用户名: 密码: 验证码:
超细电气石产品制备及对养殖水质改良效果和机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着水产养殖业的快速发展,部分地区的养殖水质在不断恶化,直接或间接地导致了水体的污染和水产品品质的下降,从而给水产养殖业造成了巨大损失,影响了水产养殖业的可持续发展。若不进行养殖废水的有效处理,将会威胁人类的健康。电气石(Tourmaline)是解决这一问题有效途径之一,它具有良好的压电特性,存在永久性自发电极,能够辐射远红外线,自发调节养殖水体的氧化还原电位(Oxidation-reduction potential, ORP)和pH值,减小水分子团簇(Water molecules cluster),活化水体,还可以选择性的去除水体中的重金属和氨氮等,具有很好的机械化学稳定性和较好的重复利用性,且不会对环境造成污染,是很好的功能性绿色环保水产养殖水质净化材料。因此,本文较系统地研究了超细电气石粉(Ultra-fine powder of tourmaline, UPT)的制备工艺参数,并对超细电气石粉在活化水、改善水体pH值、吸附水体中重金属离子和氮磷等方面的应用进行了探究,继而在此基础上采用锐孔—凝固浴法制备得到功能性电气石球(Functional tourmaline balls,FTB),扩宽了电气石在水质处理中的应用范围,弥补了粉态电气石在养殖水质处理中的不足。本论文的主要研究内容如下:
     (1)研究不同制备因素对超细电气石粉体粒径的影响:采用机械化学法(The method ofmechanochemistry, MC)对电气石进行超细处理,并以粒径为指标,分析讨论了不同的分散剂、分散剂用量、固形物浓度和研磨时间等因素对电气石粒径的影响。试验数据显示,分散剂多聚磷酸钠用量为5%、固形物浓度为45%、研磨时间为6h时,电气石粉体的超细效果最好,此时超细电气石粉的平均粒径为0.17μm,其粒径分布均匀,且颗粒分散性较好。
     (2)探讨超细电气石粉对水分子团簇的影响:以去离子水的~(17)O核磁共振(Nuclear magneticresonance, NMR)半高幅宽(Full width at half maximum intensity, FWHM)为指标,研究电气石用量、处理时间、电气石粒径以及温度对电气石减少水分子团簇的影响。结果显示:超细电气石粉能够使去离子水的~(17)O NMR半高幅宽变窄,降低了水分子缔合度,增强了水的活性。电气石的粒径越小,去离子水的~(17)O NMR半高幅宽越窄,放置120h后仍能保持着良好活性,说明电气石在活化水领域具有重要作用。
     (3)研究不同条件下超细电气石粉对水体pH值的调控作用:主要考察处不同因素对超细电气石粉调控去离子水、酸碱溶液以及海水pH值的影响。试验结果表明,超细电气石粉在10min内即可使去离子水的pH值从6.86上升至8.91,既可以使酸溶液的pH值上升至中性或弱碱性,也可使碱性溶液的pH值下降;而海水的盐度主要影响电气石调控海水pH值的速率,但对其最终pH值没有影响,电气石的用量越多,粒径越小,其对海水pH值的改变越大。电气石对酸性溶液的pH值的影响要大于对碱性溶液pH值的影响。
     (4)超细电气石粉对溶液中重金属离子的吸附效果的研究:利用原子吸收分光光度计法测定重金属离子的浓度,研究不同因素对超细电气石粉吸附溶液中重金属离子效果的影响。结果显示:超细电气石粉对溶液中的Cu~(2+)、Pb~(2+)和Zn~(2+)均有显著吸附作用。电气石吸附重金属离子的最佳工艺参数为:吸附时间为30min、超细电气石粉用量为5g/L、溶液初始pH值为6.0~7.5、溶液初始浓度为57.2mg/L时,超细电气石粉对Cu~(2+)的去除率和吸附容量分别为99.93%和11.43mg/g;吸附时间为30min、超细电气石粉用量为5g/L、溶液初始pH值为4.0~6.5、溶液初始浓度为103.6mg/L时,电气石对Pb~(2+)的去除率和吸附容量分别为99.99%和20.57mg/g;吸附时间为30min、超细电气石粉为5g/L、溶液初始pH值为6.0~7.5、溶液初始浓度为43.6mg/L时,超细电气石粉对Zn~(2+)的去除率和吸附容量分别为98.26%和8.57mg/g。超细电气石粉对三者的吸附均符合Langmuir吸附等温式,其对Cu~(2+)、Pb~(2+)和Zn~(2+)的最大吸附容量分别为18.59、133.33、15.41mg/g。超细电气石粉对混合溶液中的Cu~(2+)、Pb~(2+)和Zn~(2+)的吸附属于竞争性吸附,其选择性吸附由大到小的顺序为:Pb~(2+)、Cu~(2+)和Zn~(2+)。
     (5)通过改变不同影响因素来探讨超细电气石粉对水体中氮磷的吸附特性:试验通过改变不同影响因素探讨了超细电气石粉对养殖水体中N、P(磷酸盐、氨氮和亚硝酸盐氮)的吸附特性。由结果可知,超细电气石粉对溶液中的PO_4~(3-)-P、NO_2~--N和NH_4~+-N均有良好的吸附性能。超细电气石粉用量为5g/L、吸附时间为80min、溶液初始pH值为2.0、溶液浓度为50mg/L时,其对溶液中PO_4~(3-)-P的去除率为66.74%;超细电气石粉用量为5g/L、吸附时间为60min、溶液初始pH值为2.0、溶液初始浓度为50mg/L时,其对溶液中NO_2~--N的去除率为78.40%;超细电气石粉用量为5g/L、吸附时间为80min、溶液初始pH值为10.0~12.0、溶液初始浓度为50mg/L时,其对溶液中NH_4~+-N的去除率为63.70%。超细电气石粉对以上三者的吸附模型均与Langmuir吸附等温式相一致,其对PO3-+4-P、NO_2~--N和NH4-N的最大吸附容量分别为14.71、11.90和6.76mg/g,且电气石对PO_4~(3-)-P和NO_2~--N的吸附能力大于对NH_4~+-N的吸附能力。
     (6)功能性电气石球的制备及应用:用硅藻土做载体,采用锐孔—凝固浴法制备得到功能性电气石球,经过400℃高温处理后,电气石红外吸收光谱的特征吸收峰强度减弱,峰位置移位现象,说明其晶体化学键和结构发生了变化,活性官能团被激活,但并未使电气石的自发极化现象消失,仍保持着电气石的独特特征。与超细电气石粉一样,经过高温处理的FTB也可快速调控酸碱溶液的pH值,对养殖水体中的Cu~(2+)、Pb~(2+)、Zn~(2+)、PO43--P、NO2--N和NH4+-N均有较好的吸附效果。另外,FTB还可以有效减小水分子团簇,使养殖水得到活化,同时增加了水中溶解氧(Dissolved Oxygen, DO)含量。
     (7)在静态养殖水体处理中,功能性电气石球(FTB)既可以显著提高养殖水体的pH值和水体溶解氧含量(DO值),又可以显著降低养殖水体中PO_4~(3-)-P、NO_2~--N和NH_4~+-N的浓度;在动态养殖水体处理中,FTB可以显著降低吉富罗非鱼水体中的PO3-+4-P、NO_2~--N、NH4-N的浓度,水体的COD值也显著低于对照组和SAD组。
With the rapid development of aquaculture industry, the water quality in some areas has beendeteriorated; it has led to the pollution of water quality and great loss of aquaculture directly or indirectlyand made the aquatic product quality reduce, affecting the sustainable development of aquaculture industry.If we don’t treat aquaculture wastewater effectively, it may threaten the health of human beings.Tourmaline has good piezoelectric properties, spontaneous permanent polarity and releasing far infraredradiation which can spontaneously adjust aquaculture redox potentials and pH values, reduce watermolecules cluster, activate water, and still can remove the heavy metal and ammonia nitrogen selectively inthe water and so on. It has very good mechanical chemical stability and can well be reused, not causingpollution to the environment; it is very good functional green environmental protection aquaculture waterpurification materials. Therefore, the paper studied the optimum technological conditions of preparation ofultra-fine powder of tourmaline (UPT), and also did the research of tourmaline which can activate water,improve pH value, adsorb heavy metal and remove nitrogen and phosphorus and so on. On this basis, itadopted piercing-solidifying method for getting the functional tourmaline balls(FTB), broading the range oftourmaline application in water treatment and having made up for water treatment insufficiency of thepowder state tourmaline. The main research contents in the paper are as follows:
     (1) The influence of the different preparation factors studied to ultra-fine powder of tourmalineparticle size: by using the method of mechanochemistry for preparing ultra-fine powder of tourmaline,Nano Particle Analyzer and Potentiometric Analyzer, this experiment analyzed dispersant and dosage, solidconcentration and milling time to the effect of powder products of tourmaline particle size. At normaltemperature and pressure, the experiment adopted horizontal circulation sanding machines to milltourmaline powder of22μm size for6h in Inner Mongolia Chifeng area under the condition of polyphosphate dispersant whose solid dosage and concentration were5%and45%and got ultra-fine powder oftourmaline of average particle size0.17μm which the size distribution was uniform and particle dispersionwas better.
