用户名: 密码: 验证码:
代理模型近似技术研究及其在结构可靠度分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几十年来,伴随着新材料、先进制造工艺和以科学计算为基础的仿真分析均出现重大技术进步,工程结构分析与设计技术也呈现出多样化发展的趋势。以结构多目标优化、多学科协同优化设计、结构可靠度分析与设计以及鲁棒设计等为代表的先进结构设计思想已经在实际工程结构设计应用中得到体现,这也契合了当前日益攀升的工程结构设计要求,即缩短设计周期,降低开发成本,提高设计质量,及对环境与客户更友好等。另一方面,尽管计算机仿真能力与计算效率已经取得较大进展,但新材料与新结构形式在工程结构设计中的广泛应用仍可能使传统的结构分析手段出现困难,不论是采用结构试验还是复杂仿真分析来辅助结构设计,都对上述结构设计要求提出挑战。因此,非常有必要研究各种适应结构分析能力现状的设计技术,而对代理模型技术的研究及其对于辅助结构分析与设计方面的应用已经成为当前国内外的热门研究课题。
     本文围绕代理模型在结构分析与设计中的应用展开研究,分别探讨了基于结构试验的复合材料冲击损伤表征及基于有限元仿真计算的结构可靠度分析问题,其中研究重点放在新型代理模型技术在结构可靠度分析中的应用。本文提出了一种改进的人工神经网络建模技术,实现了该方法在复合材料结构冲击损伤表征中的应用;基于各基本结构可靠度分析方法的不足,提出了一种新型结构可靠度分析的Two-Phase混杂模型;将移动最小二乘技术推广于结构可靠度分析领域,并基于失效概率计算特征提出了新型双加权移动最小二乘方法,以提高分析效率;研究了有限元分析中的灵敏度计算原理,具体推导了灵敏度信息辅助Kriging插值的建模方法,并提出了两种基于灵敏度信息的结构可靠度分析方法。主要研究工作及结论如下:
     (1)建立了改进的人工神经网络模型,并实现了该模型在复合材料冲击损伤表征中的应用
     针对实际复合材料飞机结构设计中冲击损伤表征出现的困难,提出了以结构试验结果作为训练样本,构建人工神经网络模型(Artificial Neural Network,ANN)来定义结构冲击响应与影响参数之间的函数关系。基于训练样本点的数据特征,对传统的人工神经网络训练方法进行了改进,提出了利用交叉验证技术(Cross-Validation, CV)确定最佳网络结构与初始参数的方法。为了验证所提出方法的有效性,将其应用于复杂非线性函数和蜂窝夹层结构冲击损伤表征问题中。结果显示所提方法均能够有效地建立人工神经网络模型对未知函数关系进行近似,且表现出比采用传统神经网络建模方法更稳定的特征;
     (2)提出了结构可靠度分析的两阶段(Two-Phase)混杂模型
     鉴于含隐式极限状态函数的结构可靠度分析问题中,一次二阶矩法、Monte Carlo法与经典响应面法都存在各自的优点与不足,提出了一种能够凸显三种方法分析优势、避免各自计算缺陷的可靠度分析Two-Phase混杂模型。在Two-Phase混杂模型中,基于一次二阶矩法与代理模型的新型序列自适应抽样技术保证了在1st Phase中能够在极限状态曲面附近抽取更多的样本点,这对于提高2nd Phase中基于Monte Carlo法的失效概率Pf计算精度与效率有直接影响。通过4个典型可靠度分析算例,验证了所提方法能够有效实现将样本点布置在极限状态曲面附近,计算结果与其它可靠度方法相比也存在明显优势,即Two-Phase混杂模型可以在失效概率Pf的计算精度与计算效率上同步得到改进。
     (3)开展了双加权移动最小二乘技术在结构可靠度分析中的应用研究
     为了将移动最小二乘技术(Moving Least Square,MLS)推广于结构可靠度分析应用中,首先介绍了其基本理论,并结合结构可靠度分析中失效概率计算的基本原理,提出了一种改进的双加权移动最小二乘法并使其能更适应可靠度分析问题特征。新的加权方案能够将随机变量空间中靠近极限状态曲面或最可能失效点的样本点分配更大的权系数值,因此能够提高极限状态曲面或最可能失效点的近似精度。而这对于提高失效概率计算精度有促进作用。3个典型算例的结果表明,与其它近似代理模型相比,移动最小二乘法能够有效地应用于结构可靠度分析问题,且采用双加权移动最小二乘模型比采用普通移动最小二乘模型具备更高的失效概率计算精度。
     (4)提出了基于仿真灵敏度信息的结构可靠度分析模型
     将计算机仿真程序特征与结构可靠度分析特征综合考虑,研究了提高失效概率Pf计算效率的一种新方法。以主流有限元软件均能提供的仿真灵敏度信息利用为例,提出了两种利用仿真灵敏度信息辅助进行结构失效概率计算的方法:1.将仿真灵敏度信息转化为一次二阶矩法中极限状态函数对随机变量的偏导数。三个工程算例的结果表明,灵敏度信息极大地提高了失效概率计算效率,但是计算精度存在限制;2.推导了包含仿真灵敏度信息的Kriging建模方法(SEK),通过已知函数近似问题验证了SEK在提高近似精度与效率方面的优势。基于Kriging、SEK与Two-Phase混杂模型的思路,发展出四种不同结构可靠度分析方法,两个典型数值算例的分析结果也表明:在保证失效概率分析精度的前提下,仿真灵敏度信息对于提高计算效率有很大的促进作用。
In recent decades, along with the significant technical progress of new materials,advanced manufacturing technology and simulation analysis based on scientific computing,engineering structural analysis and design techniques are also showing a diversifieddevelopment trend. Several advanced structure design ideologies, which includemulti-objective structure optimization, multidisciplinary design optimization(MDO),structural reliability analysis and design, and robust design, has to be reflected in the actualengineering structural design applications. These new design principles also fulfill currentescalating structural design requirements, which means shorten the design cycle, reducedevelopment costs, improve design quality, and more friendly to the environment andcustomers. On the other hand, even the computer simulation capacity and computationalefficiency has made great progress, widely usage of new materials and new structures designcould still make traditional structure analysis theory of too difficult or complex in assistingstructure designs and fulfilling the structure design requirements. Therefore, it is necessary tostudy new design technologies which adapt to contemporary structural analysis capabilities.As an efficient solution to these problems in structure design, surrogate modeling techniqueshad become a popular research topic. The research focus of this dissertation lays on severalcritical issues related to approximation of surrogate models and its applicability in structuralreliability analysis. The content of dissertation can be summarized as follows:
     (1)Improved Artificial Neural Networks models and application in characterizing impactdamage of composite structures
     As the structure design application of composite is still advanced than its correspondinganalytical model development, the artificial neural network model (ANN) was studied andextended to composite structure designs based on abundant physical test results on composite materials. It is necessary to improve the traditional modeling process of ANN because of thefeature of training sample data from physical structure test. A cross-validation scheme isutilized to determine the optimal network structural and initial parameters. The complexnonlinear function approximation problem has verified the applicability of proposed ANNmodeling method. The internal damages induced in honeycomb sandwich structure are thencharacterized and predicted with proposed ANN model whose training sample data comesfrom standard low-velocity impact tests and non-destructive damage testing. The results haveproved the hypothesis that surrogate ANN models can approximate responses of compositestructures efficiently, which enabled a possible option in assisting composite structure designs
     (2) A Two-Phase Hybrid model for structural reliability analysis
     A Two-Phase Hybrid Method (TPHM) aiming at structural reliability analysis isproposed in current research based on complete performance discussion on basic reliabilitymethods. The TPHM is expected to highlight the advancements of each basic reliabilitymethod and obtain the structure failure probabilityPf efficiently. In the first phase, the firstorder reliability methods (FORM) are utilized to promote the sampling efficiency of surrogatemodels, while FORM can help to locate newly added sample points as close as possible to thelimit state surface. In the second phase, the Monte Carlo method and surrogate models isadopted to estimate the structure failure probabilityPf accurately. The chosen4test examplesdemonstrated the success of sequential adaptive sampling schemes and verified theapplicability of TPHM.
