用户名: 密码: 验证码:
下颌骨爆炸伤有限元模型的建立、仿真模拟及生物力学机制的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
颌面部位置暴露,无论战时还是平时均易发生损伤,随着爆炸性武器的应用日趋广泛和恐怖活动的日益猖獗,颌面部特别是下颌骨爆炸伤发生率呈明显上升趋势。因此,颌面部颌面部爆炸伤的研究是颌面部乃至全身创伤研究中的重点问题。目前对于颌面部爆炸伤的研究主要集中在创伤的救治及修复重建上,对于爆炸伤模型的建立及生物力学分析等基础研究相对较少。传统的爆炸伤模型虽然可以较真实地模拟人体组织遭受爆炸冲击时的损伤情况,但是随着科技和社会的发展,特别是医学伦理的限制,使得传统爆炸伤模型逐渐表现出自身的缺陷。
     有限元法(Finite Element Method FEM)是一个具有60年发展历史且成熟的计算机模拟方法,在工程机械领域运用非常广泛,现已成为计算机模拟技术中使用最为广泛的方法。有限元在医学领域的应用也有40年的历史,在这40年中,有限元技术在医学特别是口腔医学中得到了广泛的应用,已成为进行生物力学分析的常规方法之一。由于有限元法可以弥补传统的爆炸伤实验在致伤机制研究中的不足,因此,将有限元法运用于颌面部爆炸伤中将有助于深入研究颌面部爆炸伤损伤机制,并能为颌面部爆炸伤致伤部位伤情的快速判断、迅速救治、战时防护以及评估冲击波致伤效应等等提供新的思路和方法。
     本研究首先通过建立猪下颌骨爆炸伤三维有限元模型,动态模拟爆炸冲击波致伤下颌骨损伤过程,仿真结果与动物实验对比,验证模型及仿真方法的有效性,然后利用中国可视化数字人(CVH)的头颈部CT数据建立人下颌骨爆炸伤三维有限元模型,动态模拟不同爆炸条件下冲击波致伤人下颌骨组织的致伤过程及生物力学分布情况,初步探讨爆炸冲击波与机体组织之间的相互力学作用及效应。
     研究方法和结果:
     1.改良猪下颌骨爆炸伤动物实验模型,用600mg纸质RDX电雷管于15cm和5cm距离致伤猪下颌骨标本的下颌角部位,测量各种致伤参数及致伤过程中猪下颌骨的生物
     力学变化参数,为分析下颌骨爆炸伤生物力学机制和验证有限元模型和仿真结果提供动物实验数据。结果表明:实验方法重复性好,有效获取计算机动态模拟需要的爆炸致伤、生物力学变化数据。
     2.将猪下颌骨计算机X射线断层扫描(Computed tomography,CT)数据导入影像处理软件MIMICS中,通过三维重建获得猪下颌骨面网格模型,然后将该模型导入有限元前处理软件ANSA中,采用六面体为主,结合四面体、五面体的方式建立猪下颌骨爆炸伤三维有限元模型。建立的猪下颌骨三维有限元模型的单元数为36254,节点数为38875,所有单元均为实体单元。结果表明:该模型单元质量好,与真实标本的几何外形相似程度高,满足仿真模拟要求。
     3.选择适合的材料模型、生物力学参数及算法,加载与动物实验相似的力学载荷和边界条件,用所建立的猪下颌骨爆炸伤三维有限元模型在LS-DYNA软件中进行仿真计算;通过比较有限元仿真结果与动物实验中的实测数据,验证所采用的有限元方法的合理性。结果表明,本研究所采用的有限元方法对下颌骨爆炸伤生物力学作用机制及其效应有较好的预测能力,能满足下颌骨火器伤生物力学机制研究的要求。
     4.将中国可视化数字人(Chinese Visible Human, CVH)头面部CT数据导入影像处理软件MIMICS中,通过三维重建获得猪下颌骨面网格模型,然后将该模型导入有限元前处理软件ANSA中,采用六面体为主结合四面体、五面体的方式建立猪下颌骨爆炸伤三维有限元模型。其中单元数为26644,节点数为27522,所有单元均为实体单元。结果表明,该模型单元质量好,与真实标本的几何外形相似程度高,满足下步仿真模拟要求。
     5.在前期猪下颌骨爆炸伤三维有限元模拟的基础上,选择适合的材料模型、材料参数、边界条件及算法,对所建立的人下颌骨火器伤三维有限元模型加载不同的致伤条件(两个致伤部位、三个爆炸当量及三个致伤距离),在LS-DYNA软件中进行仿真计算,动态模拟人下颌骨火器伤的致伤过程、应力、应变传导及分布的情况。结果表明,该方法成功实现CVH下颌骨不同致伤条件下爆炸伤有限元仿真,模拟了下颌骨动态损伤过程和损伤后形态,并且能够动态观察、提取、分析不同部位应力、应变变化及分布情况,从而进行相关的致伤机制的分析和研究。
     结论:
     1.成功进行了猪下颌骨爆炸伤三维有限元仿真模拟,通过动物实验验证了所建模型及所采用的有限元分析方法的合理性和可靠性,明确了在研究爆炸伤生物力学机制方面,有限元方法可以弥补目前爆炸伤研究动物模型的不足。
     2.成功建立了人下颌骨爆炸伤三维有限元模型并成功模拟了人下颌骨在不同致伤条件下的损伤过程,明确了有限元法在颌面部爆炸伤应用中的可行性和可靠性,可以为颌面部爆炸伤致伤机制研究提供参考。
     3.成功进行了人下颌骨爆炸伤生物力学分析,Von Mises应力及有效应变可作为判断和评价骨组织损伤严重程度的标准之一,也可以作为有限元仿真过程中预测骨组织损伤的指标。
     4.在下颌骨爆炸冲击波致伤过程中,除直接致伤部位外,双侧髁状突及乙状切迹是高应力、高应变集中区域,也是骨折好发部位。
     5.本次建立的三维有限元模型和仿真方法需要不断完善和改进。
The maxillofacial region is often damaged by explosives as an exposed part of thebody sustained in wartime and peacentime. At a time when explosive weapons areincreasingly used and terrorist activities are on the rise, blast injuries to the maxillofacialarea, especially the mandible, are increasing. Hence, researches for mandibular blastinjuries have become an important subject in the researches of maxillofacial and evenfull-body trauma. Currently, researches on mandibular blast injuries are focused on traumatreatment and reconstruction; however, the basic science that includes the creation of a blastinjury model and subsequent biomechanical analyses have been overlooked. The traditionalmodels of blast injury can reliably mimic the damage to the human body from an explosion;however, scientific, technological and social developments are making this approachobsolete, especially because it increasingly faces challenges associated with medical ethics.