     (2) Exploring the influence of ultra-fine powder of tourmaline to water molecules cluster: using themethod of nuclear magnetic resonance to measure deionized water and~(17)O NMR full width at halfmaximum intensity (FWHM), FWHM is to represent water molecules cluster structure. Through the directeffect between tourmaline and water, the experiment studied the effects of tourmaline dosage, theprocessing time, tourmaline particle size, and the temperature on~(17)O NMR FWHM of deionized water. Theresults showed that, the ultra-fine powder of tourmaline reduced~(17)O NMR full width at half maximumintensity for deionized water and the volume of water molecules clusters, and increased the degree of wateractivity. The smaller particle size of tourmaline and the narrower~(17)O NMR FWHM of deionized water kepta good activity after placing120h, illustrating the tourmaline has the vital role in the activation water area.
     (3) Studying the regulating and controlling function of ultra-fine powder of tourmaline to water pHvalue: according to the tourmaline’s experiments of regulating and controlling water pH value, it mainlystudied how the ultra-fine powder of tourmaline influenced deionized water, acid and alkali solution andthe pH value of seawater under different conditions. And the results showed that tourmaline within10mincould make deionized water pH value rise to8.91from6.86and adjust the pH values to become neutral orweak alkaline. The salinity of seawater mainly influenced regulation rate of the pH values of seawater bytourmaline, but the final pH values had not been influenced; The more dosage and smaller particle size oftourmaline can change the pH value of the sea more greatly. The effect of tourmaline to acidic solution pHvalue was greater than that of the pH value in the alkaline solution, which is the tourmaline surfacehydroxyl electrical functions. After recycling four times, the effect of tourmaline’s regulating andcontrolling pH value of the seawater was good, showing that the process is simple, the effect is good, andhas no pollution.
     (4) The adsorption effect of ultra-fine powder of tourmaline to heavy metal ions in the solution: usingatomic absorption spectrophotometer, the experiment studied how the single heavy metal ions oftourmaline was influenced by some factors such as the adsorption time, tourmaline dosage, initial solutionpH value, initial ion concentration and adsorption temperature and so on, and did the same research to themixed heavy metal ions adsorption. The result showed: Cu~(2+)、Pb~(2+)and Zn~(2+)in the solution of ultra-finepowder of tourmaline had significant adsorption effect.The best technical parameters of tourmaline toheavy metal ions adsorption was: adsorption time for30min, dosage for5g/L, initial pH value for6.0~7.5, the initial concentration of the solution for57.2mg/L, adsorption rate of the solution to Cu~(2+)for99.93%, adsorption capacity for11.43mg/g, adsorption time for30min, tourmaline dosage for5g/L, initial pH value of solution for4.0~6.5, the initial concentration of the solution for103.6mg/L, adsorptionrate of tourmaline to Pb~(2+)for99.99%, adsorption capacity for20.57mg/g, adsorption time for30min,tourmaline dosage for5g/L, solution initial pH value for6.0~7.5, the initial concentration of the solutionfor43.6mg/L, adsorption rate of tourmaline to Zn~(2+)for98.26%, and adsorption capacity for8.57mg/g.The ultra-fine powder of tourmaline adsorption was conforming to the Langmuir isothermal adsorptionequation. The maximum adsorption to heavy metal ions, Cu~(2+)、Pb~(2+)and Zn~(2+)by the ultra-fine powder oftourmaline was18.59,133.33and15.41mg/g, respectively. The competitive adsorption by UPT to thethree ions was observed in blended solution with Cu~(2+)、Pb~(2+)and Zn~(2+), and the adsorption capacity of UPTfor multi-metal ions system decreased in an order of Pb~(2+)、Cu~(2+)and Zn~(2+).
     (5) Exploring the adsorption characteristic of ultra-fine powder of tourmaline to N, P throughchanging the different affecting factors: by changing the different affecting factors to explore the adsorptioncharacteristic of ultra-fine powder of tourmaline to N, P (phosphate, ammonia nitrogen and nitrite) in theaquaculture water, the results was that the tourmaline had good adsorption performance to PO_4~(3-)-P、NO_2~--Nand NH_4~+-N in the solution.The best adsorption conditions of tourmaline to PO_4~(3-)-P was: dosage for5g/L,adsorption time for80min, initial pH value solution for2.0, solution concentration for50mg/L, theadsorption rate of P-O3-4-P in the solution by tourmaline is66.74%; the optimum parameters of tourmalineadsorption to NO2-N is5g/L, adsorption time was60min, initial pH value was2.0, the initialconcentration of the solution was50mg/L, this time tourmaline adsorption rate in the solution to NO_2~--Nwas78.40%; the best parameters of tourmaline adsorption to NH_4~+-N was5g/L, adsorption time was80min, initial pH value solution was1+0.0~12.0, the initial concentration of the solution was50mg/L,tourmaline adsorption rate to NH4-N was63.70%. The tourmaline adsorption model and Langmuirisothermal adsorption equation was consistent, the biggest adsorption capacity of tourmaline to PO_4~(3-)-P、NO_2~--N and NH_4~+-N were14.71,11.90and6.76mg/g, and also its adsorption capacity to PO3--4-P andNO2-N is more than NH_4~+-N.
     (6) The preparation and application of the functional tourmaline ball: using diatomite as carrier andadopting the piercing-solidifying method for getting the functional tourmaline ball, after400℃hightemperature treatment, the intensity of tourmaline infrared radiation spectrum absorption of characteristicpeak and happening peak was weaken, and the phenomenon of peak position shift took place, whichillustrated the changes of crystal chemical bonds and structure and active functional group was activated,but it did not make the tourmaline of spontaneous polarization phenomenon disappear and still kept theunique characteristics of tourmaline. Just as the ultra-fine powder of tourmaline, the FTB fromhigh-temperature processing can also regulate the pH of acid and alkali solution rapidly, it had betteradsorption effect to Cu~(2+)、Pb~(2+)、Zn~(2+)、PO_4~(3-)-P、NO_2~--N and NH_4~+-N in the solution. FTB can effectivelyreduce water molecules cluster size, making aquaculture water activate and also increase water dissolvedoxygen content and improve the penetration of water, soluble and metabolic ability, it has a broad prospectof application in aquaculture water treatment.
     (7) In the static aquaculture processing, the functional tourmaline balls (FTB) can not onlysignificantly improve the aquaculture pH value and water dissolved oxygen content (DO value) andreduce the concentration of PO3--4-P、NO2-N and NH_4~+-N in aquaculture water; In dynamic aquacultureprocessing, FTB can greatly reduce JiFu tilapia water in the PO_4~(3-)-P、NO_2~--N and NH_4~+-N concentrations,whose COD value is obviously lower than those of control group and SAD group.
引文
[1] Hill B J.The need for effective disease control in international aquaculture [J].Dev Biol (Basel),2005,121:3-12.
    [2]王彦波.载菌纳米级硅酸盐微粒的构建及其净化养殖水质的效果和机理探讨[D]:[博士学位论文].杭州:浙江大学,2006.
    [3]孟紫强.环境毒理学[M].北京,中国环境科学出版社,2000.