     (3)Doubly weighted moving least square method and its application in structuralreliability analysis
     The object of this research is extending the moving least square method (MLS) tostructural reliability analysis, so the basic hypothesis and principle is firstly explained in detail.However, it is necessary to improve the traditional MLS in order to further embody thefeature of structural reliability analysis. Besides the original weight system in MLS, anadditional weight system to sample points is devised, which enable to assign more weightfactors to sample points that locate more closer to limit state surface or most probable failurepoint. The highlight of sample points close to limit state surface or most probable failure pointcan promote the approximate of themselves, which would do great good to failure probabilityestimation.3numerical test problems had verified the applicability of MLS and doubly weighted MLS in structural reliability analysis, furthermore, the second additional weightsystem enhanced the performance of failure probability estimations.
     (4)Utilization of simulation sensitivity information in boosting structural reliabilityanalysis
     The possibility of combining both the property of computer simulation tools andstructural reliability analysis is discussed in current study. The sensitivity information, whichhad been able to calculated inexpensively by commercial finite element programs, is studiedto boost the capability of structural reliability methods and two possible methodsproposed:1.the simulation sensitivity information outputed by finite element code are treat asthe partial derivatives of performance function to random variables in first order reliabilityanalysis, and three practical engineering structure analysis verified that the cheap sensitivityinformation do great good to convergence of FORM, which is exactly the reason why theaccuracy of failure probability is unacceptable for many problem;2. A sensitivity enhancekriging (SEK) is reformulated based on discussion of kriging theory, and the numericalexample help conclude that the sensitivity information can promote the approximation ofsurrogate models remarkably. An analogical Two-Phase Hybrid Method (TPHM) based onsensitivity information and SEK is proposed and two reliability problems are tested. The testproblem have demonstrated the utilization of sensitivity information in estimating failureprobabilities.
引文
[1] Keane, A.J., Nair, P.B. Computational Approaches to Aerospace Design:the Pursuit ofExcellence[M], Chichester:John Wiley&Sons.2005
    [2] Bathe, K.J. Finite Element Procedures[M], Prentice Hall, New Jersey.1996
    [3] Raymer, D.P. Aircraft Design: A Conceptual Approach[M], Education Series,4th edition,American Institute of Aeronautics and Astronautics, Washington, DC.2006
    [4] Georgiadis, S., Gunnion, A.J., Thomson, R. S., Cartwright, B. K. Bird-strike simulationfor certification of the Boeing787composite movable trailing edge[J]. CompositeStructures.2008,86:258-268
    [5] Gu, L. A comparison of polynomial based regression models in vehicle safety analysis.Proceedings2001AMSE Design Engineering Technical Conferences-DesignAutomation Conference, ASME, Pittsburgh, PA.2001
    [6] Venkataraman, S., Haftka, R.T. Structural optimization complexity: what has Moore'slaw done for us?[J]. Structural and Multidisciplinary Optimization.2004,28:375-387
    [7] Sobieszczanski, S.J., Haftka, R.T. Multidisciplinary aerospace Design optimization:survey of recent developments[J]. Structural and Multidisciplinary Optimization.1997,14:1-23.
    [8] Simpson, T.W., Toropov, V., Balabanov, V., and Viana, F.A.C., Meta-modeling instructural and multidisciplinary optimization: how far we have come-or not, Structuraland Multidisciplinary Optimization, Vol. under review,2011.
    [9]余雄庆,姚卫星.关于多学科设计优化计算框架的探讨[J].机械科学与技术.2004,23:286-289.
    [10]赵国藩.工程结构可靠性理论与应用[M].大连:大连理工大学出版社.1996.
    [11]吴世伟.结构可靠度分析[M].北京:人民交通出版社,1990.
    [12] Ditlevsen, O., Madsen, H. Structural reliability methods[M]. Hoboken:Wiley.1996.
    [13]贡金鑫.工程结构可靠度分析方法[M].大连:大连理工大学出版社.2003.
    [14]秦权,林道锦,梅刚.构可靠度随机有限元一理论、方法及工程应用[M],北京:清华大学出版社.2006.
    [15] Wang, G.G., Shan, S., Review of meta-modeling techniques in support of engineeringDesign optimization, Journal of Mechanical Design.2007,129(4):370-380.
    [16] Queipo, N.V., Haftka, R.T., Shyy, W., Goel, T., Vaidyanathan, R., Tucker, P.K.,Surrogate-based analysis and optimization, Progress in Aerospace Sciences.2005,41(1):1-28.
    [17] Forrester, A.I.J., Keane, A.J. Recent advances in surrogate-based optimization[J].Progress in Aerospace Sciences.2009,45:50-79.
    [18] Schmit, L.A., Farshi, B. Some approximation concepts for structural synthesis[J].Journal of AIAA,1974,12:692-699.
    [19] Barthelemy, J.F.M., Haftka, R.T. Approximation concepts for optimum structuralDesign-a review[J]. Structural Optimization.1993:129-144.
    [20] Fadel, G.M., Riley, M.F., Barthelemy, J.F.M. Two point exponential approximationmethod for structural optimization[J]. Structural Optimization.1990:117-1124.