     The finite element method (FEM) is a mature computer simulation methods of60-yearhistory in the engineering and mechanical fields and has became the most widely usedmethod of computer simulation technology now. FEM has been applied to the medical fieldfor fifty years, in the past fifty years, the FEM has been widely used in the in medicineparticular in oral medicine and has become one of the conventional methods ofbiomechanical analysis. Because the FEM can compensate for the deficiencies of thetraditional experimental studies of blast injury mechanisms, so it can be used inmaxillofacial blast injury and contribute to the in-depth study of maxillofacial blast injurymechanisms and can provide new ideas and methods of fast injury judgment, rapidtreatment, wartime protection, assessment of wounding effect of maxillofacial blast injury.
     In this study,3D FE models of the pig mandible were developed to simulate blastinjuries and experimental studies were carried out to validate the FE model and simulatedmethod. Then,3D FE models of mandible of Chinese Visible Human (CVH) for blast injuries were developed and dynamical simulations were carried out by using these models.Based on the simulation results of FEM, the biomechanical mechanism of blast injuries ofthe human mandible were investigated and discussed. The main methods and conclusionswere as follows:
     Methods and Results:
     1. Based on the improved animal model of blast injuries of the pig mandible, anexperimental study was carried out to measure impact load parameters from the pigmandibles that were damaged at the mandibular angle by standard600mg RDX paperelectric detonators at5cm and15cm distances. The experimental results showed that thedata were reliable and representative. The improved animal model of blast injuries of thepig mandible was reasonable and repeatable. The results of the experimental study can beused to validate the FE model and simulated results.
     2. Computed tomography (CT) data of the pig mandible was imported into MIMICSsoftware. A three-dimension computer-aided design (CAD) model of the pig mandible wasreconstructed by using certain functions of MIMICS. Then, the original triangular surfacemesh model of the pig mandible was generated by the “remesh” module of MIMICS. Basedon the surface model of the pig mandible, a combined hexahedral-tetrahedral FE model ofthe pig mandible was developed by ANSA software. The results showed that the number ofthe elements and node were36254and38875respectively, and all the elements were solidelements. The FE model of the pig mandible was similar to its anatomical structure. Withlower cost of modeling, the combined hexahedral-tetrahedral FE model of the pig mandiblecan meet the demand of biomechanical research of blast injury of the pig mandible.
     3. By choosing appropriate constitutive model, biomechanical parameters and contactalgorithm for the FE models of the pig mandible, finite element analysis (FEA) wasperformed through the LS-DYNA code under impact loads similar to those obtained fromthe experimental study. The FEM of simulation of blast injuries of the pig mandible wasvalidated based on the results of comparison between the results of FE simulation andexperimental study. The results showed that the constitutive models, algorithm and theparameters, which were chosen for the FE model of blast injuries to pig mandible in ourstudy, were reasonable and reliable. The FEM utilized in our study had a fairly capability ofpredicting on blast injuries of the pig mandible.
     4. Firstly, the head and facial CT image of Visible Chinese Human were imported intosoftware MIMICS to reconstituted3D computer-aided designing surface mesh models.Then, the model was imported to the finite element pre-processing software ANSA toreconstituted combined hexahedral-tetrahedral FE model of the pig mandible for blastinjuries. The number of the elements and node were26644and27522. The results showedthat the model had good quality and good similarity and met the requires of next stepsimulation absolutely.
