用户名: 密码: 验证码:
一种极低功耗模拟IC设计技术及其在高性能音频模数转换器中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了满足便携式电子产品的迫切需求以及大型电子系统的节能需要,低压低功耗设计已经成为未来CMOS集成电路发展的主流方向。采用基于C类反相器的设计来代替传统的运算放大器是解决极低功耗低压IC设计难题的一种有效手段,其中反相器输入MOS管在大多数时间内都工作在亚阈值区,大大降低了电源电压和系统功耗。但是,传统C类反相器增益偏低,不适合许多高精度应用场合,例如级联结构ΣA模数转换器(ADC),而且由于其亚阈值工作特征及推挽电路结构,性能指标受工艺偏差和电源电压变化的影响非常严重,容易造成其应用电路性能下降甚至功能丧失,使其不具备工业实用性。本论文针对基于C类反相器的极低功耗IC设计技术进行了较为深入系统的研究,通过电路创新对传统C类反相器进行改造,推出了新一代C类反相器概念。为证明该新一代C类反相器的实用性,本论文将其应用到级联结构音频ΣΔADC的设计实现中,在功耗与性能方面均获得了令人满意的效果。论文主要工作和创新点包括:
     1、针对传统C类反相器直流增益偏低的问题,提出了增益自举型C类反相器概念并对其进行了深入的理论研究及设计实现。通过理论计算和软件仿真详细分析了增益自举型C类反相器的各项指标,包括直流增益、带宽、功耗、输出摆幅、输入失调、电源抑制比、共模抑制比、噪声、摆率和建立时间等;提出了“类转换”、最大摆率和有效摆率概念、以及计算摆率时“三角形近似”和“多边形近似”算法等。与传统C类反相器相比,增益自举型C类反相器可使直流增益从51.7dB显著提高到75.2dB。
     2、针对传统C类反相器受制造工艺、电源电压和温度(PVT)影响严重的问题,提出了一种面向成品率增强的片上体偏置技术,用于补偿PVT变化对模拟/数模混合IC(尤其是低功耗亚阈值IC)性能的不利影响。同时,提出了三种体偏置实现电路(简单型、移位型和计数型),并从体电位调节范围、精度、速度、面积和功耗等指标入手,对三种体偏置实现电路的各项指标进行了详细的理论分析与计算。对其中部分实现电路进行了版图设计和流片。
     3、基于增益自举技术加片上体偏置技术的新一代C类反相器技术的应用研究。音频∑△ADC是数模混合IC的典型代表,其模拟电路部分主要是一个ΣA调制器。本论文选择∑△ADC及其∑△调制器作为应用研究的目标,实现了基于上述新一代C类反相器技术的高性能低功耗音频ΣΔ ADC,以及极低功耗低压ΣA调制器。
     4、流片及测试。基于上述新一代C类反相器技术的音频ΣΔADC芯片在65nm标准CMOS工艺和1.2V电源电压下能够达到97dB的动态范围、95dB的信噪比和92dB的信噪失真比,功耗为1.13mW。与同批次未使用该技术的对比芯片相比,测试所得综合性能指标)从1.87pJ/量化电平优化到0.93pJ/量化电平。另外,为追求更优的综合指标,本论文实现了极低功耗低压EΔ调制器芯片,该调制器芯片在0.8V电源电压下和音频带宽内能够达到98dB的动态范围、93dB的信噪比和90dB的信噪失真比,功耗为230μW,测试所得FOM指标与国际上高水平期刊最近几年发表的论文水平相当,达到了国际先进水平。
To copy with the urgent demand of portable electronic products as well as the need of saving energy in large electronic systems, low-voltage low-power design has become the mainstream of future CMOS IC development. A class-C inverter is recently reported to replace traditional OTA to meet the low-power low-voltage IC design challenges. The input transistors of the inverter operate in a sub-threshold region most of the time, thereby minimizing the supply voltage and power dissipation. However, the DC-gain of a traditional class-C inverter is finite, which is not suitable for many high-precision applications, such as cascade ΣΔ ADC. Moreover, because of its push-pull structure and sub-threshold characteristics, the inverter is strongly sensitive to process and supply voltage variation, which is likely to cause performance degradation or even malfunction of its application circuits. This thesis carries out thorough and systematic research focusing on the inverter-based ultra-low-power IC design technique, optimizes traditional class-C inverter through circuit innovation, and proposes a new generation of class-C inverter. In order to prove the practicality of the new generation of class-C inverter, the thesis implements an inverter-based cascade audio ΣΔ ADC, whose specifications of power consumption and performance are satisfactory. The main work and innovations include:
     1. In view of the problem that the DC-gain of traditional class-C inverter is low, the thesis proposes the concept, in-depth theoretical study and design implementation of a gain-boost class-C inverter. Various specifications of the gain-boost inverter are analyzed in detail by theoretical calculation and software simulation, including DC-gain, bandwidth, power consumption, output swing, input offset, PSRR, CMRR, noise, SR and settling time; Concepts of "approximate slew", maximum SR and effective SR are proposed;"triangular approximation" and "polygonal approximation" algorithms for SR calculation are povided. Compared with traditional class C inverter, the gain-boost inverter significantly increases the DC-gain from51.7dB to75.2dB.