    [4]施晓东,段昌群,陈霆.环境保护与人类健康[J].曲靖师范学院学报,2001,20(3):61-63.
    [5]赵漩,吴天宝,叶裕才.我国饮用水源的重金属污染及治理技术深化问题[J].给水排水,1998,24(10):22-25.
    [6]蔡继晗,李凯,郑向勇,等.水产养殖重金属污染现状及治理技术研究进展[J].水产科学,2010,39(12):749-752.
    [7] Sutherlnand T F,Petersen S A,Levings C D,et al.Distinguishing between natural and aquaculturederived sediment concentrations of heavy metals in the Broughton Archipelago,British Columbia[J].Marine Pullution Bulletin,2007(54):1451-1460.
    [8]潘振声,施国跃,丁由中.人工养殖与野生扬子鳄卵中重金属含量分析[J].上海环境科学,2000,19(10):489-491.
    [9] Subralnanian K S,Cooner J W,Meranger J C.Leaching of antimony,cadmium,copper,lead,silver,tin and zine from copper piping with non-lead-based soldered joints[J].J Environ Sci HealthA,1991,16:911-929.
    [10] Bishnoi N R,Bajaj M,Sharma N,et al.Adsorption of Cr (VI) on activated rice husk carbon andactivated alumina,Bioresour [J].Technol,2004,94:305-307.
    [11]蒋侃.电气石对废水中重金属离子Cu2+、Pb2+、Zn2+的吸附特性研究[D]:[硕士学位论文].沈阳:东北大学,2005.
    [12] Li Y H,Wang S G,Wei J Q, et al.Lead adsorption on carbon nanotubes[J].Chem Phys Lett,2002,357:263-266.
    [13] Ahmet Ornek,Mahmut Ozaear,Ayan Sengi.Adsorption of lead onto formaldehyde or sulplluricacid treated aceon waste:Equilibrium and kinetic studies [J].J Bioehem Eng,2007,37:192-200.
    [14]张剑波,王维敬,祝乐.离子交换树脂对有机废水中铜离子的吸附[J].水处理技术,2001,27(1):29-32.
    [15] Fawzi Babat.Competitive adsorption of phenol,copper ions and nickel ions on to heat treatedbentonite [M].Adsorption Science and technology,2002,20(20):38-60.
    [16] GB11607-89渔业水质标准[S].2005.
    [17] Low,Chua H,Lam K H.A comparative investigation on the biosorption of lead by filamentousfungal biomass [J].Chemosphere,1999,39:2723-2736.
    [18]石太宏,汤兵.活性炭吸附水中Zn2+及其配合物的特征吸附[J].工业水处理,2000,20(10):12-15.
    [19] Paulami M,Samir B,Maiti P,et al.Accumulation of heavy metals in different tissues of the fishoreochromis nilotica exposed to waste water [M].Environment and Ecology,1999:859-898.
    [20]李坤,李琳,侯和胜.Cu2+、Cd2+、Zn2+对两种单胞藻的毒害作用[J].应用与生物环境学报,2002,8(4):395-398.
    [21]邓丽萍.藻体对水环境中N、P及重金属Cu2+、Pb2+、Cd2+、Cr6+的吸附特征研究[D]:[博士学位论文].北京:中国科学研究院,2008.
    [22] ThomPson F L,Abreu P C,Wasielesky W.Importance of biofillm for water quality andnourishment intensive shmp culture[J].Aquaculture,2002,203(5):263-278.
    [23]邱德全.对虾高密度养殖水体中有机物含量的变化[J].水产科学,2005,24(10):12-14.
    [24]马建新,刘爱英,宋爱芹.对虾病毒病与化学需氧量相关关系研究[J].海洋科学,2002,26(3):68-71.
    [25]沈宏,周培疆.环境有机污染物对藻类生长作用的研究进展[J].水生生物学报,2002,26(5):529-535.
    [26] Pomeroy L R,Smith E E,Grant C M.The exchange of phosphoms between estuarine water andsediments [J].Limnol Ocean ogr,1965,10(1):167-172.
    [27]韩沙沙,温琰茂.富营养化水体沉积物中磷的释放及其影响因素[J].生态学杂志,2004,23(2):98-101.
    [28]李苏,赵玉华,王卫民.不同形态饲料对养殖水体中氮磷含量及饲料溶蚀率的影响[J].华中农业大学学报,2009,28(1):80-83.
    [29]周艳红.养殖水体磷的动态变化研究[D]:[硕士学位论文].中山:中山大学,2005.
    [30]吴玉霖,周成旭,张永山,等.烟台四十里弯海域红色裸甲藻赤潮发展过程及其成因[J].海洋与湖沼,2001,32(2):159-167.
    [31]王彦波,许梓荣,邓岳松.水产养殖中氨氮和亚硝酸盐氮的危害及治理[J].饲料工业,2002,23(12):46-48.
    [32]章文军.水产养殖废水的脱氮研究[D]:[硕士学位论文].宁波:宁波大学,2010.
    [33] Frances J,Nowak B F,Allan G L.Effects of ammonia on juvenile silver perch (Bidyanusbidyanus),2000,183:95-103.
    [34] Randall D J,Tsui T K N.Ammonia toxicity in fish[J].Marine Pollution Bulletin,2002,45:17-23.
    [35]罗华明,程岩雄,李利卫.养殖水体中亚硝酸盐等含量过高形成的原因及处理办法[J].科学养鱼,2005,5:54-54.
    [36]郭静.养殖水体水质净化菌的筛选及特性研究[D]:[硕士学位论文].成都:四川农业大学,2008.
    [37]邓岳松.纳米-亚微米材料对水质及鱼生长的影响[D]:[博士后论文].杭州:浙江大学,2002.
    [38] Schwedler T E,Tueker C S.Empirical relationship between percent methemoglobin in channelcatfish and dissolved nitrite and chloride in Ponds [J].Trans Amer Fish Soc,1983,112:117-119.
    [39]吴中华,刘昌彬,刘存仁,等.中国对虾慢性亚硝酸盐和氨中毒的组织病理学研究[J].华中师范大学学报(自然科学版),1999,3(1):119-121.
    [40] Chen J C, Chin T S. Acute toxicity of nitrite to tiger prawn, Penaeus monodon,larvae. Aquaculture,1988,69(3-4):253-62.
    [41]魏泰莉,余瑞兰,聂湘平,等.水中亚硝酸盐对彭泽娜血红蛋白及高铁血红白的影响[J].大连水产学院学报,2001,16(l):67-71.
    [42]乔顺风.水体氨氮转化形式与调控利用的研究[J].饲料工业,2005,26(12):44-46.
    [43]李建,姜令绪,王文琪,等.氨氮和硫化氢对日本对虾幼体的毒性影响[J].上海水产大学学报,2007,16(1):22-27.
    [44] Adelman I R,Smith L L J.Effect of hydrogen sulfide on northern pike eggs and sac fry [J].TransAmer Fish Soc,1970,99:501-509.
    [45] Chen J C,Lin C Y.Responses of oxygen consumption,Ammonia-N exeretion and Urea-Nexeretion of Penaeus chinensis exposed to ambient ammonia at different salinity and pH levels[J]. Aquaculture,1995,136:243-255.
    [46]朱文锦.高温季节池塘水质管理措施[J].河南水产,2002,3:18.
    [47]刘鹰.集约化水产养殖污水处理技术及应用[J].淡水渔业,1999,29(10):22-25.
    [48]潘厚军.水处理技术在水产养殖中的应用[J].水产科技情报,2001,28(2):68-72.
    [49] Austin B,Austin D.Bactcrial fish Pathogens:disease in farmed and wild fish [J].England EllisHorwood Ltd,1993.
    [50] Boyd C E.The utilization of nitrogen from the decomposition of organic matter in cultures ofScenedesmus dimorphus [J].Arch Hydrobiol,1974,73:361-368.
    [51] Xu B,Ji W S,Zhang P,et al.Study on antibacterial medicine of shrim pathogen [J].Journal ofOeean University of Qingdao,1993,23(2):43-51.
    [52]刘波,刘文斌.微生物对水产养殖环境的生物修复作用[J].淡水渔业,2003,33(1):50-53.