     5. Based on the previous FE simulation of blast injuries to the pig mandible,compatible material model, internal parameters, boundary condition and algorithm ofcontact in LS-DYNA software were selected. After computation of simulation, the dynamicdamage process, stresses and strains distributions in its various regions under differentinjury conditions(two injured parts,three explosions equivalents,three injured distance)were simulated by using3D FE model of blast injuries of the human mandible. The resultsshowed that the FE model and methods could dynamically simulate dynamic damageprocess of blast injuries to the human mandible, and could dynamically simulate the processof the spreading and the stress distribution patterns of stresses and strains in each region ofthe mandible affected by blast.
     Conclusions:
     1. The3D FE model of blast injuries of pig mandible were successfullyestablished.The animal experiment results demonstrate the rationality and reliability of theFE model and simulated results.When concerned with the investigation of biomechanicalmechanism of blast injuries, FEM can make up for the insufficiency of traditionalexperimental models.
     2. The3D FE model of blast injuries of human mandible were established and thedamage process of the mandible in different injury conditions were simulated successfully.The simulation results show the feasibility and reliability of the applications of FE methodin maxillofacial blast injuries and can provide a reference for maxillofacial blast injurymechanism.
     3. The biomechanical analyses of the human mandible blast injuries were carried outsuccessfully, Von Mises stress and effective strain could be used as criteria of judgment andevaluation of bone damage severity and could be used as indicators of finite element simulation predicted of bone damage.
     4. In the injury process of blast, the regions of condyle and simoid notch presentedhigh stress and high strain, and produced fracture easily.
     5. The3D finite element models and simulation results of our experiments had somedeficiencies and needed to be refined and improved continually.
引文
[1]. Rustemeyer J, Kranz V, Bremerich A. Injuries in combat from1982–2005withparticular reference to those to the head and neck: a review[J]. Br J Oral MaxillofacSurg2007;45:556–560.
    [2]. Roberts P. The British military surgery pocket book[M]. British Army Publication;2004.
    [3]. Xydakis MS, Fraveli MD, Nasser KE. Analysis of battlefield head and neckinjuries in Iraq and Afghanistan[J]. Otolaryngol Head Neck Surg2005;(33):497–504.
    [4]. Dobson JE, Neweli MJ, Shepherd JP. Trends in maxillofacial injuries in war-time(1914–1986)[J]. Br J Oral Maxillofac Surg1989;27:441–450.
    [5]. Kriet JD, Stanley RB J r, Grady MS. Selfinflicted submental and transoral gunshotwounds that p roduce nonfatal brain injuries: management and prognosis [J]. JNeurosurg.2005;102(6):1029-1032.
    [6]. Major Jeff Garner, Stephen J. Brett. Mechanisms of injury by explosive devices[J].Anesthesiology Clinics,2007,25(1):147-160.
    [7].李建虎.颌面部爆炸伤生物力学特性及下颌骨骨、颞颌关节损伤特点的实验研究[D].第四军医大学,2002.
    [8].田磊,李彦.新型颌面部爆炸伤模型建立及损伤特点观察[J].创伤外科杂志,2002,4(003):138-141.
    [9].王勖成.有限单元法[M].北京:清华大学出版社,2003:1.
    [10]. Abdelaziz Yazid, Nabbou Abdelkader, Hamouine Abdelmadjid. A state-of-the-artreview of the X-FEM for computational fracture mechanics[J].AppliedMathematical Modelling,2009,33(12):4269-4282.
    [11]. Joshua A. MacNeil, Steven K. Boyd. Bone strength at the distal radius can beestimated from high-resolution peripheral quantitative computed tomography andthe finite element method [J].Bone,2008,42(6):1203-1213.
    [12]. Isis A.V.P. Poiate, Adalberto B. Vasconcellos, Alejandro Andueza, et al. ThreeDimensional Finite Element Analyses of Oral Structures by ComputerizedTomography[J].Journal of Bioscience and Bioengineering,2008,106(6):606-609.
    [13]. Pham.A.M, Rafii.A.A, Metzger.M.C, et al. Computer modeling and intraoperativenavigation in maxillofacial surgery[J]. Otolaryngology-Head and Neck Surgery,2007:624-631.
    [14]. Bailie, Neil A, Gallagher, Geraldine, et al. Numerical modeling of nasal airflow[J].Otolaryngology-Head and Neck Surgery.2004,131(2):187-194.
    [15]. Jeffrey V. Rosenfeld, Nick L. Ford. Bomb blast, mild traumatic brain injury andpsychiatric morbidity: A review[J].Injury,2010,41(5):437-443.
    [16]. Zhen Tang, WenbingTu, GangZhang,et al. Dynamic simulation and preliminaryfinite element analysis of gunshot wounds to the human mandible[J]. Injury.2012,43(5):660–665.
    [17]. Chen Y, Miao Y, Xu C, et al. Wound ballistics of the pig mandibular angle: Apreliminary finite element analysis and experimental study[J]. Journal ofbiomechanics.2010,43(6):1131-37.
    [18].赵辉,尹志勇,蒋建新,等.准静态下颞部撞击致颅脑伤的有限元模拟分析及其临床意义[J].创伤外科杂志,2008,10(2):141-144.
    [19].陈渝斌.下颌骨火器伤有限元仿真及生物力学机制的初步研究[D].第三军医大学,2010.