     2. In view of the problem that traditional class-C inverter is sensitive to PVT-variations, an on-chip body bias technique for the enhancement of parametric yield is proposed, which is used to compensate for PVT-variations in analog/mixed-signal IC, especially in low-voltage low-power sub-threshold IC. Meanwhile, three body bias implementation circuits (simple type, shift type and count type) are proposed. A detailed theoretical analysis and calculation is carried out for the specifications of the three body bias circuit, including body potential adjustment range, accuracy, speed, area and power consumption. A part of the body bias circuits are layout designed and tapeout.
     3. Application research of a new generation of class-C inverter which is based on gain-boost technique and on-chip body bias technique. Audio EA ADC is a typical representative of mixed-signaled IC, whose analog part is mainly a EA modulator. The thesis chooses ΣΔ ADC and its inside ΣΔ modulator as application circuits, and implements a high-performance, low-power audio ΣΔ ADC as well as an ultra low-power low-voltage ΣΔ modulator based on the new generation of class-C inverter.
     4. Tapeout and test. The proposed inverter-based audio ΣΔ ADC chip is implemented in65nm stardard CMOS process, and achieve97-dB DR,95-dB SNR and92-dB SNDR at1.2-V supply consuming1.13mW. Compared with the OTA-based chip (without the class-C inverter) of the same batch, the measured of the inverter-based chip is optimizated from1.87pJ/step to0.93pJ/step. In addition, for the pursuit of better FOM specification, the thesis implements an ultra-low-power low-voltage EA modulator chip. The modulator chip can achieve98-dB DR,93-dB SNR and90-dB SNDR over20-KHz bandwidth at0.8-V supply consuming230μW. The measured FOM specification is comparable with the international high-level journal papers published in recent years, reaching international advanced level.
引文
[1]S. S. Rajput, et al. Low voltage analog circuit design techniques, IEEE Circuits and Systems Magazine,2002,2(1), pp.24-42
    [2]Y. Chae, et al. Low voltage, low power, inverter-based switched-capacitor delta-sigma modulator, IEEE Journal of Solid-State Circuits,2009,44(2), pp. 458-472
    [3]梁国.基于65nm工艺的高性能音频∑△模数转换器的研究与实现[硕士学位论文].浙江大学,2012
    [4]L. Liu, et al. A 1.1 mW 87dB dynamaic range ΔΣ modulator for audio applications, Chinese Journal of Semiconductors,2010,31(5),055003.