    [21] Rasmussen, J. Accumulated approximations-A new method for structural optimizationby iterative improvements. Preprint of2nd Air Force/NASA Symp. On RecentAdvances in Multidisciplinary Analysis and Optimization.1990:253-258.
    [22] Chang, K.J., Haftka, R.T., Giles, G. L., Kao, P.J. Sensitivity based scaling forcorrelating structural response from different analytic models, Proc.AIAA/AME/ASCE/AHS/ASC32ndStructures, Structural Dynamics and MaterialsConf.,1991, AIAA-91-0925.
    [23] Myers, R.H., Montgomery, D.C. Response surface methodology:process and productoptimization using Designed experiments[M], John Wiley&Sons.1995.
    [24] Montgomery, D.C. Design and Analysis of Experiments[M], John Wiley&Sons,6thed.2004.
    [25]夏定纯,徐涛.计算智能[M].北京:科学出版社.2008.
    [26]飞思科技产品研发中心编著.神经网络理论与MATLAB7实现[M].北京:电子工业出版社.2005.
    [27] Kumer, S. neural networks[M].北京:清华大学出版社.2006.
    [28] Buhmann, M.D. Radial Basis Functions:Theory and Implementations[M], CambridgeUniversity Press, Cambridge, UK.2003.
    [29] Stein, M.L. Interpolation of Spatial Data:Some theory for kriging[M], Springer Verlag.1999.
    [30] Cressie, N.A.C. Statistics for Spatial Data[M], revised edition. New York:Wiley.1993.
    [31] Vapink, V. Statistical learning theory[M], New York:Wiley.1998.
    [32] Gunn, R. Support vector machines for classification and regression. Technical report.Image Speech and Intelligent Systems Research Group, University of Southampton,Southampton.1997.
    [33] Viana, F.A.C. Multiple surrogates for prediction and optimization [DoctoralDissertation]. Gainesville:University of Florida,2011.
    [34] Box, G.E.P., Wilson, K.B. On the experiment attainment of optimum conditions[J].Journal of Royal Statistical Society,1951,13:1-45.
    [35] Golovidov, O., Mason, W.H. Response surface approximations for aerodynamicparameters in high speed civil transport optimization[J]. Technical Report.1997.
    [36] Hosder, S., Watson, L.T., Grossman, B., Mason, W.H., Kim, H., Haftka, R.T., Cox, S.E.Polynomial Response surface approximations for the multidisciplinary Designoptimization of high speed civil transport. Optimization Engineering.2001,2(4):431-452.
    [37] Vitali, R., Park, O., Haftka, R.T., Sankar, B. V. Structural optimization of a hat stiffenedpanel by Response surface techniques.38thAIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics and Material Conference, Kissimmee, FL.1997,4:1983-2993.
    [38] Vitali, R. Response surface methods for high dimensional structural Design problems.Gainesville:University of Florida.2000.
    [39] Unal, R., Lepseh, R.A., Mcmillin, M. Response surface model building andmultidisciplinary optimization using D-optimal Designs. Collection of Technical Papersfor7th Annual AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis andOptimization.1998,18:405-411.
    [40] Knill, D. L., Giunta, A.A., Baker, C. A., Grossman, B., Mason, W.H., Haftka, Watson,L.T. Response surface models combining linear and Euler aerodynamics for supersonictransport Design[J]. Aircraft.1999,36(1):75-86.
    [41] Balabanov, V. O., Giunta, A.A., Golovidov, O., Grossman, B., Mason, W.H., Watson,L.T., Haftka, R.T. Reasonable Design space approach to Response surfaceapproximation[J]. Journal of Aircraft.1999,36(1):308-315.
    [42] Rich, J. E. Design optimization Procedure for Monocoque Composite CylinderStructures Using Response surface Techniques[Master Dissertation]. Blacksburg:Virginia Polytechnic Institute and State University.1997.
    [43] Mason, J., Haftka, R.T., Johnson, E.R., Farley, G.L. Variable complexity Design ofcomposite fuselage frames by Response surface techniques. Thin-Walled Structures.1998,32:235-261.
    [44] Renaud, J.E., Gabriele, G.A. Improved coordination in non-hierarchic systemoptimization. Journal of AIAA.1993,31(12):2367-2373.
    [45] Sobieski, I.P., Kroo, I.M. Collaborative optimization using Response surface estimation.Journal of AIAA.2000,38(10):1931-1938.
    [46]隋允康,张立新,杜家政.基于响应面方法的朽架截面敏度分析和优化[J].力学季刊.2006,27(1):96-102.
    [47]贾东升,李国平,白晓辉.基于响应面法的液力祸合器叶轮结构优化设计[J].煤矿机械,2010,31(12):3-5
    [48]薛彩军,谭伟,徐奋进,戴建华.基于响应面模型的结构疲劳寿命优化方法[J].南京理工大学学报201135(6):843-846
    [49] Simpson, T.W., Peplinski, J.D., Koch, P. N., Allen, J.K. Meta-models forcomputer-based engineering Design:Survey and recommendations[J]. EngineeringComputation.2001,17:129-150
    [50] Adeli, Y.C. Perception Learning in engineering Design[J]. Micro-computers in civilengineering.1989,4(4):247-256.
    [51] Vanluchene, R.D., Sun, R.F. Neural networks in structure engineering[J].Microcomputers in civil engineering.1990,5(3):289-296.