    [53] Castaneda C,Oliveira E F,Gomes N,et al.Infrared study of OH sites in tourmaline from the elbaite—schorl series[J].American Mineralogist,2000,85(10):1503-1507.
    [54] Yves F,Martine L,Jorge L.Oxydation expérimentale de Fe-tourmalines corrélation avec use déprotonation desgroupes hydroxyleAnnealing in oxidising conditions of Fe-tourmalines andcorrelated deprotonation of OH groups [J].Computes Rendus Geosciences,2002,334:245-249.
    [55]姚荣兴.在电气石特性研究及其在化纤改性中的应用[D]:[硕士学位论文].上海:东华大学,2005.
    [56]卢宗柳.我国电气石矿产资源开发前景分析[J].矿产与地质,2008,22(6):562-565.
    [57] Barton R J, Donnay G.Absolute Orientation of Tourmaline by Arcomalous Dispersion of X-rays(abst)[J].Geological Society of America,special paper,1968,101:12-13.
    [58]林善园,蔡克勤.电气石族矿物学研究的新进展[J].中国非金属矿工业导刊,2004,6:21-24.
    [59] Gonzalez-Carreno T,Fernandez M,Sanz J.Infrared and Electron Microprobe Analysis ofTourmalines [J].Phys.Chem.Minerals,1988,15:452-460.
    [60] Castaneda C,Oliveira E F,Gomes N.Pedrosa-Soares A C.Infrared Study of OH Sites inTourmaline from the Elbite-Schorl Series [J].Amer Mineralogist,2000,85:1503-1507.
    [61]孙双,电气石矿物材料的加工及其应用基础研究[D]:[硕士学位论文].吉林:吉林大学,2010.
    [62] Barton R J.Refinement of the Crystal Structure of Buergerite and the Absolute Orientation ofTourmaline [J].Acta Crystal-lographica,1969,B25:1524-1533.
    [63]李文龙.电气石对海洋生物生长活性的影响[D]:[硕士学位论文]大连:大连海事大学,2008.
    [64]冀志江.电气石自极化及应用基础研究[D]:[博士学位论文].北京:中国建筑材料科学研究院.2003.
    [65]孟庆杰.电气石、压电石英超细粉末的制备及其在水处理方面的研究[D]:[博士学位论文]天津:天津工业大学,2004.
    [66]刘志国.热处理对电气石粉体表面自由能的影响研究[D]:[硕士学位论文].天津:河北工业大学,2007.
    [67]李雯雯.超细电气石机械力化学效应及表面改性的研究[D]:[博士学位论文].北京:中国地质大学,2008.
    [68] Shibue Y.Chemical compositions of tourmaline in the Vein-type tungsten deposits of the KaneuchiMine [J].Mineral Deposita,1984,19:298-303.
    [69] Dietrich R V.The Tourmaline Group [J].New York:Van Nostrand Reinhold Company,1985:173.
    [70] Lang S B. The History of Pyroelectricity: From Ancient Greece to Space Missins[J].Ferroelectrics,1999,230:99-108.
    [71] Nakamura T,Kubo T.Tourmaline group crystals reaction with water [J].Ferroelectrics,1992,137:13-31.
    [72] Yamaguchi S,Electron diffraction of a pyroelectric tourmalaine [J].J Appl Phys,1964,35A:1654-1655.
    [73]冀志江,金宗哲,梁金生.极性晶体电气石颗粒的电极性观察[J].人工晶体学报,2002,31(5):503-508.
    [74]久保哲治郎.电气石水界面活性[J].固体物理应用,1989,24(12):47-52.
    [75] Yeh J T,W W,Hsiung H H.et al.Negative Air Ions Releasing Properties of Tourmaline ContainedEthylene Propylene Diene Terpolymer/Polypropylene Thermoplastic Elastomers [J].Journal ofApplied Polymer Science,2008,109:82-89.
    [76] Meng J P,Liang J S,Ou X Q,et al.Effect of Mineral Tourmaline Particles on the PhotocatalyticActivity of TiO2Thin Films[J].Journal of Nanoscience and Nanotechnology,2008,8(3):1279-1283.
    [77] Kellogg E W,Their Possible Biological Significance and Effects [J].Bioelectricity,1984:119-136
    [78] Gabrielle Donnay,Barton R.Refinement of the crystal structure of Elbaite and the mechanism oftourmaline solid solution [J].Tschermaks Min Petr Mitt1972,18:273-286.
    [79]崔新伟,王莎莎,陈萍,等.电气石在环境领域中的研究现状及制膜探索[J].广州化工,2010,38(2):8-10.
    [80]夏枚生.电气石在循环水养殖水处理系统中的应用研究[D]:[博士学位论文].杭州:浙江大学,2005.
    [81]杨如增,廖宗廷,陈晓栋,等.天然黑色电气石热释电特性研究明[J].宝石和宝石学杂志,2000,2(l):34-37.
    [82]何登良,董发勤.电气石的环境功能属性及应用研究动态[J].中国非金属矿工业导刊,2006,1:10-14.
    [83] Sergei V S,Alice V.Electric Field Induced Transition in Water Cluster [J].J Mol Stru(Theochem),2002,593:19-32.
    [84]李璐,传秀云.电气石的结构、性能和应用开发[J].中国非金属矿工业导刊,2008,71:33-37.
    [85] Xia M S,Hu C H,Zhang H M.Effects of Tourmaline Addition on the Dehydrogenase Activity ofRhodopseudomonas Palustris [J].Process Biochemistry,2006,41:221-225.
    [86]潘艳芬,梁金生,欧秀芹,等.电气石远红外辐射对水表面张力的影响[J].硅酸盐学报,2006,34(5):580-584.
    [87] Jiang K,Sun T H,Sun L N,et al.Adsorption characteristics of copper,lead,zinc and cadmiumions by tourmaline [J].Journal of Environmental Sciences,2006,6(18):1221-1225.
    [88] Van B G, Corteel C, Van P. Epigenetic to low-grade tourmaline in the Gdoumontmetaconglomerates (Belgium)[J].A sensitive probe of its chemical environment of formation,2007,(95):165-176.
    [89]张晓晖,吴瑞华,马鸿文.亚微米ZnO/电气石粉体表面包覆研究[J].非金属矿,2006,29(3):3-5.
    [90]王继梅.空气负离子及负离子材料的评价与应用研究[D]:[硕士学位论文].北京:中国建材材料研院,2004.
    [91] Liu S M,Li D C,Hu W T,et al.Ion-beam deposition of tourmaline film on glass [J].Journal ofNon-Crystalline Solids,2008,(354):1444-1446.
    [92]孟林.电气石电磁学性质及其微粒对TiO2光催化活性影响研究[D]:[硕士学位论文].北京:中国地质大学,2007.
    [93] Meng J P,Liang J S,Qu X Q,et al.Effect of Mineral Tourmaline Particles on the PhotocatalyticActivity of TiO2Thin Films [J].Journal of Nanoscience and Nanotechnology,2008,8(3):1279-1283.
    [94] Liang J S,Meng J P,Liang G C.Preparation and Photocatalytic Activity of Composite FilmsContaining Clustered TiO2Particles and Mineral Tourmaline Powders [J].Trans.NonferrousMet. Sic China,2006,16:542-546.
    [95] Sun H S,Misook K Decomposition of2-Chlorophenol Using a Tourmaline-Photocatalytic System[J].Journal of Industrial and Engineering Chemistry,2008,14:785-791.
    [96] Li J H,Lu A H,Liu F,et al.Synthesis of ZnS/dravite Composite and Its Photocatalytic Activityon Degradation of Methylene Blue [J].Solid State Ionics,2008,179:1387-1390.
    [97] Kubo T.Apparatus and method for producing air containing minus alkali ion [P].US Patent,5728288,1998.
    [98] Suga K.Tourmaline liniment [P].JP Patent,10265392,1998.
    [99] Kubo T.Method of controlling the growth of microorganism in a liquid with tourmaline crystal
    [P].US Patent,5569388,1996.
    [100] Nishi Y,Yazawa A,Oguri K.pH Self-controlling Induced by Tourmaline [J].J Intelligent MaterSyst Struct,1996,7:260-263.