    [5]陈建球.16比特1MHz信号带宽Sigma-Delta调制器的设计与实现[硕士学位论文].复旦大学,2007
    [6]马绍宇.高性能、低功耗△∑模数转换器的设计与实现[博士学位论文].浙江大学,2008
    [7]代军.一款16位∑△音频模数转换器芯片的设计[硕士学位论文].电子科技大学,2007
    [8]K. P. Pun, S. Chatterjee, and P. Kinget. A 0.5-V 74-dB SNDR 25 kHz CT ΔΣ modulator with return-to-open DAC, IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb.2006, pp.72-73
    [9]朱冬勇.基于衬底驱动技术的超低压、超低功耗CMOS模拟集成电路设计[硕士学位论文].西安电子科技大学,2008
    [10]A. Lopez-Martin, J. Tamirez-Angulo, R. Gonzalez-Carvajal, et al. Low Voltage closed-loop Amplifier Circuits based on Quasi-floating Gate Transistors. International Symposium on Circuits and Systems.2003,813-816
    [11]张宝君.低压低功耗模拟集成电路设计的准浮栅技术研究[硕士学位论文].西安电子科技大学,2006
    [12]张兴,王阳元.低压低功耗集成电路:SOI技术的新机遇,电子科技导报,1998,12,Pp.13-16,23
    [13]J. K. Fiorenza, T. Sepke, P. Holloway, et al.,"Comparator-based switched-capacitor circuits dor scaledCMOStechnologies,"IEEE J. Solid-State Circuits, Dec.2006,41(12), pp.2658-2668
    [14]H. Yang and R. Sarpeshkar, "A time-based energy-efficient analog-to-digital converter," IEEE J. Solid-State Circuits, Aug.2005,40(8),1590-1601
    [15]F. Krummenacher, et al. Micropower Switched Capacitor Biquadratic Cell, IEEE Journal of'Solid-State Circuits,1982, SC-17(3), pp.507-511
    [16]O. Unsal, J. Tschanz, K. Bowman, et al. Impact of Parameter Variations on Circuits and Microarchitecture. IEEE MICRO,2006, Nov.-Dec., pp.30-39
    [17]L. Cam, A. Appleby, P. Hurat, et al. Realizing a 45-nm system on chip in the age of variability. Proceedings of SPIE-The International Society for Optical Engineering,2010,7641, pp.764106-764106-10
    [18]A. Kahng. Design challenges at 65nm and beyond. Proceedings of Design, Automation and Test in Europe,2007, pp.1466-1467
    [19]S. Borkar, T. Karnik, S. Narendra, et al. Parameter Variations and Impact on Circuits and Microarchitecture. Proceedings of IEEE DAC,2003, pp.338-342
    [20]P. Bacinschi, T. Murgan, K. Koch, et al. An Analog On-Chip Adaptive Body Bias Calibration for Reducing Mismatches in Transistor Pairs. Proceedings of EDAA, 2008
    [21]H. Luo, Y. Han, R. Cheung, et al. Bulk-compensated technique and its application to subthreshold ICs. Electronics Letters,2010,46(16), pp.1105-1106
    [22]H. Kadim and D. Harvey. Estimation of Parameter Fluctuations for Robust Operation in Analogue Circuits and Systems. Proceedings of IEEE ISCAS,2000, Ⅱ741-744
    [23]H. C.Wan et al. Channel doping engineering of MOSFET with adaptable threshold voltage using body effect for low voltage and low power applications. Proc.1995 Int. Symp. VLSI Technology, Systems, and Applications,1995, pp. 159-163
    [24]T. Kuroda et al. A 0.9 V 150 MHz 10-mW 2-D discrete cosine transform core processor with variable threshold-voltage scheme. ISSCC Tech. Dig,1996, pp. 166-167
    [25]M. Miyazaki, G. Ono, and K. A. Ishibashi.1.2-GIPS/W microprocessor using speed-adaptive threshold-voltage CMOS with forward bias. IEEE J. Solid-State Circuits,2002, vol.37, pp.210-217
    [26]J. Tschanz et al., Adaptive body bias for reducing impacts of die-to-die and within-die parameter variations on microprocessor frequency and leakage," in ISSCC Tech. Dig., Feb.2002, pp.422-423
    [27]S.R. Norsworthy, R. Sehreier, and G. C. Temes. Delta-Sigma Data Converters in Theory, Design and Simulation. IEEE Press,1997