    [52] Swift, R.A., Batill, S.M. Application of neural networks to preliminary StructuralDesign[J]. AIAA-91-1038-CP
    [53] Hajela, P. Berke, L. NeurobiologicalcomputationalmodelsinstructuralanalysisandDesign[J]. Computers and Structures.1991,41(4)
    [54] Hung, S.L., Adeli, A. Model of perceptron learing with a hidden layer for engineeringDesign[J]. Neurocomputing.1991,3(1)
    [55] Berke, L., Patnailk, S.N., Murthy, P.L.N. Optimum Design of aerospace structuralcomponents using neural networks[J]. Computers and Structures.1993,48(6):1001-1010
    [56] Adeli, H., Park, H.S. A neural dynamics model for structural optimization: Theory[J].Computers and Structures.1995,57(3):383-390
    [57] Park, H.S., Adeli, H. A neural dynamics model for structural optimization: Applicationto plastic Design of structures[J]. Computers and Structures.1995,57(3):391-400
    [58] Bisagni, C., Lanzi, L. Post-buckling optimization of composite stiffened panels usingneural networks. Composite Structures.2002,58:237-247
    [59] Alonso, J.J., LeGresley, P., Pereyra, V. Aircraft Design optimization. Mathematics andcomputers in simulation.2009,79:1948-1958
    [60]李烁,徐元铭,张俊.基于神经网络响应面的复合材料结构优化设计.复合材料学报.2005,22(5):134-140
    [61]李烁,徐元铭,张俊.复合材料加筋结构的神经网络响应面优化设计.机械工程学报.2006,42(11):115-119
    [62]王伟,赵美英,赵锋,万小朋.基于人工神经网络技术的结构布局优化设计.机械设计.2006,23(12):7-10
    [63]姜绍飞,刘之洋.人工智能机器在土木工程中的应用.四川建筑科学研究,1997(1):50-53
    [64] Doebling, S.W., Farrar, C.T. Damage Identification and Health Monitoring of Structuraland Mechanical Systems from Changes in Their Vibration Characteristics: A LiteratureReview[R]. Los Alamos National Laboratory Report LA-13070-MS.1996
    [65] Zang, C., Imregun, M. Structural damage detection using artificial neural networks andmeasured FRF data reduced via principal component projection[J]. Journal of Soundand Vibration.2001,242(5):813-827
    [66] Yen, G.G. Identification and control large structures using neural networks[J].Computers and Structures.1995,52(5):859-870
    [67] Ghaboussi, J. Active control of structures using neural networks[J]. Journal ofengineering mechanics.1995,121(4):555-566
    [68] Ghaboussi, J. Knowledge-based modeling of material behavior with neural networks[J].Journal of engineering mechanics.1991,117(1):132-153
    [69] Eillis, G. Stress-strain modeling of sands using artificial networks[J]. Journal ofGeotechnical Engineering.1995,121(5):429-435
    [70] Pidaparti, R., Palakal, D.A. Material model for composites using neural network[J].Journal of AIAA.1993,31:1533-1535
    [71] Buhmann, M.D., Radial Basis Functions, Acta Numerica.2000,9:1-38.
    [72] Dyn, N., Levin, D., Rippa, D. Numerical procedures for surface fitting of scattered databy radial basis functions. SIAA.Journal of Scientific and Statistical Computing,1986,7(2):639-659
    [73] Meckesheimer, M., Barton, R.R., Simpson, T.W., Limayem, F., Yannou, B.Meta-modeling of combined discrete/continuous responses. Journal of AIAA.2001,39(10):1950-1959
    [74] McDonald, D.B., Grantham, W.J., Tabor, W.L., Murphy, W.J. Global and localoptimization using radial basis function response surface models[J]. AppliedMathematical Modeling.2007,31:2095-2110
    [75] Zhu, P., Shi, Y.L., Zhang, K.Z., et al. Optimum Design of an automotive inner doorpanel with a tailor-welded blank structure, Proceedings of the Institution of MechanicalEngineers, Part D: Journal of Automobile Engineering.2008,222(8):1337-1348.
    [76] Fang, H., Wang, Q. On the effectiveness of assessing model accuracy at Design pointsfor radial basis functions. Communications in Numerical Methods in Engineering.2008,24:219-235.
    [77] Goel, T., Stander, N. Comparing three error criteria for selecting radial basis functionnetwork topology. Computer Methods in Applied Mechanics and Engineering.2009,198(27-29):2137-2150.
    [78] Mullur, A.A., Messac, A. Extended Radial Basis Functions: More Flexible and EffectiveMeta-modeling. Journal of AIAA.2005,43(6):1306-1315
    [79]杨华,姚卫星.基于径向基函数的机翼二维气动代理模型设计,计算力学学报.2008,25(6):797-802
    [80]杨剑秋,王延荣.空心风扇叶片结构优化设计方法及程序实现,航空动力学报,2012,27(1):97-103
    [81]秦玉灵,孔宪仁,罗文波.基于径向基函数响应面的机翼有限元模型修正,北京航空航天大学学报,2011,37(11):1465-1470
    [82]马伟标,王红岩,王良曦,孔令杰.基于径向基函数响应面的履带车辆悬挂系统参数优化方法,兵工学报,2011,32(9):1053-1058
    [83]孔宪仁,秦玉灵,罗文波.基于改进高斯径向基函数响应面方法的蜂窝板模型修正,复合材料学报,2011,28(5):220-227
    [84] Matheron, G. The theory of regionalized variables and its applications. Ecole des Mines,Fontainebleau.1971
    [85] Currin, C., Mitchell, T., Morris, M., Ylvisaker, D. A Bayesian approach to the designand analysis of computer experiments. Technical Report ORNL-6498, Oak RidgeNational Laboratory, Oak Ridge, TN.1988)
    [86] Sacks, J, Welch, W. J., Mitehell, T. J. Design and analysis of computer experiments.Statistical Science.1989,4(4):409-435
    [87] Giunta, A.A. Aircraft multidisciplinary design optimization using design of experiments:theory and response surface modeling methods.[PhD dissertation], VirginiaPolytechnical Institute, May1997.
    [88] Giunta, A.A., Watson L.T. A comparison of approximation modeling techniques:polynomial versus interpolating models. In: Proceedings of the7thAIAA/USAF/NASA/ISSMO Symposium on multidisciplinary analysis andoptimization, No. AIAA-98-4758, St. Louis, MO.1998, pp.392-404
    [89] Giunta, A.A., Wojtkiewicz, S. F., Eldred, M. S. Overview of modern design ofexperiments methods for computational simulations, In:41st AIAA. Aerospace SciencesMeeting and Exhibit, Reno, NV, AIAA.A.AA-2003-0649.2003.
    [90] Booker, A.J., Dennis, J. E., Frank, P.D., Serafini, D.B., Torczon, V., Trosset, M.W. Arigorous framework for optimization of expensive functions by surrogates. StructuralOptimization.1999,17(1):1-13
    [91] Simpson, T.W., Mauery, T., Korte, J., Mistree, F. Kriging Models for GlobalApproximation in Simulation-Based Multidisciplinary Design Optimization. Journal ofAIAA.2001.39(12):2233-2241
    [92] Gano, S. E., Renaud, J. E., Martin, J. D., Simpson, T.W. Update strategies for krigingmodels used in variable fidelity optimization. Structural and MultidisciplinaryOptimization (2006)32:287-298
    [93]张柱国,姚卫星,刘克龙.基于进化Kriging模型的金属加筋板结构布局优化方法.南京航空航天大学学报.2008,40:893-1005
    [94]任庆祝,宋文萍.基于Kriging模型的翼型多目标气动优化设计研究.航空计算技术.2009,39:77-81
    [95]高月华,张崎,王希诚.基于Kriging模型的汽轮机基础动力优化设计.计算力学学报.2008,25(5):610-615
    [96] Vapink, V. Statistical learning theory[M], New York:Wiley.1998.