    [20].赵文峰,张虎威,向军,等.颌面部爆炸伤动物模型的建立和损伤特点的观察[J].现代口腔医学杂志,1996;10(2):91-93.
    [21].王昭领,刘桂才,白振西.颌面部爆炸伤并发心脑损伤的实验研究[J].中华急诊医学杂志,2005,14(11);910-912.
    [22]. Shuker, S. T. Maxillofacial blast injuries[J]. Journal of Cranio-MaxillofacialSurgery,1995,23(2):91-98.
    [23]. Shuker, S.T., The effect of a blast on the mandible and teeth: transverse fracturesand their management[J]. British Journal of Oral&Maxillofacial Surgery,2008.46(7):547-551.
    [24].王昭领.颌面部高速破片+冲击波复合伤致伤机制实验研究[D].第四军医大学,2002.
    [25].张明.颌面部创伤合并颅脑损伤的实验研究[D].中国人民解放军第四军医大学,2003.
    [26]. Sabri T. Shuker Maxillofacial Air-Containing Cavities, Blast Implosion Injuries,and Management[J].Journal of Oral and Maxillofacial Surgery,2010,68(1):93-100.
    [27].胡八一,刘仓理.25kg TNT当量爆炸容器的冲击隔震研究[J].振动与冲击,2007,25(6):43-45.
    [28].张子焕,许民辉.爆炸致舱内大鼠高加速度负载时脑损伤的病理特点[J].第三军医大学学报,2010,32(19):2045-2048.
    [29]. Wanek, S., Mayberry, J. C. Blunt thoracic trauma: flail chest, pulmonary contusion,and blast injury[J]. Critical care clinics,2004,20(1):71-82.
    [30].张明,刘彦普,雷德林等.犬颌面部爆炸伤合并颅脑损伤的生物力学研究[J].中国口腔颌面外科杂志,2006,4(5);381-384.
    [31]. DuChesne A, Unnewehr M, Schmidt PF, et al. Deformation characteristics of thehuman mandible in low impact experiments[J]. Int J Legal Med,2003,117(5):257-62.
    [32]. Unnewehr M, Homann C, Schmidt PF, et al. Fracture properties of the humanmandible[J]. Int J Legal Med,2003,117(6):326-330.
    [33]. Tusui K. Measurement of mechanical strain on mandibular surface with masticationrobot: influence of muscle loading direction and magnitude[J]. Orthodontics&Craniofacial Research,2003,6(31):163-167.
    [34]. Bynoe, R. P., Kerwin, A. J. Maxillofacial injuries and life-threatening hemorrhage:treatment with transcatheter arterial embolization[J]. The Journal of trauma,2003,55(1):74-82.
    [35].唐震.人上、下颌骨火器伤动态模拟及有限元生物力学分析的初步研究[D].第三军医大学,2011.
    [36]. Provatidis C, Georgiopoulos B, Kotinas A. On the FEM modeling of craniofacialchanges during rapid maxillary expansion[J]. Medical engineering&physics.2007,29:566-79.
    [37]. Kopperdahl DL, Keaveny TM. Yield strain behavior of trabecular bone[J]. Journalof Biomechanics.1998,31601-608.
    [38]. Pithioux M, Subit D, Chabrand P. Comparison of compact bone failure under twodifferent loading rates: experimental and modelling approaches[J]. Medicalengineering&physics2004,26:647-53.
    [39]. Cudzio S, Maranda A, Nowaczewski J. Shock initiation studies of ammoniumnitrate explosives[J]. Combustion and flame1995,102:64-72.
    [40]. Chafi, M., Karami, G. Biomechanical assessment of brain dynamic responses due toblast pressure waves[J]. Annals of biomedical engineering,2010,38(2):490-504.
    [41]. Barauskas R, Abraitiene A. Computational analysis of impact of a bullet against themultilayer fabrics in LS-DYNA[J]. International Journal of Impact Engineering.2007,34(7):1286-1305.
    [42]. Shokrieh MM, Javadpour GH. Penetration analysis of a projectile in ceramiccomposite armor[J]. Composite Structures.2008,82(2):269-276.
    [43]. Sanborn, B., Nie, X., lynnetwwwdagriorglynnet. Inertia effects on characterizationof dynamic response of brain tissue[J]. Journal of Biomechanics,2012,45(3):434-439.
    [44].康建毅;王建民;喻永敏等,爆炸冲击波载荷下的人体胸部有限元模型数值模拟研究[J].第三军医大学学报,2011,33(2):173-176.
    [45]. Nakagawa, A., Manley, G. T., Gean, A. D. Mechanisms of Primary Blast-InducedTraumatic Brain Injury: Insights from Shock-Wave Research. Journal ofNeurotrauma[J].201.28(6):1101-1119.
    [46]. Moore, D. F., Jérusalem, A. Computational biology--Modeling of primary blasteffects on the central nervous system[J]. Neuroimage,2009,47:10-20.
    [47]. Yoo, J. H., Lee, H. S. An analytical study on the water penetration and diffusioninto concrete under water pressure[J]. Construction and Building Materials,2011,25(1):99-108.