    [28]T. Ritoniemi, T. Karema, and H. Tenhunen. A fifth order sigma-delta modulator for audio A/D-converter, International Conference on Analogue to Digital and Digital to Analogue Conversion,1991:pp.153-158
    [29]T. Hayashi, Y. Inabe, K. Uchimura, and A. Iwata. A multistage delta-sigma modulator without double integration loop. ISSCC Digest of Technical Papers, Feb.1986, pp.182-183
    [30]L. R. Carley, A noise-shaping coder topology for 15-bit converters", IEEE Journal of Solid-State Circuits, Apr.1989,24, pp.267-273
    [31]L. E. Larson,T. Cataltepe, and G. C. Temes, Multi-bit oversampledΔΣA/D converter with digital error correction, Electronics Letters, Aug.1988,24, pp.1051-105
    [32]H. Park, K. Nam, D. K. Su, K. Vleugels, and B. A. Wooley. A 0.7-V 870-μW digital-audio CMOS sigma-delta modulator, IEEE J. Solid-State Circuits, Apr. 2009,44(4), pp.1078-1088
    [33]Richard Schreier, Gabor C. Temes. Understanding Delta-Sigma Data Converters, IEEE Press, New York,2005
    [34]F. Maloberti. Date Converters, Springer Press, The Netherlands,2007
    [35]C. Kuo, D. Shi and K. Chang. A Low-Voltage Fourth-Order Cascade Delta-Sigma Modulator in 0.18-μm CMOS, IEEE Trans. on Circuits and Systems-Ⅰ:REGULAR PAPERS, Sep.2010,57(9), pp.2450-2461
    [36]J. Zhang, Y. Lian, L. Yao, et al. A 0.6-V,28.6-μW Continuous-Time Audio Delta-Sigma Modulator, IEEE J. Solid-State Circuits, Oct.2011,46(10), pp.2326-2335
    [37]F. Michel, et al. A 250 mV 7.5μW 61 dB SNDR SC ΔΣ Modulator Using Near-Threshold-Voltage-Biased Inverter Amplifiers in 130 nm CMOS, IEEE J. Solid-State Circuits, Mar.2012,47(3), pp.709-721
    [38]Brian P. Brandt, Bruce A. Wooley. A Low-Power, Area-Efficient Digital Filter for Decimation and Interpolation, IEEE J. Solid-State Circuits, June 1994,29(6), pp. 679-687
    [39]S. Chatterjee, Y. Tsividis and P. Kinget.0.5-V Analog Circuit Techniques and Their Application in OTA and Filter Design. IEEE J. Solid-State Circuits, Dec. 2005,40(12), pp.2373-2387
    [40]许立峰.低压低功耗运算放大器分析与设计[硕士学位论文].东南大学,2008
    [41]B. J. Blalock, P. E. Allen and G. A. R. Rincon-Mora. Designing 1-V Op Amps Using Standard Digital CMOS Technology, IEEE Transactions on Circuits and Systems-Ⅱ, July 1998,45, pp.769-780
    [42]E. Sanchez-Sinencio and A. G. Andreou. Low Voltage/Low Power Integrated Circuits and Systems. IEEE Press,1999.
    [43]严晓浪,吴晓波.低压低功耗模拟集成电路的发展.微电子学,2004,34(4):pp.371-377
    [44]S. S. Rajput and S. S. Jamuar. Design Techniques for Low Voltage Analog Circuit Structures, NSM 2001/IEEE, Malaysia, Nov.2001
    [45]B. R. Gregoire and U.-K. Moon. An Over-60dB True Rail-to-Rail Performance Using Correlated Level Shifting and an Opamp with 30dB Loop Gain, in ISSCC Digest of Technical Papers,2008, pp.540-541
    [46]潘学文.低压低功耗全摆幅CMOS运算放大器设计与仿真[硕士学位论文].中南大学,2009
    [47]William R. W. A High Bandwidth Constant gm and Slew-Rate Rail-to-Rail CMOS Input Circuit and its Application to Analog Cells for Low Voltage VLSI Systems. IEEE Journal of Solid-State Circuits,1997,32(5), pp.175-182
    [48]J. Hu, N. Dolev and B. Murmann. A 9.4-bit,50-MS/s,1.44-mW Pipelined ADC Using Dynamic Source Follower Residue Amplification. IEEE Journal of Solid-State Circuit, Apr.2009,44(4), pp.1057-1066
    [49]C. Wulff and T. Ytterdal. Design and behavioral simulation of comparator-based switched-capacitor circuits. IEEE 2008, pp.246-249
    [50]Hao Luo, Yan Han, Xiaopeng Liu and Ray C. C. Cheung. An Audio Cascaded ΣΔ Modulator Using Gain-boost Class-C Inverter, IEEE EDSSC, Nov.2011.