    [97] Clarke, S.M., Griebsch, J.H., Simpson, T.W. Analysis of support vector regression forapproximation of complex engineering analyses. Journal of Mechanical Design.2005,127:1077-1087
    [98] Ayestaran, R.G., Heras, F.L. Support vector regression for the design of array antennas.IEEE Antennas and Wireless Propagation Letters.2005,4:414-416
    [99] Yun, Y., Yoo, M., Nakayama, H. Multi-objective optimization based on meta-modelingby using support vector regression, Optimization and Engineering.2009,10(2):167-181.
    [100] Saqlain, A., He, L.S. Support vector regression-driven multidisciplinary designoptimization for multi-stage space launch vehicle considering throttling effect.44thAIAA. Aerospace Sciences Meeting.2006,6:4089-4102
    [101] Wang, B.P., Divija, O., Lee, Y.J. Structural optimization using FEMLAB and smoothsupport vector regression.48th AIAA/ASME/ASCE/AHS/ASC Structures, StructuralDynamics, and Materials Conference.2007,3:2568-2577
    [102] Qazi, M.U.D., He, L.S., Mateen, P. Hammersley sampling and support vector regressiondriven launch vehicle design. Spacecraft and Rockets.2007,44(5):1094-1106
    [103] Wang H., Li, E., Li, G.Y. The least square support vector regression coupled withparallel sampling scheme Meta-modeling technique and application in sheet formingoptimization[J]. Materials and Design.2009,30:1468-1479.
    [104] Carpenter, W., Barthelemy, J.F. A comparison of polynomial approximation andartificial neural nets as response surface[R]. Technical Report92, AIAA.1994
    [105] Simpson, T.W., Mauery, T., Korte, J., Mistree, F. Comparison of response surface andKriging models for multidisciplinary design optimization[R]. Technical Report98-4755,AIAA.1998.
    [106] Giunta, A.A., Watson, L. A comparison of approximation modeling techniques:Polynomial versus interpolating models[R]. Technical Report98-4758, AIAA.1998
    [107] Clarke S.M., Griebsch J.H., Simpson T.W. Analysis of support vector regression forapproximation of complex engineering analysis[J]. ASME Journal of MechanicalDesign.2005,127(11):1077-1087.
    [108] Krishnamurthy, T. Comparison of Response Surface Construction Methods forDerivative Estimation Using Moving Least Squares, Kriging and Radial BasisFunctions.46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics&Materials Conference18-21April2005, Austin, Texas
    [109] Jin, R., Chen, W., Simpson, T.W. Comparative studies of Meta-modeling techniquesunder multiple modeling criteria[J]. Structural and Multidisciplinary Optimization.2003,23(1):1-13.
    [110] Yang, R.J., Wang, N., Tho, C.H., et al. Meta-modeling development for vehicle frontalimpact simulation[J]. ASME, Journal of Mechanical Design.2005,127(9):1014-1020.
    [111] Guo, P., Liu, W., Cui, W.C. A comparison of approximation methods formultidisciplinary design optimization of ship structures[J]. Journal of Ship Mechanics.2007,11(6):913-923.
    [112]穆雪峰,姚卫星,余雄庆等.多学科设计优化中常用代理模型的研究[J].计算力学学报.2005,22(5):608-612.
    [113]赵良玉,杨树兴,佘浩平.火箭弹气动学科近似方法分析[J].弹箭与制导学报.2008,28(3):175-180.
    [114]窦毅芳,刘飞,张为华.响应面建模方法的比较分析[J].工程设计学报.2007,14(5):359-363
    [115]张勇,李光耀,钟志华.基于移动最小二乘响应面方法的整车轻量化设计优化[J].机械工程学报.2008,44(11):192-196.
    [116]张宇.基于稳健与可靠性优化设计的轿车车身轻量化研究[博士论文].上海:上海交通大学.2009.
    [117] Zerpa, L.E., Queipo, N.V., Pintos S., et al. An optimization methodology ofalkaline-surfactant-polymer folding processes using field scale numerical simulationand multiple surrogates[J]. Journal of Petroleum Science and Engineering.2005,47:197-208.
    [118] Acar, E., Rais-Rohani, M. Ensemble of Meta-models with optimized weight factors[J].Structural and Multidisciplinary Optimization.2009,37(3):279-294.
    [119] Goel, T., Haftka, R.T., Shyy, W., et al. Ensemble of surrogates[J]. Structural andMultidisciplinary Optimization.2007,33(3):199-216.
    [120] Samad, A., Kim, K.Y., Goel, T., et al. Multiple surrogate modeling for axial compressorblade shape optimization[J]. Journal of Propulsion and Power.2008,24(2):302-33310.
    [121] Haftka, R.T., Scott, E.P., Cruz, J.R. Optimization and experiments:A survey[J]. AppliedMechanics Review.1998,51(7):435-448
    [122] Wang, G.G., Shan, S. Review of Meta-modeling techniques in support of engineeringdesign optimization[J]. ASME, Journal of Mechanical Design.2007,128(4):370-380.
    [123] Chen, V.C.P., Tsui, K.L., Barton R.R., et al. A review on design, modeling andapplications of computer experiments[J]. IIE Transactions.2006,38(4):273-291.
    [124] Simpson, T.W., Lin, D.K.J., Chen, W. Sampling strategies for computerexperiments:Design and analysis[J]. International Journal of Reliability Application.2001,2(3):209-240.
    [125] Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P. Design and analysis of computerexperiments[J]. Statistical Science,1989,4(4):409-435.
    [126] Jin, R., Chen, W., Simpson T.W. Comparative studies of Meta-modeling techniquesunder multiple modeling criteria[J]. Structural and Multidisciplinary Optimization.2001,23(1):1-13.
    [127] Taguchi, G., Yokoyama, Y., Wu, Y., Taguchi methods: design of experiments. AmericanSupplier Institute:Allen Park, Michigan.1993.
    [128] Owen, A, Orthogonal arrays for computer experiments, integration, and visualization[J].Statistics Sinica.1992,2:439-452.
    [129] Hedayat, A.S., Sloane, N.J.A., Stufken, J. Orthogonal arrays: Theory andapplications[M].1999. New York:Springer.
    [130] Fang, K.T., Lin, D.K.J, Winker, P., Zhang, Y. Uniform design: Theory and application[J].Technometrics.2000,39(3):237-248.
    [131] Fang, K.T., Ma, C.X., Winker, P. Centered L2-discrepancy of random sampling andLatin hypercube design and construction of uniform designs[J]. Mathematics ofComputation.2002,71:275-296.