    [48].王飞,朱立新,顾文彬等.基于ALE算法的空气冲击波绕流数值模拟研究.工程爆破[J].2002,8(2):13-16.
    [49]. Chafi MS, Karami G, Ziejewski M. Numerical analysis of blast-induced wavepropagation using FSI and ALEmulti-material formulations[J]. InternationalJournal of Impact Engineering2009;36:1269-75.
    [50]. Zakrisson B, Wikman B, Haggblad HA. Numerical Simulations of Blast Loads andStructural Deformation from Near-Field Explosions in Air[J]. International Journalof Impact Engineering2011;68:3-7.
    [51]. Reilly DT, Burstein AH. The elastic and ultimate properties of compact bonetissue[J]. J Biomechanics,1975,8(6):393-396.
    [52].李岩峰,吴子恒,刘洪臣.下颌骨弹性模量研究现状[J].中华老年口腔医学杂志,2006,4(4):241-244.
    [53]. Cowin SC. bone mechanics handbook [M].2ed. Boca Raton, FL:CRC Press,2001:1
    [54]. Bayraktar HH, Morgan EF, Niebur GL, et al. Comparison of the elastic and yieldproperties of human femoral trabecular and cortical bone tissue[J]. Journal ofBiomechanics,2004,37(1):27-35.
    [55]. Gardner, T., Stoll, T. The influence of mechanical stimulus on the pattern of tissuedifferentiation in a long bone fracture--an FEM study[J]. Journal of biomechanics,2000,33(4):415-425.
    [56]. Brown, S. J., Pollintine, P. Regional differences in mechanical and materialproperties of femoral head cancellous bone in health and osteoarthritis[J]. Calcifiedtissue international,2002,71(3):227-234.
    [57]. Powell K, Atkinson PJ, Woodhead C. Cortical bone structure of the pig mandible[J]. Archives of Oral Biology,1973,18(2):171-180.
    [58]. Ilic, S., Hackl, K.et al. Application of the multiscale FEM to the modeling ofcancellous bone[J]. Biomechanics and modeling in mechanobiology,2010,9(1):87-92.
    [59]. Shirazi-Adl A, Dammak M, Paiement G. Experimental determination of frictioncharacteristics at the trabecular bone/porous-coated metal interface in cementlessimplants [J]. Journal of Biomedical Materials Research,1993,27(2):167-175.
    [60]. Helgason, B., Taddei, F. A modified method for assigning material properties to FEmodels of bones[J]. Medical engineering&physics,2008,30(4):444-453.
    [61]. Suchanek, W, Yoshimura. Processing and properties of hydroxyapatite-basedbiomaterials for use as hard tissue replacement implants [J].Journal of materialresearch,1998,13(1):94-117.
    [62]. Ferreira, F., Vaz, M. Mechanical properties of bovine cortical bone at high strainrate[J]. Materials characterization,2006,57(2):71-79.
    [63]. Liao S-H, Tong R-F, Dong J-X. Anisotropic finite element modeling forpatient-specific mandible [J]. Computer Methods and Programs inBiomedicine,2007,88(3):197-209.
    [64]. Marinescu R, Daegling DJ, Rapoff AJ. Finite-element modeling of the anthropoidmandible: the effects of altered boundary conditions [J]. Anat Rec A Discov MolCell Evol Biol,2005,283(2):300-309.
    [65]. Kirchner H. Ductility and brittleness of bone [J]. International Journal of Fracture,2006,139(3):509-516.
    [66]. Zhang SX, Heng PA, Liu ZJ, et al. The Chinese Visible Human (CVH) datasetsincorporate technical and imaging advances on earlier digital humans[J]. J Anat,2004,204(3):165-173.
    [67].郑德华,沈云中,等.三维激光扫描仪及其测量误差影响因素分析[J].测绘工程,2005,14(2):32-34.
    [68].陈琼.三维有限元建模方法的研究现状[J].口腔医学,2006,26(2):154-155.
    [69]. Jang SH,Kim WY.Defining a new annotation object for DICOM image:a practicalapproach [J].Comput Med Imaging Graph,2004,28(7):371-375.
    [70]. Roberts JC, Merkle AC, Biermann PJ, et al. Computational and experimentalmodels of the human torso for non-penetrating ballistic impact[J]. J Biomech,2007,40(1):125-136.
    [71]. Roberts JC, O'Connor JV, Ward EE. Modeling the effect of non-penetratingballistic impact as a means of detecting behind armor blunt trauma[J]. JTrauma,2005,58(6):1241-1251.
    [72]. Daas M, Dubois G, Bonnet AS, et al. A complete finite element model of amandibular implant-retained overdenture with two implants: Comparison betweenrigid and resilient attachment configurations[J]. Medical Engineering&Physics,2008,30(2):218-225.
    [73]. Alia A, Souli M. High explosive simulation using multi-material formulations [J].Applied thermal engineering2006,261032-42.
    [74]. Friedenberg R."Direct analysis" or "finite element analysis" in biology: A newcomputer approach [J].Biosystems,1969,3(2):89-94.
    [75]. Citarella, R., Federico, L. Modal acoustic transfer vector approach in a FEM–BEMvibro-acoustic analysis[J]. Engineering analysis with boundary elements,2007,31(3):248-258.