    [51]Phillip E. Allen Douglas R. Holberg. CMOS模拟集成电路设计,电子工业出版社,2009
    [52]G. Giustolisi, G. Palumbo, M. Criscione, and F. Cutri. A low-voltage low-power voltage reference based on subthreshold MOSFETs, IEEE J. Solid-State Circuits, 2003,38(1), pp.151-154
    [53]A. Guzinski, M. Bialko, and J. C. Matheau. Body driven differential amplifier for application in continuous time active-C filer. Proc European Conf. Circuit Theory and Design(ECCTD'87),1987, pp.315-320
    [54]张海军,衬底驱动MOS技术的低压模拟集成电路设计[硕士学位论文].西安电子科技大学,2006
    [55]I. Fujimori and Sugimoto. A 1.5V,4.1mW dual-channel audio delta-sigma D/A converter. IEEE J. of Solid-State Circuits, Dec 1998,33, pp.1863-1870
    [56]Angulo J R, Martin Antonio J Lopez, Carajal Ramon G. Very Low-Voltage Analog Processing Based on Quasi-Floating-Gate Transistors. IEEE Journal of Solid-State Circutis,2004,39(3), pp.434-442
    [57]Angulo J R, Urquidi Carlos A. A New Family of Very Low-Voltage Analog Circuits Based on Quasi-Floating-Gate Transistors. IEEE Trans. on Circuits and Systems,2003,50(5), pp.214-219
    [58]任乐宁,朱樟明,杨银堂等.一种基于准浮栅技术的新型低压全差分运算放大器.电路与系统学报,2004,9(5),PP.123-126
    [59]Kimmo Koli, K. A. I. Halonen. CMOS current amplifiers speed versus nonlinearity. Kluwer Academic Publishers,2002
    [60]CMOS:From Bluk to SOI. http://www.ibis.com
    [61]徐文华,张天义等.SOI技术的机遇和挑战.电子器件,2001,24(1),pp.72-78
    [62]Y. Chae, I. Lee, and G. Han. A 0.7-V 36-μW 85 dB-DR audio ΔΣ modulator using class-C inverter. in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb.2008, pp.490-491
    [63]D. Miyazaki, S. Kawahito, and M. Furuta. A 10-b 30-MS/s low-power pipelined CMOS A/D converter using a pseudodifferential architecture. IEEE J. Solid-State Circuits, Feb.2003,38, pp.369-373
    [64]L. Wu, M. Keskin, U. Moon, and G. Temes. Efficient common-mode feedback circuits for pseudo-differential switched-capacitor stages. in Proc. IEEE Int. Symp. Circuits and Systems, May 2000, vol. V, pp.445-448.
    [65]马绍宇,韩雁.一个高性能、低功耗EΔ调制器[J].半导体学报,2008,29(10):2050-2056
    [66]Liang Guo, Liao Lu, Luo Hao, Liu Xiaopeng, Han Xiaoxia, and Han Yan. "A 65-nm low-noise low-cost ΣΔ modulator for audio applications," Chinese Journal of Semiconductors, Feb.2012,33(2), pp.0250051-5
    [67]Behzad Razavi.模拟CMOS集成电路设计.西安交通大学出版社,2002
    [68]S. Tedja, J. Van der Spiegel, and H. H.Williams. Analytical and experimental studies of thermal noise in MOSFETs. IEEE Trans. Electron Devices, Nov.1994, 41, pp.2069-2075
    [69]C. C. Enz and G. C. Temes. Circuit techniques for reducing the effects of op-amp imperfections:Autozeroing, correlated double sampling, and chopper stabilization," in Proc. IEEE, Nov.1996,84, pp.1584-1614
    [70]过瑶.低电压低功耗10比特40兆赫兹流水线模数转换器的设计[硕士学位论文].复旦大学,2009
    [71]H. Masuda, S. Ohkawa, A. Kurokawa, and M. Aoki. Challenge:Variability characterization and modeling for 65-nm to 90-nm processes. Proc. IEEE Custom Integr. Circuits Conf. (CICC),2005, pp.593-599
    [72]H. Mostafa, M. Anis, M. Elmasry. A Novel Low Area Overhead Direct Adaptive Body Bias (D-ABB) Circuit for Die-to-Die and Within-Die Variations Compensation. IEEE Transactions on VLSI Systems,2010, pp.1-13
    [73]S. Kumar, C. Kim and S. Sapatnekar. Body Bias Voltage Computations for Process and Temperature Compensation. IEEE Transactions on VLSI Systems, 2008,16(3), pp.249-262
    [74]孟庆巨,刘海波,孟庆辉.半导体器件物理.科学出版社,2005.
    [75]T. H. Morshed, D. D. Lu, W. Yang, et al. BSIM4v4.7 MOSFET Model, U. C. Berkeley,2011
    [76]李艳萍,徐静平,陈卫兵,邹晓,深亚微米MOSFET司值电压模型,微电子学,2005,35(1),pp.40-43
    [77]李艳萍.小尺寸MOSFET阈值电压模型及高k栅介质制备[硕士学位论文].华中科技大学,2006.