    [132] McKay, M.D., Bechman, R.J., Conover W J. A Comparison of three methods forselecting values of input variables in the analysis of output from a computer code[J].Technometrics.1979,21(2):239-245.
    [133] Iman, R.L, Conover, W.J. Small sensitivity analysis techniques for computer modelswith an application to risk assessment. Communication Statistics-Theory andMethods[J].1980, A9(17):1749-1842.
    [134] Tang, B. Orthogonal Array-based Latin hypercubes[J]. Journal of American StatisticalAssociation.1993,88(424):1392-1397.
    [135] Park, J.S. Optimal Latin-hypercube designs for computer experiments[J]. Journal ofStatistical Planning Inference.1994,39:95-111.
    [136] Ye, K.Q., Li,W., Sudjianto, A. Algorithmic construction of optimal symmetric Latinhypercube designs[J]. Journal of Statistical Planning and Inferences.2000,90:145-159.
    [137] Kalagnanam, J. R., Diwekar, U.M. An efficient sampling technique for off-Line QualityControl[J]. Technometrics.1997,39(3):308-319.
    [138] Chen, V., C. P., Tsui, K.L., Barton, R. R., Meckesheimer, M., A review on design,modeling and applications of computer experiments, IIE Transactions.2006,38:273-291.
    [139] Morris, M.D., Mitchell T.J. Exploratory designs of computational experiments[J].Journal of Statistical Planning and Inference.1995,43:381-402.
    [140] Jin, R., Chen, W., Sudjianto, A.A. efficient algorithm for constructing optimal design ofcomputer experiments[J]. Journal of Statistical Planning and Inference.2005,134:268-287.
    [141] Grosso, A., Jamali, A., Locatelli, M. Finding maximin Latin hypercube designs byiterated local search heuristics[J]. European Journal of Operational Research.2009,197(2):541-547.
    [142] Viana, F.A.C., Venter, G., Balabanov, V. An algorithm for fast optimal Latin hypercubedesign of experiments[J]. International Journal of Numerical Methods in Engineering.2010,82(2):135-156.
    [143] Kalagnanam, J. R., Diwekar, U. M. An efficient sampling technique for off-line qualityControl[J]. Technometrics.1997,39(3):308-319.
    [144] Wang, G.G. Adaptive response surface method using inherited Latin Hypercube designpoints[J]. Journal of Mechanical Design.2003,125:210-220
    [145] Wang, G.G., Simpson, T.W. Fuzzy clustering based hierarchical Meta-modeling forspace reduction and design optimization. Engineering Optimization.2004,36(3):313-335.
    [146] Lin, Y. An efficient robust concept exploration method and sequential exploratoryexperimental design[Doctorial dissertation]. Atlanta:Georgia Institute of Technology.2004.
    [147] Elishakoff, I. Essay on uncertainties in elastic and viscoelastic structures: fromFreudenthal's criticisms to modern convex modeling[J]. Computers and Structures.1995,56(6):871-895.
    [148] Elishakoff, I. Three versions of the finite element method based on concept of eitherstochastic, fuzziness, or anti-optimization[J]. Applied Mechanics Review.1998,51(3):209-218.
    [149]吕震宙,冯蕴雯.结构可靠性问题研究的若干进展[J].力学进展.2000,30(1):21-28.
    [150] Freudenthal, A.M. Safety of structures[J]. Trans. ASCE.1947,112:125-180.
    [151] Freudenthal, A.M. Safety and the Probability of Structural Failure[J]. Transactions.1956,121:1337-1397.
    [152] Freudenthal, A.M., Garerlts, M.J., Shinozuka, M. The Analysis of structural safety[J].Journal of the Structural Division.1966,92:267-325.
    [153] Cornell, C.A. Bounds on the Reliability of Structural Systems[J]. Journal of thestructural Division.1967,93:171-200.
    [154] Hasofer, A.M.,Lind, N.C. Exact and invariant second moment code format[J]. Journal ofEngineering Mechanics.1974,100:111-121.
    [155] Rackwitz, R.,Fiessler, B. Structural reliability under combined random load sequences[J]. Computers and Structures.1978,9:489-494.
    [156] Rossenblatt, M. Remarks on a Multivariate Transformation. The Annals ofMathematical Statistics.1952,23:470-472.
    [157] Der Kiureghian, A., Liu, P.L. Structural reliability under incomplete probabilityinformation. Journal of Engineering Mechanics.1986,112:85-104.
    [158] Liu, P.L., Der Kiureghian, A. Multivariate distribution models with prescribed marginalsand covariances. Probabilistic Engineering Mechanics.1986,1(2):105-112.
    [159] Breitung, K. Asymptotic approximations for probability integrals. Lecture notes inmathematics. Berlin: Springer,1994.
    [160] Tvedt, L. Distribution of quadratic forms in normal space-application to structuralreliability. Journal of Engineering Mechanics.1990,116(6):1183-1197.
    [161] Der Kiureghian, A., De Stefano, M. Efficient algorithm for second-order reliabilityanalysis[J]. Journal of Engineering Mechanics.1991,117(12):2904-2923.
    [162] Bucher, C.G. Adaptive sampling-An iterative fast Monte Carlo procedure[J]. StructuralSafety.1988,5(2):119-126.
    [163] Box, G.E.P., Wilson, K.B. The exploration and exploitation of response surfaces: somegeneral considerations and examples[M]. Biometries.1954,10:16-60.
    [164] Rosenblueth, E. Point estimation for probability moments[J]. Proceedings of thenational academy of science.1975,71(10):3812-3814.
    [165] Ditlevsen, O. Melchers, R.E., Gluver, H. General multi-dimensional probabilityintegration by directional simulation[J]. Computers and Structures.1990,36(2):355-368
    [166] Sudret, B., Der Kiureghian, A. Stochastic finite element methods and reliability-A stateof the art report[R]. UNIVERSITY OF CALIFORNIA, BERKELEY.2000.
    [167] Rachwitz, R. Reliability analysis-A review and some perspectives[J]. Structural Safety.2001,23:365-395.
    [168] Wong, F.S. Slope reliability and response surface method[J]. Journal of GeotechnicalEngineering.1985,111:32-53
    [169] Bucher, C.G., Bourgund, U. A fast and efficient response surface approach for structuralreliability problems[J]. Structural Safety.1990,7:57-66
    [170] Rajashkhar, M., Ellingwood, B. A new look at the response approach for reliabilityanalysis[J]. Structural Safety.1993,12:205-220
    [171] Liu, Y., Moses, F. A sequential response surface method and its application in thereliability analysis of aircraft structural system[J]. Structural Safety.1994,16(1-2):39-46.