    [76]. Roberts, J. C., O'Connor, J. V. Modeling the effect of nonpenetrating ballisticimpact as a means of detecting behind-armor blunt trauma[J]. The Journal oftrauma,2005,58(6):1241.
    [77]. Rust, W., Schweizerhof, K. Finite element limit load analysis of thin-walledstructures by ANSYS (implicit), LS-DYNA (explicit) and in combination[J].Thin-walled structures,2003,41(2-3):227-244.
    [78].段彦静,孙文磊.逆向工程在医学上的应用[J].中华现代影像学杂志,2005,2(11):1007-1009.
    [79]. Pham AM, Rafii AA, Metzger MC, et al. Computer modeling and intraoperativenavigation in maxillofacial surgery. Otolaryngology-Head and Neck Surgery,2007,137(4):624-631.
    [80]. Provatidis C, Georgiopoulos B, Kotinas A, et al. On the FEM modeling ofcraniofacial changes during rapid maxillary expansion. Medical Engineering&Physics,2007,29(5):566-579.
    [81].吴开腾,宁建国.爆炸力学数值方法及其模拟研究的简要综述[J].内江师范学院学报,2008,23(6):5-15.
    [82]. Powers DB. Distribution of Civilian and Military Maxillofacial SurgicalProcedures performed in an Air Force Theatre Hospital: Implications for Trainingand Readiness [J]. JR Army Med Corps2010,156:117-21.
    [83]. Lew TA, Walker JA, Wenke JC, et al. Characterization of craniomaxillofacialbattle injuries sustained by United States service members in the current conflictsof Iraq and Afghanistan [J]. Journal of Oral and Maxillofacial Surgery2010,683-7.
    [84]. Gataa IS, Muassa H. Patterns of maxillofacial injuries caused by terrorist attacks inIraq: retrospective study [J]. International Journal of Oral and MaxillofacialSurgery.2011,40:65-70.
    [85]. Breeze J, Gibbons AJ, Opie NJ. Military maxillofacial injuries treated at the RoyalCentre for Defence Medicine: June2001to December2007[J]. British Journal ofOral and Maxillofacial Surgery.2010,48:613-6.
    [86]. Shuker ST. Facial Skin-Mucosal Biodynamic Blast Injuries and Management [J].Journal of Oral and Maxillofacial Surgery.2010,68:1818-25.
    [87]. Bochicchio GV, Lumpkins K, O'Connor J, et al. Blast injury in a civilian traumasetting is associated with a delay in diagnosis of traumatic brain injury [J].American Surgeon.2008,74:267-70.
    [88]. Maurer P, Knoll W D, Schubert J.Comparative evaluation of two osteosynthesismethods on stability following sagittal split ramus osteotomy[J]. JCraniomaxillofac Surg.2003,31(5):284–9..
    [89]. Iesaka, K., Tsumura, H. The effects of tibial component inclination on bone stressafter unicompartmental knee arthroplasty[J]. Journal of biomechanics,2002,35(7):969-974.
    [90]. Thomas, T. Combined elastic and von Mises stress-strain relations[J]. Proceedingsof the National Academy of Sciences of the United States of America,1955;41(11):908-1002.
    [91]. Bosisio MR, Talmant M, Skalli W, et al. Apparent Young's modulus of humanradius using inverse finite-element method[J]. Journal of biomechanics.2007,40:2022-28.
    [92]. Nagaraja S, Couse TL, Guldberg RE. Trabecular bone microdamage andmicrostructural stresses under uniaxial compression [J]. Journal of biomechanics.2005,38:707-16.
    [93]. Rao, J. Optimization[J]. History of Rotating Machinery Dynamics,2011:341-35.
    [94]. Buffa, G., Hua, J., lynnetwwwdagriorglynnet. A continuum based fem model forfriction stir welding—model development[J]. Materials Science and Engineering:2006;419(1):389-396.
    [95]. Hamm, C., Merkel, R., lynnetwwwdagriorglynnet. Architecture and materialproperties of diatom shells provide effective mechanical protection[J]. Nature,2003;421:841-843.
    [96]. Kitagawa, T., Tanimoto, Y., lynnetwwwdagriorglynnet. Influence of cortical bonequality on stress distribution in bone around dental implant[J]. Dental materialsjournal,2005;24(2):219-225.
    [97]. Pistoia, W., Van Rietbergen, B., lynnetwwwdagriorglynnet. Estimation of distalradius failure load with micro-finite element analysis models based onthree-dimensional peripheral quantitative computed tomography images[J]. Bone,2002;30(6):842-848.
    [98]. Chun, H. J., Shin, H. S., lynnetwwwdagriorglynnet. Influence of implant abutmenttype on stress distribution in bone under various loading conditions using finiteelement analysis[J]. The International journal of oral&maxillofacial implants,2006;21(2):195-201.
    [99]. Mayorga, M. A. The pathology of primary blast overpressure injury[J]. Toxicology,1997,121(1):17-2.
    [100]. DePalma, R. G., Burris, D. G.. Blast injuries[J]. New England Journal of Medicine,2005,352(13):1335-1342.