    [101] Jiang S Y,Palmer M R,Li Y H,et al.Chemical compositions of tourmaline in the Yindongzi–Tongmugou Pb-Zn deposits,Qinling,China:implications for hydrothermal ore–formingprocesses [J].Mineral Deposita,1995,30:225-234.
    [102]张晓晖,吴瑞华,汤云晖.电气石的自发电极性在水质净化和改善领域的应用研究[J].中国非金属矿工业导刊,2004,3:39-42.
    [103]冀志江,金宗哲,梁金生,等.电气石对水体pH值的影响[J].中国环境科学,2002,22(6):515-519.
    [104] Terutaro Nakamura, Tetsujiro Kubo. Tourmaline group crystals reaction with water[J].Fermeleetries,1992,137:13-31.
    [105]夏枚生.电气石对海水pH值的调控[J].应用生态学报,2005,16(10):1973-1976.
    [106] Kubo T.Surface tension and permeability of water treated by polar crystal tourmaline [J].NipponShokuhin Kogyo Gakkaishi.1991,38:422.
    [107]梁金生,梁广川,祁洪飞,等.稀土复合磷酸盐无机抗菌材料对陶瓷活化水性能的影响[J].中国稀土学报,2003,21:214-243.
    [108]夏枚生,许梓荣,张红梅,等.电气石对液态水团簇和沼泽红假单胞菌脱氢酶活性的影响[J].硅酸盐学报,2005,33:1006-1011.
    [109]张志湘,冯安生,郭珍旭.电气石的自发极化效应在环境与健康领域的应用[J].中国非金属矿工业导刊,2003,1:49-51.
    [110] Gao R Q,Zheng A L,Zhu L F.Influence of tourmaline on pore structure of diatomite-based porousceramics and malachite green decolorization [J].Journal of Synthetic Crystals,2010,39(2):539-544.
    [111]曹慧玲.功能复合材料降解有机物的研究[D]:[硕士学位论文].广州:华南师范大学,2007.
    [112]杨如增,朱新发,葛梦雅,等.电气石微粉吸附水体中金属离子及其机理分析[J].上海地质,2010,31(4):79-82.
    [113]邹中云,管俊芳,李伟,等.电气石吸附Pb2+的实验研究[J].江苏环境科技,2006,19(6):22-24.
    [114]孙铁珩,蒋侃,孙丽娜,等.电气石超细粉吸附水体中Cu、Pb、Zn和Cd [J].中国给水排水,2006,22(z1):104-108.
    [115]王翠苹,常颖,孙红文.电气石和微生物对水溶液中铅吸附研究[J].环境科学与技术,2011,34(7):12-17.
    [116]丁永良.纳米(NANOST)科技养鱼新技木综述[J].现代渔业信息,200318(12):3-8.
    [117]唐云志,王平,许亮,等.电气石复合材料合成及在养殖水处理中的应用[J].江西有色金属,2009,23(4):44-47.
    [118]陈帮,夏晓鸥,罗家珂.电气石超细粉体的制备研究[J].中国非金属矿工业导刊,2009,3:11-13.
    [119]李英堂,田淑艳,王美凤.应用矿物学[M].北京:科学出版社,1995.
    [120]梁景晖,毛艳.高纯纳米累托石制备方法研究[J].非金属矿,2002,25(3):34-39.
    [121]郭永,巩雄,杨宏秀.纳米微粒的制备方法及其进展[J].化学通报,1996,3:1-4.
    [122]薛群基,徐康.纳米化学[J].化学进展,2000,12(4):432-444.
    [123]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [124]衫原俊雄,铃木三男,古宫正树.含有电气石颗粒的人造纤维及其制造方法[P].中国专利,CN99103640,1999.
    [125]吴瑞华,汤云晖,张晓晖,等.一种电磁屏蔽复合材料[P].中国专利,CN01100150,2001.
    [126]季理沉.超细电气石粉研磨工艺研究[J].非金属矿,2002,25(增刊):42-44.
    [127]杜高翔,郑水林,李杨,等.用搅拌磨制备超细粉体的试验研究[J].矿冶,2003,12(4):54-57.
    [128]金玲.超细功能负离子电气石的分级研究[Z].上海应用技术学院学报,2003,3(4):276-279.
    [129]李书,葛晓陵,蒋士忠.湿法制备纳米级负离子粉体的研究及应用[J].化工矿物与加工,2003,1:11-14.
    [130]郑水林,李杨,杜高翔,等.超细电气石粉体制备研究[J].非金属矿,2004,27(4):26-28.
    [131]韩炜,陈敬忠.电气石粒度对其远红外和吸附效应的影响[J].矿产综合利用,2005,4:22-25.
    [132]呼振峰.电气石超细粉体的制备及粒度检测[J].矿冶,2006,4:17-20.
    [133]魏健,刘渝燕,张开永.电气石应用专属性研究[J].非金属矿,2003,26(l):34-36.
    [134]张志湘,余丽秀,张然,等.电气石湿法超细研磨工艺研究[J].中国建材科技,2008,6:83-86.
    [135]王子龙,李献.电气石及其制造方法[P].中国专利,CN0011060l,2000.
    [136]许云生,曾德祥,高增达.一种合成纤维及其制造方法[P].中国专利,CN01105203,2001.
    [1]姚志通,叶瑛,夏枚生,等.电气石在水产养殖水处理中的应用[J].渔业现代化,2007,(5):18-19.
    [2] Yamaguc hi S.Surface electric fields of tourmaline [J].Appl Phys A Solids Surface,1983,31:183-185.
    [3]韩炜.超细纳米化电气石的性质研究及其意义[D]:[博士学位论文].武汉:中国地质大学,2004.
    [4]李雯雯.超细粉体电气石机械力化学效应及表面改性的研究[D]:[博士学位论文].武汉:中国地质大学,2008.
    [5] Dietrich R V.The Tourmaline Group [M].New York:Van Nostrand Reinhold Company,1985.
    [6]吴瑞华,汤云晖.电气石的电场效应及其在环境领域的应用前景[J].岩石矿物学杂志,2001,20(4):474-476.
    [7]呼振峰.电气石超细粉体的制备及粒度检测[J].矿冶,2006,4:17-20.
    [8]陈帮,夏晓鸥,罗家珂.电气石超细粉体的制备研究[J].中国非金属矿工业导刊,2009,3:11-13.
    [9]李书,葛晓陵,蒋士忠.湿法制备纳米级负离子粉体的研究及应用[J].IM&P化工矿物与加工,2003,1:11-14.
    [10] Kunnio U.The effect of surfactant on ultrafine grinding done simultaneously with surface treatmentof magnetite particles [J].Japan Society Powder Technology,1990,27(3):165-169.
    [11] Gao M.,Forssberg E.The influence of slurry rheology on ultra fine grinding in a stirred ball mill[J].International Journal of Mineral Processing,1993,37(2):237-244.
    [12]陈涛,李珍.电气石湿法超细粉碎及分散机理研究[J].非金属矿,2005,28(6):40-42.
    [13] Chen J S,Cushman J H,Low P F.Rheological behavior of Na-montmorillonite suspensions at lowelectrolyte concentration [J].Clays and Clay Minerals,1990,38(1):57-62.
    [14] Penner D and Lagaly G. Influence of organic and inorganic salts on the coagulation ofmontmorillonite dispersions [J].Clays and Clay Minerals,2000,48(2):246-255.
    [15] Bernhardt C,Reinsch E and Husemann K.The influence of suspension properties on ultra-finegrinding in stirred ball mills [J].Powder Technology,1999,105:357-361.
    [16]应德标.粉体制备中的逆粉磨行为[J].中国粉体技术,2003,9(1):24-26.
    [17]王云,陈宁.粉体粒度与研磨技术[J].中国粉体技术,2000,6(4):13-16.
    [18]孙双.电气石矿物材料的加工及其应用基础研究[D]:[硕士学位论文].吉林:吉林大学,2010.
    [19] Sugiyama K,Kasai E,et al.Effect of dry mixed grinding of talc,koalinite and gibbsite onpreparation of cordierite ceramics [J].Journal of Chem Eng Tpn,1993,26(5):565-569.