    [78]张文良,杨之廉.计人多晶硅耗尽效应的深亚微米MOSFET开启电压模型,1997,18(11),pp.877-880
    [79]Tomosz Janik, Bogdan Majkusiak, Analysis of the MOS transistor based on the self-consistent solution to the Schrodinger and Poisson equation and on the local mobility model. IEEE Trans. Electron Devices,1998,45(6), pp.1263-1271
    [80]代月花,陈军宁,柯导明等.考虑量子化效应的MOSFET阈值电压解析模型.物理学报,2005,54(2):897-901
    [81]Lallement C., Sallese J. M., Bucher M., et al. Accounting for quantum effects and polysilicon depletion from weak to strong inversion in a charge-based design-oriented MOSFET model. IEEE Trans. Electron Devices,2003,50(2), pp. 406-417
    [82]K. Martin and A. S. Sedra. Effects of the op amp finite gain and bandwidth on the performance of switched-capacitor filters. IEEE Trans. Circuits Syst., Aug. 1981, CAS-28(8), pp.822-829
    [83]Jesper Steensgaard-Madsen, High-Performance Data Converters, Ph.D. dissertation, The Technical University of Denmark,1999
    [84]M. Kim et al. A 0.9 V 92 dB double-sampled switched-RC Delta-Sigma audio ADC. IEEE J. Solid-State Circuits, May 2008,43(5), pp.1195-1206
    [85]Z. Yang, L. Yao and Y. Lian, et al. A 0.5-V 35-pW 85-dB DR Double-Sampled ΔΣ Modulator for Audio Applications. IEEE J. Solid-State Circuits, Mar.2012, 47(3), pp.722-735
    [86]R. M. Gray. QUANTIZATION NOISE SPECTRA. IEEE Transactions on Information Theory,1990,36(6), pp.1220-1244
    [87]Franco Maloberti, Data Converters. Dordrecht, The Netherlands:Springer,2007.
    [88]袁俊.16位音频sigma-delta A/D转换器关键设计技术研究[硕士学位论文].西安电子科技大学,2008
    [89]周越.音频18位sigma delta ADC的设计[硕士学位论文].东南大学,2008
    [90]B. A. Wooley. Cascaded noise-shaping modulators for oversampled data conversion, Proceedings of the IEEE 2003 Custom Integrated Circuits Conference,2003, pp.113-114
    [91]Koen Cornelissens, Michiel Steyaert. Design Considerations for Cascade ΔΣADC's. IEEE Trans, on Circuits and Systems-Ⅱ:EXPRESS BRIEFS, May 2008,55(5):389-393
    [92]Louis A. Williams, III, Bruce A. Wooley, A Third-Order Sigma-Delta Modulator with Extended Dynamic Range, IEEE J. Solid-State Circuits, Mar.1994,29(3), pp.193-202
    [93]Jian-Yi Wu, Zhenyong Zhang, Rajaram Subramoniam. A 107.4 dB SNR Multi-Bit Sigma Delta ADC With 1-PPM THD at 0.12 dB From Full Scale Input. IEEE J. Solid-State Circuits, Nov.2009,44(11)
    [94]I. Fujimori, L. Longo, A. Hairapetian, et al., "A 90-dB SNR 2.5-MHz output-rate ADC using cascaded multibit delta-sigma modulation at 8x oversampling ratio," IEEE Journal of Solid-State Circuits,2000,35(12), pp.1820-1828
    [95]韩雁,洪慧,马绍宇等.集成电路设计制造中EDA工具实用教程.浙江大学出版社,2007
    [96]S. Brigati, F. Francesconi, P. Malcovati, et al. Modeling Sigma-delta Modulator Non-idealities In Simulink, IEEE ISC AS,1999
    [97]Y. Takasaki, Digital Transmission Design and Jitter Analysis. Norwood, MA: Artech House, Inc.,1991
    [98]Luo Hao, Han Yan, Ray C. C. Cheung, Han Xiaoxia, Ma Shaoyu, Ying Peng, Zhu Dazhong. A High-Performance, Low-Power Sigma-Delta ADC for Digital Audio Applications, Chinese Journal of Semiconductors, May 2010,31(5), pp.0550091-7
    [99]S. Rabii and B. A. Wooley. The Design of Low-Voltage, Low-Power Sigma-Delta Modulators. Boston:Kluwer Academic Publishers,1999