    [172]刘英卫.序列响应面法及其在飞机结构可靠性分析中的应用[J].洪都科技.1994
    [173] Kim, S., Na, S. Response surface method using vector projected sampling points[J].Structural Safety.1997,19:3-19
    [174] Das, P., Zheng, Y. Cumulative formation of response surface and its use in reliabilityanalysis[J]. Probabilistic Engineering Mechanics.2000,15:309-315.
    [175] Guan, X.L., Melchers, R.E. Effect of response surface parameter variation on structuralreliability estimates[J]. Structural Safety.2001,23:429-444.
    [176]武清玺,卓家寿.结构可靠度分析的变f序列响应面法及其应用[J].河海大学学报.2001,29(2):75-78.
    [177] Kaymaz, I., McMahon, C. A response surface method based on weighed regression forstructural reliability analysis[J]. Probabilistic Engineering Mechanics.2005,20:11-17
    [178] Nguyen, X.S., Sellier, A., Duprate, F., Pons, G. Adaptive response surface method basedon a double weighted regression technique[J]. Probabilistic Engineering Mechanics.2009,24:135-143.
    [179]赵洁.机械可靠性分析的响应面法研究[硕士学位论文].西安:西北工业大学.2006.
    [180] Gavin, H.P., Yau, S.C. High-order limit state functions in the response surface methodfor structural reliability analysis[J]. Structural Safety.2008,30:162-179
    [181] Papadrakakis, M., Papadopoulos, V., Lagaros, N.D. Structural reliability analysis ofelastic-plastic structures using neural networks and Monte Carlo simulation[J].Computer Methods in Applied Mechanics and Engineering.1996,136:145-163
    [182] Hurtado, J.E. Structural reliability: Statistical learning perspectives[M]. Springer,Heidelberg,2004
    [183] Gomes, H.M., Awruch, A.M. Comparison of response surface and neural network withother methods for structural reliability analysis[J]. Structural Safety.2004,26:49-67
    [184] Elhewy, A.H., Mesbahi, E., Pu, Y. Reliability analysis of structures using neural networkmethod[J]. Probabilistic Engineering Mechanics.2006,21:44-53
    [185]桂劲松,康海贵.结构可靠度分析的改进BP神经网络响应面[J].应用力学学报.2005,22(1):127-130
    [186] Cheng, J., Li, Q., Xiao, R. A new artificial neural network based response surfacemethod for structural reliability analysis[J]. Probabilistic Engineering Mechanics.2008,23:51-63
    [187]邓建.岩土工程结构可靠度[M].长沙:中南大学出版社,2005
    [188] Deng, J., Gu, D.S., Li, X.B. Structural reliability analysis for implicit performancefunctions using artificial neural network[J]. Structural safety.2005,27(1):25-48
    [189] Kaymaz, I. Application of Kriging method to structural reliability problems[J].Structural Safety.2005,27:133-151
    [190] Panda, S.S., Manohar, C.S. Applications of meta-models in finite element basedreliability analysis of engineering structures[J]. Computer Modeling in EngineeringSciences.2008,28:161-184
    [191] Echard, B., Gayton, N., Lemaire, M. AK-MCS: An active learning reliability methodcombining Kriging and Monte Carlo Simulation[J]. Structural Safety.2011,33:145-154
    [192]张崎,李兴斯.结构可靠性分析的模拟重要抽样方法[J].工程力学.2007,24(1):33-36
    [193]张崎,李兴斯.海上导管架平台可靠性分析抽样-模拟方法[J].大连理工大学学报.2006,46(2):166-169
    [194]郑春青,吕震宙.改进的Kriging法在计算结构可靠度中的应用[J].机械强度.2007,31(4):615-619
    [195] Rocco, C.M., Moreno, J.A. Fast Monte Carlo reliability evaluation using support vectormachine[J]. Reliability Engineering System Safety.2002,76:237-43.
    [196] Hurtado, J.E., Alvarez, D.A. Classification approach for reliability analysis withstochastic finite element modeling[J]. Journal of structural engineering.2003,129(8):1141-1149.
    [197] Zhao, H.B. Slope reliability analysis using a support vector machine[J]. Computers andGeotechnics.2008,35:459-67.
    [198] Tan, X.H., Bi, W.H., Hou, X.L., Wang, W. Reliability analysis using radial basisfunction networks and support vector machines[J]. Computers and Geotechnics.2010,38(2):178-186.
    [199] Li, H.S., Lu, Z.Z., Yue, Z.F. Support Vector machine for structural reliability analysis[J].Applied mathematics and mechanics.2006,27(10):1295-1303.
    [200]李洪双,吕震宙.结构可靠性分析的支持向量机响应面法.计算力学学报.2009,26(2):199-203
    [201] Guo, Z.W., Bai, G.C. Application of least square support vector machine for regressionto reliability analysis[J]. Chinese Journal of Aeronautics.2009,22:160-166.
    [202]王光远.工程软设计理论[M].北京:科学出版社,1992.
    [203] Hajela, P. Soft computing in Multidisciplinary aerospace design-New directions forresearch[J]. Progress in Aerospace science.2002,38:1-21.
    [204] Pidaparti, R.M., Palakal, M.J. Material model for composites using neural networks.Technical notes[J]. Journal of AIAA.1993,31:1533-1545.
    [205] Labossiere, P., Turkkan, N. Failure prediction of fiber-reinforced materials with neuralnetworks[J]. Journal Reinforced Plastic Composite.1993,12:1270-1281.
    [206] Lee, C.S., Hwang, W., Park, H.C., Han, K.S. Failure of carbon/epoxy composite tubesunder combined axial and torsional loading1. Experimental results and predictions ofbiaxial strength by the use of neural networks[J]. Composite Science and Technology1999,50:1779-1788.
    [207] Al-Assaf, Y., El Kadi, H. Fatigue life prediction of unidirectional glass fiber/epoxycomposite laminae using neural networks[J]. Composite Structure.2001,53:65-71.
    [208] El Kadi, H., Al-Assaf, Y. Prediction of the fatigue life of unidirectional glassfiber/epoxy composite laminae using different neural network paradigms[J]. CompositeStructure.2002,55:239-246.
    [209] El Kadi, H., Al-Assaf, Y. Energy-based fatigue life prediction of fiber glass/epoxycomposites using modular neural networks[J]. Composite Structure.2002,57:85-89.
    [210] Aymerich, F., Serra, M. Prediction of fatigue strength of composite laminates by meansof neural network[J]. Key Engineering Materials.1998,144:231-240.