    [20] Okada K,Kikuchi S,Ban T,et al.Difference of mechanochemical factors for Al2O3powders upondry and wet grinding [J].J Mater Sci Lett,1992,(11):862-864.
    [21] Isobe T,Komatsuhara S,Senna M.The effect of the homogeneity of non-crystalline Pb-Ti-O gelson the complex thermal processes leading to PbTiO3,formation [J].J non-crystalline Solids,1992,150:144-147.
    [22] Sasaki K,Masuda T,Ishida H,et al.Synthesis of calcium silicate hydrate with Ca/Si=2bymechanochemical treatment [J].J Am Ceram SoC,1997,80(2):472-476.
    [23]邱晓晖,张庆今.高岭土干粉磨过程的机械力化学变化[J].硅酸盐学报,1991,19(5):448-455.
    [24] Takeuchi K,Isobe T,Senna M.Holnogenization and particle size reduction of PbTiO3byball-milling of precursor gels [J].J Solid State Chem,1994,109:401-409.
    [25] Liao J F,Senna M.Enhanced dehydration and amorphization of Mg(OH)2in the presence ofultra-fine SiO2under mechno-chemical conditions [J].Thermochimica Acta,1992,210:89-102.
    [1]梁金生,梁广川,祁洪飞,等.稀土复合磷酸盐无机抗菌材料对陶瓷活化水性能的影响[J].中国稀土学报,2003,21:214-243.
    [2] Kvetoslava B,Klaus P B,George H Schmid.An estimation of the size of the water cluster presentat the cleavage site of the water splitting enzyme [J].FEBS Letters,2001,491:81-84.
    [3] Chaplin M F.A proposal for the structuring of water [J].Biophys Chem,1999,83:211-221.
    [4] Ray S F, Mark R V, Richard J S. Far-infrared laser viberation rotation tunneling spectroscopyof water cluster in the librational band region of liquid water [J].J Chem Phys,2001,114(9):4005-4015.
    [5] Daniel P,Yves G.Physicochemical properties of structured water in human albumin andgammaglobulin solutions [J].Biochimie,2001,83:891-898.
    [6] Estrin P L,Corongiu G.Small clusters of water molecules using Density Functional Theory [J].JPhys Chem,1996,100:8701-8711.
    [7] Gergory J K, Clary D C, Liu K, eta1. The water dipole momem in water clusters[J].Science.1997,275:814-817.
    [8] Liu K,Cruzan J D,Saykally R J.Water clusters [J].Science.1996,271:929-933.
    [9] Lvos Y,Li W C,Huang S H.Water clusters in life [J].Medical Hypotheses.2000,54:948-953.
    [10]张建平,赵林,谭欣.水分子团簇结构的改变及其生物效应[J].化学通报,2004,67:278-283.
    [11]张建平.改变水分子簇结构对传质过程的影响[D]:[硕士学位论文].天津:天津理工学院,2003.
    [12]王建华,丁言镁,左春英.微波对水分子团簇结构的探究[J].菏泽学院学报,2006,28(5):77-80.
    [13] David D M,Meler O M,Mush I A,et al.Active Na+and Ca2+transport、Na+-Ca2+exchange andintracellular Na+and Ca2+content in young spontaneously hypertensiverats [J].J Card Pharm,1986,8(8):130-138.
    [14] Sergei V S,Alice V.Electric induced transition in water cluster [J].J Mole Stru (Theochem),2002,593:19-32.
    [15] Alenka L.Extent of inter-hydrogen bond correlations in water:Temperature effect [J].J ChemPhys,2000,258:267-276.
    [16] Kubo T.Surface tension and permeability of water treated by polar crystal tourmaline [J].NipponShokuhin Kogyo Gakkaishi.1991,38:422.
    [17]夏枚生,许梓荣,张红梅,等.电气石对液态水团簇和沼泽红假单胞菌脱氢酶活性的影响[J].硅酸盐学报,2005,33:1006-1011.
    [18]夏枚生.电气石在循环水养殖水处理系统中的应用研究[D]:[博士学位论文].杭州:浙江大学,2005.
    [19]范康年.谱学导论[M].北京:高等教育出版社.2001,11-12.
    [20]孙双.电气石矿物材料的加工及其应用基础研究[D]:[硕士学位论文].吉林:吉林大学,2010.
    [21]李福志,张晓健,吕木坚.用17O核磁共振研究液态水的团簇结构[J].环境科学学报,2004,24(1):6-9.
    [22]刘娜,张兰英,杜连柱,等.高效液相色谱—电感耦合等离子体质谱法测定汞的3种形态[J].分析化学,2005,33(5):1116-1118.
    [23]潘艳芬.电气石矿物材料的活化水作用及其生物学效应研究[D]:[硕士学位论文].天津:河北工业大学,2006.
    [24]冀志江,金宗哲,梁金生,等.电气石对水体pH值的影响[J].中国环境科学,2002,22(6):515-519.
    [25] Kubo T.Interface activity of water given rise by tomuraline [J].Solidstate Physies.1989,24:121-123.
    [26] Kubo T.Surface tension and Pemrebaility of water treated by Polareyrstal tomuraline [J].NipponShokuhin Kogyo Gakkaishi.1991,38:422.
    [27] Torii K,Niwa K.Far-infrared radiation material [P].United States Patent,1999-12-21:6004588.
    [28] Segrei V S,Aliee.V.Electric induced transition in water cluster [J].J Mol Stru:Theoehem.2002,593:19-32.
    [1]梁金生,梁广川,祁洪飞,等.稀土复合磷酸盐无机抗菌材料对陶瓷活化水性能的影响[J].中国稀土学报,2003,21:214-243.
    [2]谭恩光.光润金线蛭种群数量动态与水体化学因子关系的研究[J].应用生态学报,2002,13(5):593-595.
    [3]唐云志.电气石复合材料合成及在养殖水处理中的应用[J].江西有色金属,2009.23(4):44-48.
    [4] Trussell R P.The percent unionized aqueous ammonia solution at different pH levels andtemperatures [J].J Fish Res Board Can1972,29(10):1505-1507.
    [5]罗华明,程岩雄,李利卫.养殖水之中亚硝酸盐、氨氮、硫化氢、pH值过高形成的原因、危害及处理办法[J].渔业致富指南,2005,14:34.
    [6]黄发源.淡水养殖水化学[M].北京:高等教育出版社.1992,83-84.
    [7] Kubo T.Engineering application of solid state physics.Interface activity of water given rise to bytourmaline [J].Solid State Physics,1989,27:303-313.
    [8] Nakamura T.The tourmaline group crystals reaction with water [J].J Ferroelectrics,1992,137:13-31.
    [9] Nakamura T.Tourmaline and lithium niobate reaction with water [J].Ferroelectrics,1994.155:207-212.
    [10]吴瑞华.电气石的电场效应及其在环境领域中的应用前景[J].岩石矿物学杂志,2001,4:474-476.
    [11]杨如增.天然黑色电气石红外辐射特性研究[J].同济大学学报,2002,30(2):183-188.
    [12] Yoshitake N.pH self-controlling induced by tourmaline.J Intelligent Material Systems Structures,1996,7:260-263.
    [13]冀志江.电气石自极化及应用基础研究[D]:[博士学位论文].北京:中国建筑材料科学研究院.2003.
    [14]夏枚生.电气石在循环水养殖水处理系统中的应用研究[D]:[博士学位论文].杭州:浙江大学,2005.
    [15]夏枚生.电气石对海水pH值的调控[J].应用生态学报,2005,16(10):1973-1976.
    [16]蒋鸿辉,黄新.江西白云山电气石粉体对水pH值的影响和机理研究[J].河南科技,2009,11:39-40.
    [17]汤云晖.电气石的表面吸附要电极反应研究[D]:[博士学位论文].北京:中国地质大学,2002.
    [18]孙双.电气石矿物材料的加工及其应用基础研究[D]:[硕士学位论文].吉林:吉林大学,2010.
    [19]王平,田晓莹,黄新,等.含电气石热释功能瓷膜对水pH值的影响[J].硅酸盐通报,2009,28(3):484-490.
