake of 15N labeled nitrate by root systems of sweet corn, carrot and white cabbage from 0.2-2.5 meters depth. Plant Soil,2004, 265:93-100
    188季书勤.前氮后移对小麦产量及生育特性的影响[D].南京农业大学,2000
    189余策金,李北京,郭在斌,等.棉花氮肥基追不同比例的效果初探[J].江西棉花,2009,31(4):25-26
    190鱼欢,杨改河,王之杰.不同施氮量及基追比例对玉米冠层生理性状和产量的影响[J].植物营养与肥料学报,2010,16(2):266-273
    191白岗栓,张蕊,耿桂俊,等.河套灌区农业节水技术集成研究[J].水土保持通报,2011,31(1):149-154
    192 Ghosh, P K, Dayal D, Bandyopadhyay, et al. Evaluation of straw and polythene mulch for enhancing product ivi ty of irrigated summer ground-nut [J]. Field Crop Research, 2006,99:76-86
    193 Wang F X, Feng S Y, Hou X Y, et al. Potato growth with and without plastic mulch in two typical regions of Northern China [J]. Field Crop Research,2009,110:'123-129
    194高炳德,王贵平,王玉英,等.地膜覆盖对旱地春玉米降水利用率、化肥肥效和利用率的影响[J].华北农学报,2001,16(专辑):75-79
    195李俊良,陈新平,李晓林,等.大白菜氮肥用量的产量效应、品质效应和环境效应[J].土壤学报,2003,40(2):261-266
    196高艳明,孙权,李建设.氮肥施用量对大白菜硝酸盐累积的影响研究[J].中国生态农业学报.2004,12(2):115-117
    197沈明珠,翟宝杰,东惠茹,等.蔬菜硝酸盐累积的研究Ⅰ.不同蔬菜硝酸盐和亚硝酸盐含量评价[J].园艺学报,1982,9(4):41-48
    198胡博,樊明寿,郝云凤.农田土壤硝态氮淋洗影响因素及阻控对策研究进展[J].中国农学通报,2011,27(27):.32-38
    199苏欣.氮肥水平对几种蔬菜产量、品质的影响[D].武汉,华中农业大学,2006
    200李家文,王肯臣,李惠芬,等.白菜光合作用的初步研究[J].园艺学报,1963,2(3):271-282
    201谷洁,高华,方日尧.施肥和秸秆覆盖对旱地作物水分利用效率的影响[J].农业工程学报,1998,14(2):160-164
    202张仁陟,李小刚,胡恒觉.施肥对提高旱地农田水分利用效率的机理[J].植物营养与肥料学报,1999,5(3):221-226
    203肖利贞,沈阿林,徐国信,等.施肥对旱地甘薯产量和水分利用效率的影响[J].土壤肥料,1995,5:11-14
    204204张玉芹,杨恒山,高聚林,等.超高产春玉米冠层结构及其生理特性[J].中国农业科学,2011,44(21):4367-4376
    205杨建昌,杜永,吴长付,等.超高产粳型水稻生长发育特性的研究[J].中国农业科学,2006,39(7):1336-1345
    206206高海涛,王育红,孟战赢,等.超高产小麦产量及旗叶生理特性的研究[J].麦类作物学报,2010,30(6):1080-1084
    207魏建军,罗赓彤,张力,等.超高产大豆主要群体生理参数与经济产量关系的研究[J].中国油料作物学报,2007,29(3):272-276
    208鲍士旦.土壤农化分析[M].2008.北京:中国农业出版社
    209 Kleinkopf, G E, Westerman D T, et al. Dry matter product ion and nitrogen utilizat ion by six potato cultivars [J]. Agronomy Journal,1981,73:799-802
    210邱喜阳,王晨阳,王彦丽,等.施氮量对冬小麦根系生长分布及产量的影响[J].西北农业学报,2012,21(1):53-58
    211林文,李义珍,郑景生,等.施氮量及施肥法对水稻根系形态发育和地上部生长的影响[J].福建稻麦科技,1999,17(3):21-24
    212 Zhang H M, Rong H L, Pilbeam D. Signal lingmechanisms underlying the morphological responses of the root system to nitrogen in Arabidopsis thaliana[J], Journal of Experimental Botany,2007,58:2329-2338
    213 Thorup-Kristensen K. Root development of nitrogen catch crops and of a succeeding crop of broccoli [J]. Act a Agriculture. Scandinavica, Section B, Soil & Plant Science, 1993,43:58-64
    214张玉芹,杨恒山,高聚林,等.超高产春玉米的根系特征[J].作物学报,2011,37(4):735-743

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700