    [101].王昭领,刘彦普,等.点爆源致颌面部损伤的实验研究[J].中华创伤杂志,2002,18(6):372-372.
    [1]. Rustemeyer J, Kranz V, Bremerich A. Injuries in combat from1982–2005withparticular reference to those to the head and neck: a review[J]. Br J OralMaxillofac Surg2007;45:556–560.
    [2]. Roberts P. The British military surgery pocket book[M]. British ArmyPublication;2004.
    [3]. Xydakis MS, Fraveli MD, Nasser KE. Analysis of battlefield head and neckinjuries in Iraq and Afghanistan[J]. Otolaryngol Head Neck Surg2005;(33):497–504.
    [4]. Dobson JE, Neweli MJ, Shepherd JP. Trends in maxillofacial injuries inwar-time (1914–1986)[J]. Br J Oral Maxillofac Surg1989;27:441–450.
    [5]. W. A. Odhiambo, S. W. Guthua, F. G. Macigo, et al.Maxillofacial injuriescaused by terrorist bomb attack in Nairobi, Kenya[J]. International Journal ofOral and Maxillofacial Surgery,2002,31(4):374-377.
    [6]. J. Breeze, A.J. Gibbons, N.J. Opie, et al.Maxillofacial injuries in militarypersonnel treated at the Royal Centre for Defence Medicine June2001toDecember2007[J].British Journal of Oral and Maxillofacial Surgery,2009,1-4.
    [7]. Nadav Sheffy, Yoav Mintz, Avraham I. Rivkind, et al. Terror-Related Injuries:A Comparison of Gunshot Wounds Versus Secondary-Fragments—InducedInjuries from Explosives.[J].Journal of the American College of Surgeons,2006,203(3):297-303.
    [8]. Eastridge BJ. Things that go boom: injuries from explosives[J].JTrauma,2007,62(6):38-42.
    [9]. Kriet JD, Stanley RB J r, Grady MS. Self-inflicted submental and transoralgunshot wounds that p roduce nonfatal brain injuries: management andprognosis [J]. J Neurosurg.2005;102(6):1029-1032.
    [10]. Wolf, S. J., Bebarta, V. S.Blast injuries[J]. The Lancet,2009,374(9687):405-15.
    [11]. Shuker, S. T. Maxillofacial blast injuries[J]. Journal of Cranio-MaxillofacialSurgery,1995,23(2):91-98.
    [12]. Sylvia, F. R., Drake, A. I., lynnetwwwdagriorglynnet. Transient vestibularbalance dysfunction after primary blast injury[J]. Military medicine,2001,166(10):918-924.
    [13]. Cave, K. M., Cornish, E. M., lynnetwwwdagriorglynnet. Blast Injury of theEar-Clinical Update from the Global War on Terror[J]. Military medicine,2007,172(7):726-730.
    [14]. Cohen, J. T., Ziv, G. Blast injury of the ear in a confined space explosion:auditory and vestibular evaluation[J]. IMAJ-RAMAT GAN-,2002,4(7):559-562.
    [15]. Stuhmiller, J. H., Ho, K. H. H., lynnetwwwdagriorglynnet. A model of blastoverpressure injury to the lung[J]. Journal of biomechanics,1996,29(2):227-234.
    [16].陈向阳,李兵仓,张良潮,等.腹部爆炸伤后早期脑病理学改变的实验研究[J].第三军医大学学报,2002,24(10):1226-1228.
    [17]. Sasser, S. M., Sattin, R. W. Blast lung injury[J]. Prehospital Emergency Care,2006,10(2):165-172.
    [18]. Axelsson, H., Yelverton, J. T. Chest wall velocity as a predictor of nonauditoryblast injury in a complex wave environment[J]. The Journal of trauma,1996,40(3):31-37.
    [19]. Mayo, A., Kluger, Y. Blast-induced injury of air-containing organs[J]. ADFHealth,2006,7(1):40-44.
    [20]. Cernak, I., Wang, Z. Ultrastructural and functional characteristics of blastinjury-induced neurotrauma[J]. The Journal of trauma,2001,50(4):695-703.
    [21]. Cheng J,Gu J,Ma Y,et al.Development of a rat model for studying blast-inducedtraumatic brain injury[J].Journal of the Neurological Sciences,2010,15(7):578-586.
    [22].楚燕飞,李兵仓,陈菁,等.大鼠爆炸性脑创伤模型建立[J].第三军医大学学报,2006,28(6):606-607.
    [23]. Hare, S., Goddard, I. The radiological management of bomb blast injury[J].Clinical radiology,2007,62(1):1-9.
    [24].张进军,李兵仓,张良潮,等.四肢长骨爆炸伤的动物实验[J].第三军医大学学报,2000,11(4):331-333.
    [25]. Ho, A. M. H. A simple conceptual model of primary pulmonary blast injury[J].Medical hypotheses,2002,59(5):611-613.
    [26]. Long, J. B., Bentley, T. L. Blast overpressure in rats: recreating a battlefieldinjury in the laboratory[J]. Journal of neurotrauma,2009,26(6):827-840.