    [211] Lee, J.A., Almond, D.P., Harris, B. The use of neural networks for the prediction offatigue lives of composite materials[J]. Composite Part A: Applied ScienceManufacturing.1999, A30:1159-1169.
    [212] Chandrashekhara, K., Okafor, A.C., Jiang, Y.P. Estimation of contact force on compositeplates using impact-induced strain and neural networks[J]. Composite Part B:Engineering.1998,29B:363-370.
    [213] Zhang, Z., Friedrich, K. Artificial neural networks applied to polymer composites: Areview[J]. Composites Science and Technology.2003,63:2029-2044.
    [214] El Kadi, H. Modeling the mechanical behavior of fiber-reinforced polymeric compositematerials using artificial neural networks-A review[J]. Composite Structures.2006,73:1-23.
    [215]燕瑛,刘兵山,黄聪,成传贤.缝合复合材料面内刚度和强度的神经网络预测[J].复合材料学报.2004,21(6):179-183
    [216]裴金利,陈秀华,汪海.基于BP神经网络的复合材料失效分析[J].航空计算技术.2009,39(2):29-32.
    [217]朱永光,郭朝霞,于建.基于神经网络的PP/CaCO3复合材料的力学性能预测[J].塑料.2005,34(6):66-70
    [218] Tomblin, J.S., Lacy T., Smith, B., Hooper, S., Vizzini, A., Lee, S. Review of DamageTolerance for Composite Sandwich Airframe Structures[R], DOT/FAA/AR-99/49,1999.
    [219] Tomblin, J.S., Raju, K.S., Liew, J. Smith, B.L. Impact Damage Characterization andDamage Tolerance of Composite Sandwich Airframe Structures[R], DOT/FAA/AR-00/44,2001.
    [220] Tomblin, J.S., Raju, K.S., Acosta, J.F., Smith, B.L., Romine, N.A. Impact DamageCharacterization and Damage Tolerance of Composite Sandwich Airframe StructuresPhase II[R], DOT/FAA/AR-02/80,2002.
    [221] Lacy, T.E., Samarah, I.K., Tomblin, J.S. Damage Resistance Characterization ofSandwich Composites Using Response Surfaces[R], DOT/FAA/AR-01/71,2001.
    [222] Samarah, I.K., Weheba, G.S., Lacy, T.E. Response Surface Characterization of theMechanical Behavior of Impact-damaged Sandwich Composites[J]. Journal of Appliedstatistics.2006,33(4):427-437.
    [223] Samarah, I.K. Response surface characterization of impact damage and residual strengthdegradation in composite sandwich panels[Doctoral Dissertation]. Wichita: WichitaState University.2003
    [224] Kang, S.C., Koh, H.M., Choo, J.F. An efficient response surface method using movingleast squares approximation for structural reliability analysis[J]. ProbabilisticEngineering Mechanics.2010,25:365-371
    [225] Duprat, F., Sellier, A. Probabilistic approach to corrosion risk due to carbonation via anadaptive response surface method[J]. Probabilistic Engineering Mechanics.2006,21:207-216
    [226] Mao, H., Mahadevan, S. Reliability analysis of creep-fatigue failure[J]. InternationalJournal of Fatigue.2000,22:789-97.
    [227] Wu, Y.T. Computational methods for efficient structural reliability and reliabilitysensitivity analysis[J]. Journal of AIAA.1994,32(8):1717-23.
    [228] Lu, Z., Song, S., Yue, Z., Wang, J. Reliability sensitivity method by line sampling[J].Structural Safety.2008,30:517-532
    [229] Chowdhury, R., Rao, B.N. Hybrid High Dimensional Model Representation forreliability analysis[J]. Computer Methods in Applied Mechanics and Engineering.2009,198:753-765
    [230] Wei, D., Rahman, S. Structural reliability analysis by univariate decomposition andnumerical integration[J]. Probabilistic Engineering Mechanics.2007,22:27-38
    [231] Rahman, S., Wei, D. A univariate approximation at most probable point for higher-orderreliability analysis[J]. International Journal of Solids and Structures.2006,43:2820-2839.
    [232] Xu, H., Rahman, S. A generalized dimension-reduction method for multi-dimensionalintegration in stochastic mechanics[J]. International Journal for Numerical Methods inEngineering.2004,61:1992-2019.
    [233] Lancaster, P., Salkauskas, K. Surfaces generated by moving least squares methods[J].Math Comp.1981,37:141-158
    [234] Belytschko, T., Krongauz, Y., Organ, D. Meshless methods:An overview and recentdevelopments[J]. Computer Methods in Applied Mechanics and Engineering.1996,139(11):3-48.
    [235] Belytschko, T., Lu, Y.Y., Gu, L. Element-free Galerkin methods for static and dynamicfracture[J]. International Journal of Solids and Structures.1995,32(17):2547-2570.
    [236] Gayton, N., Bourinet, J.M., Lemaire, M. CQ2RS: A new statistical approach to theresponse surface method for reliability analysis[J]. Structural Safety.2003,25:99-121.
    [237] Elegbede, C. Structural reliability assessment based on particles swarm optimization[J].Structural Safety.2005,171-86.
    [238] Schueremans, L., Gemert, D.V. Benefit of splines and neural networks in simulationbased structural reliability analysis[J]. Structural Safety.2005,27:246-261
    [239] Xiong, F.F., Greene, S., Chen, W., Xiong, Y., Yang, S. A new sparse grid based methodfor uncertainty propagation[J]. Structural and Multidisciplinary Optimization.2010,41:335-349
    [240] MSC Nastran2005R3Design Sensitivity and Optimization Users' Guide, The MSCCorporation,2006
    [241] Cheng, G., Gu, Y., Zhou, Y. Accuracy of semi-analytical sensitivity analysis[J]. Finiteelements in analysis and design.1989,6:113-128
    [242] Erik Lund. Finite element based design sensitivity analysis and optimization[DoctroralDissertation]. Institute of mechanical engineering. Aalborg University.1994.
    [243] Choi, K.K., Kim, N.H. Structural Sensitivity Analysis and Optimization I: LinearSystems[M]. Springer.2004
    [244] Choi, K.K., Kim, N.H. Structural Sensitivity Analysis and Optimization II: NonlinearSystems and Applications[M]. Springer.2004.
    [245]梁醒培,王辉.基于有限元法的结构优化设计——原理与工程应用[M].北京:清华大学出版社.2010.
    [246] Grandhi, R.V., Wang, L. Higher-order failure probability calculation using nonlinearapproximations[J]. Computer Methods in Applied Mechanics and Engineering.1999,168:185-206.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700