    [20] Ji Z J,Jin Z Z,Liang J S,et al.Observation of electric dipole on polar crystalline tourmalinegranules [J].J Synthetic Crystals,2002.3:503-508.
    [21]孟庆杰,张兴祥.电气石晶体微粉对酸溶液pH值和电导率的影响[J].材料导报,2005,19(12):132-135.
    [22]潘艳芬.电气石矿物材料的活化水作用及其生物学效应研究[D]:[硕士学位论文].天津:河北工业大学.2006.
    [23] Kubo T.Water treatment method using tourmaline [J].United States Patent,5770089,1998.
    [24]吴大清,刁桂仪,彭金莲,等.矿物界面作用与环境工程材料[J].矿物岩石地球化学通报,1998,17(4):217-223.
    [25] Bailey S E,Olin T J,Bricka R M,et al.A review of potentially low-cost sorbents for heavy metals[J].Water research,1999,33(11):2469-2479.
    [1]蔡继晗,李凯,郑向勇,等.水产养殖重金属污染现状及治理技术研究进展[J].水产科学,2010,39(12):749-752.
    [2] Atherland T F,Petersen S A,Levings C D,et a1.Distinguishing between natural andaquaculture-derived sediment concentrations of heavy metals in the Broughton Archipelag,BritishColumbia [J].Marine Pollution Bulletin,2007(54):1451-1460.
    [3] Mendigueha C,Moreno C,Mnuel-Vez M P,et a1.Preliminary investigation on the enrichment ofheavy metals in marine sediments originated from intensive aquaculture effluents[J]. Aquaculture,2006(254):317-325.
    [4]王桂芳,包明峰,韩泽志.活性炭对水中重金属离子去除效果的研究[J].环境保护科学,2004,30(12):26-29.
    [5]宋凯,刘敬肖,史非,等.用粉煤灰水热合成P型沸石及其对重金属铅离子的吸附[J].大连工业大学学报,2009.28(1):44-47.
    [6]李琳,冯易君.谢家理,等.橡碗单宁去除水中有毒重金属离子的研究[J].环境工程,1997,15(5):14-16.
    [7] Leivestad H. Physiologieal effeets of acid stress on fish. In: Aeid Rain/FisheriesProe.Int. Symposium on acidic rain and fisheriery impacts on N.E.North Ameriea [J].N.E.DivAmer Fish Sic,1982,157-164.
    [8] Castaneda C,Oliveira E F,Gomes N,and Pedrosa Soares A C.Infrared study of OH sites intourmaline from the elbaite-schorl series [J].American Mineralogist,2000,85(10):1503-1507.
    [9] YVES F,MARTINE L,JORGE L.Oxydation expérimentale de Fe-tourmalines et corrélation avecune déprotonation des groupes hydroxyleAnnealing in oxidising conditions of Fe-tourmalines andcorrelated deprotonation of OH groups [J].Computes Rendus Geosciences,2002,334:245-249.
    [10]蒋侃.电气石对废水中重金属离子Cu2+、Pb2+、Zn2+的吸附特性研究[D]:[硕士学位论文].沈阳:东北大学,2005.
    [11]华中师范大学编.分析化学网[M].北京:人民教育出版社,1981,557-561.
    [12] Gurgel V A,Gil L F.Adsorption of Cu(II),Cd(II) and Pb(II) from aqueous single metal solutionsby succinylated twice-mercerized sugarcane bagasse functionalized with triethylenetetramine[J]. Water Res,2009,43:4479-4488.
    [13] Lerouge C,Bouchot V.Conditions of formation and origin of fluids of quartz-tourmaline veins inthe La Chataigneraie tungstiferous district (Massif Central,France):fluid inclusions and stableisotopes [J].B Sic Geol Fr,2009,180:263-270.
    [14]刘峰,蒋侃.电气石超细粉体对废水中Zn2+离子的吸附的研究[J].辽宁城乡环境科技,2004,24(4):32-34.
    [15]孙铁珩,蒋侃,孙丽娜,等.电气石超细粉吸附水体中Cu、Pb、Zn和Cd [J].中国给水排水,2009,22(Sl):104-108.
    [16]黄佩丽,田荷珍.基础元素化学[M].北京:北京师范大学出版社,1994:291-295.
    [17]叶锦韶,尹华.微生物抗重金属性研究进展[J].环境污染治理技术与设备,2002,3(4):1.
    [18]季理浣.超细电气石粉研磨工艺研究[J].非金属矿增刊,2002,9:42-44.
    [19]韩跃新,印万忠,张洪林.电气石对废水中Pb2+离子吸附的研究[J].金属矿山增刊,2004,8:527-530.
    [20]方韵和.分析化学[M].上海:同济大学出版社,1993,8.
    [21] Wang P K,Lam K C,So C M.Removal and recovery of Cu(II) from industrial effluent byimmobilized cells of Pseudomonas putidaⅡ-11[J].Appl Microbiol Biotechnol,1993,39:127-131.
    [22] Nieboer E,MeBryde,W A E.Free-energy relationships in coordination chemistry.Ⅲ.Acomprehensive index to complex stability [J].Canadian J Chemistry,1973,51:2512-2524.
    [23] Diertich R V.The tourmaline group [M].NewYork:Van Nostrand Reinhold Company,1985.
    [24]吴大清,刁桂仪,彭金莲,等.矿物界面作用与环境工程材料[J].矿物岩石地球化学通报,1998,17(4):217-223.
    [25] Stumn W,Morgan J J.Aquatic chenmistry [M].Fourth ED.Boston:Willard Grant Press,1984.
    [26]孙胜龙,龙振永,蔡保丰.非金属矿物修复环境机理研究现状[J].地球科学进展,1990,14(5):475-481.
    [1] Peleka E N, Deliyanni E A. Adsorptive removal of phosphates from aqueous solutions[J].Desalination2009,245:357–371.
    [2]邓岳松.纳米-亚微米材料对水质及鱼生长的影响[D]:[博士后论文].杭州:浙江大学,2002.
    [3] Liu C J,Li Y Z,Luan Z K,et a1.Adsorption removal of phosphate from aqueous solution by activered mud [J].Journal of Environmental Sciences,2007,19:1166–1170.
    [4]邓丽萍.藻体对水环境中N、P及重金属Cu2+、Pb2+、Cd2+、Cr6+的吸附特征研究[D]:[博士学位论文].北京:中国科学研究院,2008.
    [5]胡海燕.水产养殖废水氨氮处理研究[D]:[博士学位论文].青岛:中国海洋大学,2007.
    [6] Leivestad H. Physiologieal effeets of acid stress on fish. In: Aeid Rain/FisheriesProe. Int. Symposium on acidic rain and fisheriery impacts on N. E. North Ameriea[J].N.E.Div.Amer.Fish.Sic.1982:157-164.
    [7] Castaneda C,Ol iveira E F,Gomes N,et al.Infrared study of OH sites in tourmaline from theelbaite-schorl series [J].American Mineralogist,2000,85(10):1503-1507.
    [8] YVES F,Martine L,Jorge L.Oxydation expérimentale de Fe-tourmalines et corrélation avec unedéprotonation des groupes hydroxyleAnnealing in oxidising conditions of Fe-tourmalines andcorrelated deprotonation of OH groups [J].Computes Rendus Geosciences,2002,334:245-249.
    [9]蒋侃.电气石对废水中重金属离子Cu2+、Pb2+、Zn2+的吸附特性研究[D]:[硕士学位论文].沈阳:东北大学,2005.
    [10]魏复盛.水和废水监测分析方法[M].北京:中国环境科学出版社,2002:248-250.
    [11] Lerouge C,Bouchot V.Conditions of formation and origin of fluids of quartz-tourmaline veins inthe La Chataigneraie tungstiferous district (Massif Central, France): fluid inclusions and stableisotopes [J].B Soc Geol Fr,2009,180:263-270.
    [12]冀志江.电气石自极化及应用基础研究[D]:[博士学位论文].北京:中国建筑材料科学研究院.2003.
    [13]孙铁珩,蒋侃,孙丽娜,等.电气石超细粉吸附水体中Cu、Pb、Zn和Cd [J].中国给水排水,2009,22(Sl):104-108.