    [27]. Courtney, A., Courtney, M. A thoracic mechanism of mild traumatic brain injurydue to blast pressure waves[J]. Medical hypotheses,2009,72(1):76-83.
    [28]. Courtney, A., Courtney, M. A thoracic mechanism of mild traumatic brain injurydue to blast pressure waves[J]. Medical hypotheses,2009,72(1):76-83.
    [29]. Bell, R. S., Vo, A. H. Military traumatic brain and spinal column injury: a5-yearstudy of the impact blast and other military grade weaponry on the centralnervous system[J]. The Journal of trauma,2009,66(4):104-109.
    [30]. Ritenour, A. E., Baskin, T. W. Primary blast injury: update on diagnosis andtreatment[J]. Critical care medicine,2008,36(7):311-319.
    [31]. Peleg, K., Aharonson-Daniel, L. Gunshot and explosion injuries: characteristics,outcomes, and implications for care of terror-related injuries in Israel[J]. Annalsof surgery,2004,239(3):311-315.
    [32].华泽权,刘荫秋.狗颌面部高速钢珠致伤的瞬时空腔效应特点[J].第四军医大学学报,1990,11(5):327-328.
    [33].任常群,刘瑞峰,刘桂才,等.下颌骨体部撞击伤和高速投射物伤的生物力学初步研究[J].实用口腔医学杂志,2008,24(5):699-70.
    [34]. Verhoff, M., Karger, B. Atypical gunshot entrance wound and extensivebackspatter[J]. International journal of legal medicine,2003,117(4):229-231.
    [35]. Lee, J.H.S., The detonation phenomenon [M]. Cambridge University Press.2008.
    [36].刘荫秋,王正国,马玉缓等.创伤弹道学[M].第一版,北京:人民军医出版社,1991:130-135.
    [37]. Scott, S. G., Belanger, H. G. Mechanism-of-injury approach to evaluatingpatients with blast-related polytrauma[J]. JAOA: Journal of the AmericanOsteopathic Association,2006,106(5):265-270.
    [38]. Goh SH.Bomb blast mass casualty incidents:initial triage andmanagement ofinjuries[J].Singapore Med,2009,50(1):102-111.
    [39].刘震,李兵仓,王大田,等.家兔胸部爆炸伤模型的建立及早期死亡原因分析[J].第三军医大学学报,2000,22(4):328-330.
    [40]. Bass CR,Meyerhoff KP,Damon AM,et al.Drosophila melanogaster larvae as amodel for blast lung injury[J].Journal of Trauma-Injury Infection&CriticalCare,2010,69(1):179-184.
    [41].倪云志,郭树忠,王岩,等.海水浸泡爆炸伤延期植皮最佳时机的研究[J].中华航海医学与高气压医学杂志,2006,3:143-146.
    [42].王大鹏,王育红,李辉,等.犬腹部爆炸伤后海水浸泡的实验模型建立及早期死亡原因探讨[J].中国实验动物学报,2003,3:170-172.
    [43]. Garner JP,Watts S,Parry C,et al.Development of a large animal model forinvestigating resuscitation after blast and hemorrhage[J].World J Surg,2009,33(10):194-202.
    [44].张明,周树夏.颌面部爆炸伤合并颅脑损伤动物模型的建立[J].实用口腔医学杂志,2004,20(003):339-341.
    [45].雷德林,王彦亮,爆炸伤对犬面神经影响的实验研究[J].中国口腔颌面外科杂志,2003,1(4):239-242.
    [46]. Shuker, S. T. Maxillofacial air-containing cavities, blast implosion injuries, andmanagement[J]. Journal of Oral and Maxillofacial Surgery,2010,68(1):93-100.
    [47]. WANG, Z., LIU, Y. A new model of blast injury from a spherical explosive andits special wound in the maxillofacial region[J]. Military medicine,2003,168(4):330-332.
    [48].史文进,李慧增,孙远,等.口腔颔面部爆炸伤与枪弹伤的对比实验研究[J].重庆医学,2005.34(3):330-335.
    [49].王昭领,刘彦普.点爆源爆炸伤模型建立及颌面部损伤特点[J].中国急救医学,2002,22(005):252-254.
    [50]. Sabri T. Shuker. The effect of a blast on the mandible and teeth: transversefractures and their management[J].British Journal of Oral and MaxillofacialSurgery,2008,46(7):547-551.
    [51]. Sabri T. Shuker Maxillofacial Air-Containing Cavities, Blast Implosion Injuries,and Management[J].Journal of Oral and Maxillofacial Surgery,2010,68(1):93-100.
    [52]. Taylor.P. A, Ford. C. C. Simulation of Blast-Induced Early-Time IntracranialWave Physics leading to Traumatic Brain Injury[J].Journal of BiomechanicalEngineering-Transactions of the Asme,2009,131(6):61-70.
    [53].康建毅,王建民.爆炸冲击波载荷下的人体胸部有限元模型数值模拟研究[J].第三军医大学学报,2011,33(2):173-176.
    [54]. Chafi. M, S.Karami, G.Ziejewski. Biomechanical Assessment of Brain DynamicResponses Due to Blast Pressure Waves[J].Annals of BiomedicalEngineering,2010,38(2):490-504.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700