    [100]J. Steensgaard, "Bootstrapped low-voltage analog switches," Proceedings of the 1999 IEEE International Symposium on Circuits and Systems, Vol 2-Analog and Digital Circuits.1999, pp.29-32
    [101]Fayomi C J B, Robers G W, Sawan M. Low-voltage CMOS analog bootstrapped switch for sample-and-hold circuit:design and chip characterization[C].IEEE International Synposium on Circuits and Systems. Kobe:[S.N.],2005:220
    [102]蔡坤明,12bit,100MS采样率流水线ADC的设计与实现[硕士学位论文],浙江大学,2011
    [103]K. Bult and G. J. G. M. Geelen. A Fast-Settling CMOS Op Amp for SC Circuit with 90-dB DC-gain. IEEE Journal of Solid-State Circuits, Dec.1990,25(6), pp. 1379-1384
    [104]K. Nagaraj, J. Vlach, T. R. Viswanathan and K. Singhal. Switched-capacitor Integrator With Reduced Sensitivity To Amplifier Gain. Electronics Letters, Oct. 1986,22(21), pp.1103-1105
    [105]Hironori Banba, Hitoshi Shiga, Akira Umezawa. A CMOS Bandgap Reference Circuit with Sub-1-V Operation, IEEE Journal of Solid-State Circuits, May 1999, 34(5), pp.670-674
    [106]G. M. Yin, F. O. Eynde, and W. Sansen. A High-speed CMOS Comparator With 8-B Resolution, IEEE Journal of Solid-State Circuits,1992,27(2), pp. 208-211
    [107]R. Jacob Baker, CMOS混合信号电路设计.北京:科学出版社,2004
    [108]A. Hastings.模拟电路版图的艺术.电子工业出版社,2007
    [109]T. B. Hook, et al. Lateral Ion Implant Straggle and Mask Proximity Effect, IEEE Trans. Elec. Dev. Sep.2003, pp.1946-1951
    [110]深亚微米IP模块设计中必须考虑的制造工艺的影响——如何减少或避免WPE/STI效应对IP模块设计的影响,http://www.wdzjs.com/article-1143-1.html
    [111]P. G. Drennan, et al. Implications of Proximity Effects for Analog Design, in Proc. IEEE Custom Integrated Circuits Conference,2006, pp.169-176
    [112]蔡友,Sigma-Delta ADC中抽取滤波器的研究与实现[硕士学位论文],浙江大学,2007
    [113]J. Roh, et al. A 0.9-V 60-μW 1-bit fourth-order delta-sigma modulator with 83-dB dynamic range. IEEE J. Solid-State Circuits, Feb.2008,43(2), pp. 361-370
    [114]Y. Chen, et al. A 0.5-V 90-dB SNDR 102 dB-SFDR audio-band continuous-time delta-sigma modulator. Analog Integr. Circuits Signal Process, Aug.2011
    [115]L. Dorrer, F. Kuttner, A. Santner, et al. A 2.2mW, Continuous-Time Sigma-Delta ADC for Voice Coding with 95dB Dynamic Range in a 65nm CMOS Process. IEEE ESSCIRC, pp.195-198, Sep.2006
    [116]M. Kim et al. A 0.9 V 92 dB double-sampled switched-RC Delta-Sigma audio ADC. IEEEJ. Solid-State Circuits, May 2008,43(5), pp.1195-1206
    [117]Liu Yan, et al. A continuous time/discrete time mixed audio band sigma delta ADC. Chinese Journal of Semiconductors.2011
    [118]Liao Lu, Sun Ying, Han Yan, et al. A 65-nm low-power high-linearity ΣΔ ADC for audio applications. SCIENCE CHINA Information Sciences.2012 (待发表)
    [119]Moo-Yeol Choi, et al. A 101-dB SNR Hybrid Delta-Sigma Audio ADC using Post Integration Time Control. IEEE CICC,2008
    [120]J. Kim, T. Kwon, G. Ahn et al. A ΔΣ ADC Using 4-bit SAR Type Quantizer for Audio Applications. IEEE ISOCC,2011
    [121]Wu J., Zhang Z., Subramoniam R. A 107.4 dB SNR Multi-Bit Sigma Delta ADC With 1-PPM THD at 0.12 dB From Full Scale Input, IEEE J. Solid-State Circuits,2009,44(11):3060-3066

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700