    [14] Bar Y B,Kafkafi U,Rosenberg R.Phosphorus adsorption by kaolinite and mootmorillonite:I. Effect of time,ionic,strength and pH [J].Soil Science Society of American Journal,1988,52:1580-1585.
    [15]袁东海,张孟群,高士祥,等.几种粘土矿物和粘粒土壤吸附净化磷的性能和机理[J].环境化学,2005,24(1):7-11.
    [16]曹慧玲,张力,吕广镛.电气石吸附降解亚甲基蓝等有机染料的研究[J].广东化工,2007,3(1):30-34.
    [17]罗绍华,唐子龙,闫俊萍,等.电气石基网眼多孔陶瓷的制备及其对甲基橙的吸附和降解作用[J].硅酸盐学报,2005,33(10):1231-1236.
    [18]张晓晖,吴瑞华,汤云晖.电气石的自发电极性在水质净化和改善领域的应用研究[J],中国非金属矿工业导刊,2004,(3):39-42.
    [19]孟庆杰,张兴祥,王学晨,等.不同结构电气石微粉对酸溶液和碱溶液性质的影响[J].硅酸盐学报,2006,34(4):470-475.
    [20]丁永良.纳米(NANOST)科技养鱼新技术综述[J].现代渔业信息.2003,18(12):3-8.
    [21]王彦波.载菌纳米级硅酸盐微粒的构建及其净化养殖水质的效果和机理探讨[D]:[博士学位论文].杭州:浙江大学,2006.
    [1] Akyuza T,Ozer N M.FTIR spectroscopic investigations of benzidine and bipyridyls adsorbed ondiatomite from Anatolia [J].Journal of Molecular Structure,2001:565-566.
    [2]袁鹏,吴大清,翁维正,等.硅藻土表面酸位及其来源探讨[J].矿物学报,2001,21(3):40-42.
    [3] Castaneda C,Eeckhout S G,Costa G M,et al.Effect of heat treatment on tourmaline from Brazil[J].Physics and Chemistry of Minerals,2006,33:207-216.
    [4]张丹,赵长春,廖立兵.热处理对铁-镁电气石热释电特性的影响[J].矿物学报,2008,28(4):386-388.
    [5]安永磊,张兰英,张阳,等.热处理电气石多功能净水性能[J].吉林大学学报(地球科学版),2011,41(1):235-240.
    [6]刘志国.热处理对电气石粉体表面自由能的影响研究[D]:天津:河北工业大学,2007.
    [7] Zhang L J,Guo X Z,Yang H,et al.Effect of heat treatment on far-infrared emissivity of tourmaline[J].Journal of Ceramics,2009,30(3):286-289.
    [8] Jin Z Z,Ji Z J,Liang Jin-sheng,et al.Obervation of spontaneous polarization of tourmaline[J].Chinese Physics,2003,12(2):222-225.
    [9]何登良,董发勤,黄廷洪,等.超细电气石粉体对水pH值的影响[J].环境化学,2009,28(5):757-760.
    [10] Meng Q J,Zhang X X.Influence of crystal powder of tourmaline on pH and conductivity in acidicsolution [J].Materials reciew,2005,19(12):132-135.
    [11]王平,田晓莹,黄新,等.含电气石热释功能瓷膜对水pH值的影响[J].硅酸盐通报,2009,28(3):484-490.
    [12]罗邵华,唐子龙,闫俊萍,等.电气石基网眼多孔陶瓷的制备及其对甲基橙的吸附和降解作用[J].硅酸盐学报,2005,33(10):1231-1236.
    [13]杜玉成,叶力佳,刘燕琴.硅藻土吸附重金属离子Cd2+的动力学研究[J].中国非金属矿工业导刊.2004,(38):38-40.
    [14]沈岩柏,朱一民,王忠安,等.硅藻土对水相中Pb2+的吸附[J].东北大学学报(自然科学版).2003,24(10):982~985.
    [15]沈岩柏,朱一民,魏德洲.硅藻土对锌离子的吸附特性[J].东北大学学报(自然科学版).2003,24(9):907~910.
    [16]叶力佳.硅藻土对废水中重金属离子的吸附性能研究[D]:[硕士学位论文].北京:北京工业大学,2003.
    [17]袁笛,王莹,李国宏,等.硅藻土吸附工业废水中汞离子的研究[J].环境保护科学.2005,128:27-29.
    [18]罗道成,刘俊峰.改性硅藻土对废水中Pb2+、Cu2+、Zn2+吸附性能的研究[J].中国矿业,2005,14(7):69-71.
    [19]蒋侃.电气石对废水中重金属离子Cu2+、Pb2+、Zn2+的吸附特性研究[D]:[硕士学位论文].沈阳:东北大学,2005.
    [20] YVES F,MARTINE L,JORGE L.Oxydation expérimentale de Fe-tourmalines corrélation avecune déprotonation des groupes hydroxyleAnnealing in oxidising conditions of Fe-tourmalines andcorrelated deprotonation of OH groups [J].Computes Rendus Geosciences,2002,334:245-249.
    [21]王彦波.载菌纳米级硅酸盐微粒的构建及其净化养殖水质的效果和机理探讨[D]:[博士学位论文].杭州:浙江大学,2006.
    [22]潘艳芬.电气石矿物材料的活化水作用及其生物学效应研究[D]:[硕士学位论文].天津:河北工业大学,2006.
    [23]孟庆杰.电气石、压电石英超细粉末的制备及其在水处理方面的研究[D].[博士学位论文].天津:天津工业大学,2004.
    [1]邓岳松.纳米-亚微米材料对水质及鱼生长的影响[D]:[博士后论文].杭州:浙江大学,2002.
    [2]邓丽萍.藻体对水环境中N、P及重金属Cu2+、Pb2+、Cd2+、Cr6+的吸附特征研究[D]:[博士学位论文].北京:中国科学研究院,2008.
    [3]王彦波.载菌纳米级硅酸盐微粒的构建及其净化养殖水质的效果和机理探讨[D]:[博士学位论文].杭州:浙江大学,2006.
    [4]蒋侃.电气石对废水中重金属离子Cu2+、Pb2+、Zn2+的吸附特性研究[D]:[硕士学位论文].沈阳:东北大学,2005.
    [5] Castaneda C,Oliveira E F,Gomes N.Pedrosa-Soares A C.Infrared Study of OH Sites inTourmaline from the Elbite-Schorl Series [J].Amer Mineralogist,2000,85:1503-1507.
    [6]孙双.电气石矿物材料的加工及其应用基础研究[D]:[硕士学位论文].吉林:吉林大学,2010.
    [7] Barton R J.Refinement of the Crystal Structure of Buergerite and the Absolute Orientation ofTourmaline [J].Acta Crystal-lographica,1969,B25:1524-1533.
    [8]李文龙.电气石对海洋生物生长活性的影响[D]:[硕士学位论文].大连:大连海事大学,2008.
    [9]冀志江.电气石自极化及应用基础研究[D]:[博士学位论文].北京:中国建筑材料科学研究院,2003.
    [10]孟庆杰.电气石、压电石英超细粉末的制备及其在水处理方面的研究[D]:[博士学位论文].天津,天津工业大学,2004.
    [11]安永磊,张兰英,张阳,等.热处理电气石多功能净水性能[J].吉林大学学报(地球科学版),2011,41(1):235-240.
    [12]夏枚生.电气石在循环水养殖水处理系统中的应用研究[D]:[博士学位论文].杭州:浙江大学.2005.
    [13] GB11607-89渔业水质标准[S].2005.
    [14]唐云志,王平,许亮,等.电气石复合材料合成及在养殖水处理中的应用[J].江西有色金属,2009,23(4):44-47.
    [15]余瑞兰,聂湘平,魏泰莉.分子氨和亚硝酸盐对鱼类的危害及其对策[J].中国水产科学,1999,6(3):73-77.
    [16]曹涵.循环水养殖生物滤池滤料挂膜及其水处理效果研究[D]:[硕士学位论文].青岛:中国海洋大学,2008.
    [17]石峰.活化沸石强化过滤微污染水试验研究[D]:[硕士学位论文].济南:山东建筑洋大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700