用户名: 密码: 验证码:
腐蚀疲劳点蚀演化与裂纹扩展机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
腐蚀疲劳是金属材料在交变应力与腐蚀介质共同作用下发生断裂破坏的过程。工程中存在各种承受循环载荷的结构,如海洋结构、石油化工设备、飞机结构等,其服役环境都具有不同程度的腐蚀性。腐蚀性环境会降低材料的断裂韧性,加快裂纹的萌生与扩展,降低结构服役寿命。腐蚀疲劳已成为工程中各种承受循环载荷结构面临的严重问题,腐蚀疲劳性能研究也成为工程结构耐久性与完整性设计的重要内容。迄今为止,有关腐蚀疲劳的理论与应用都得到了迅速的发展,但由于腐蚀疲劳过程非常复杂,涉及到力学、化学、电化学、金属材料学及冶金学等众多学科内容,还有许多问题没能得到很好的解决,绝大多数研究实际上只停留在实验规律的摸索方面,虽然也有不少关于腐蚀机理分析的研究,但仍缺少基于腐蚀疲劳机理及热力学平衡理论的腐蚀疲劳评价方法。随着航天、海洋工程的飞速发展,结构腐蚀疲劳问题将更为突出,而现有研究成果远不能满足实际工程应用的需要。
     本论文结合腐蚀电化学原理、热力学原理,对材料腐蚀疲劳过程中点蚀演化、裂纹成核以及裂纹扩展过程进行机理研究。在此基础上进行腐蚀疲劳损伤研究,并建立合理的腐蚀疲劳损伤演化律。本文主要内容如下:
     (1)根据热力学基本原理,结合腐蚀疲劳点蚀演化和裂纹扩展的力学-电化学过程,建立腐蚀疲劳点蚀演化和裂纹扩展过程中的热力学基本方程,获得点蚀演化与裂纹扩展过程的热力学判据。
     (2)利用双变量半椭圆点蚀模型,建立腐蚀疲劳点蚀演化及裂纹成核的二维模型。建立点蚀演化过程中体系的热力学势函数,导出点蚀形状参数随点蚀深度的演化规律。根据裂纹成核的应力强度因子准则与位错理论,建立腐蚀疲劳裂纹成核临界条件,对腐蚀疲劳裂纹成核寿命进行定性分析。在此基础上进行腐蚀疲劳点蚀演化以及裂纹成核的三维理论模型分析。
     (3)根据腐蚀环境促进疲劳裂纹尖端阳极溶解与降低裂纹表面自由能的机理,建立腐蚀疲劳裂纹扩展过程的能量守恒方程,推导腐蚀疲劳裂纹扩展速率的显式方程。定性分析了阳极溶解、裂尖金属自由能下降以及循环载荷参数对腐蚀疲劳裂纹扩展速率与裂纹扩展寿命的影响。
     (4)设计LY12CZ铝合金三点弯曲腐蚀疲劳裂纹扩展试验,研究腐蚀环境、循环载荷频率、应力比以及腐蚀溶液pH值等参数对腐蚀疲劳裂纹扩展速率的影响。
     (5)基于损伤力学理论,进行腐蚀疲劳损伤研究。将腐蚀疲劳损伤处理成应力腐蚀损伤与疲劳损伤的非线性累加,利用LY12CZ铝合金试验结果确定相关损伤参数,建立腐蚀疲劳损伤演化律方程,形成基于损伤演化律的腐蚀疲劳寿命评价模型。
The corrosion fatigue is a fracture process of metal material under the combined effect ofthe alternating stress and corrosive medium. A large number of engineering structures, such asmarine structures, petrochemical equipments and aircraft structures, suffer cyclic loadings incorrosive environments. Corrosive environments reduce the fracture toughness, speed up theformation and propagation of cracks, and greatly reduce the service life of metal structure.Corrosion fatigue has now become a serious problem of the structure withstanding cyclicloading, and corrosion fatigue properties research has been updated to an important part of thedesign of the durability and integrity design for engineering structures. Up to now the studiesabout corrosion fatigue in theory and practical applications have been developed rapidly. Butcorrosion fatigue process is very complex and involves many details in mechanics, chemistry,electrochemistry, materials science and metallurgy, there are many issues still could not getgood solutions. The majority of researches actually only stay in trying to find out the laws ofexperimental results, as a result, the evaluation methods based on corrosion fatiguemechanism and thermodynamic equilibrium theory are very scarce, although there are a lot ofrelative studies. Meanwhile, with the rapid development of the aerospace and marineengineering, corrosion fatigue problems become more prominent, while the results of relatedresearches are far to meet the needs of engineering applications.
     In this paper, based on the principles of corrosion electrochemics and thermodynamics,the pit evolution, corrosion fatigue crack nucleation and corrosion fatigue crack propagationduring corrosion fatigue process of metal materials are discussed. Then corrosion fatiguedamage theory is proposed and corrosion fatigue damage evolution law is established. Themain contents of this paper are as follows:
     (1) According to the principles of thermodynamics, the basic thermodynamic equationduring pit evolution and crack propagation is established, from which the thermodynamiccriterion that controls the direction of pit evolution and crack propagation is obtained.
     (2) The two-dimensional model of corrosion fatigue pit evolution and crack nucleation is established. According to the two-variable semi-elliptical model of corrosion pit, thethermodynamic potential of the elastic solid with an evolving pit is derived, from which theevolving law of shape parameter with corrosion pit depth is deduced. The critical condition ofcorrosion fatigue crack nucleation is established, according to the stress intensity factorcriterion and dislocation theory of crack nucleation, consequently qualitative analysis of thecorrosion fatigue crack nucleation life is carried on. Similarly, the three-dimensional modelanalysis of pit evolution and crack nucleation is studied.
     (3) According to the mechanism that corrosive environment promotes crack propagationby anodic dissolution at crack tip and reduction of free energy at crack surface, the energyconservation equation during corrosion fatigue crack propagation process is established, fromwhich the explicit equation of corrosion fatigue crack propagation rate is derived. Then theeffects of anodic dissolution, free energy reduction at crack surface and cyclic loadingparameters on corrosion fatigue crack propagation rate and crack propagation life arequalitative analyzed.
     (4) The three-point bending corrosion fatigue crack propagation experiments of LY12CZaluminum alloy is designed, and the influences of corrosion environment, cyclic loadingfrequency, stress ratio and pH value of solution on the corrosion fatigue crack propagationrate are studied.
     (5) Based on the damage mechanics theory, the corrosion fatigue damage is studied.Corrosion fatigue damage is treated as non-linear cumulative outcome of stress corrosiondamage and fatigue damage. The relative damage parameters are determined by theexperimental results of LY12CZ aluminum alloy, and corrosion fatigue damage evolution lawis established. Afterwards, the corrosion fatigue life normalized evaluation based on thedamage evolution law is formed.
引文
[1] Gao M, Wei RP. Chemical and metallurgical aspects and environmentally assisted fatiguecrack growth in7075-T651aluminum alloy[J]. Met. Trans. A,1988,19:1739-1750.
    [2] Shim G, Wei RP. Corrosion fatigue and electrochemical reactions in modified HY130steel[J]. Materials science and engineering,1987,86:121-135.
    [3] Tanaka K, Wei RP. Growth of short fatigue cracks in HY130steel in3.5%NaClsolution[J]. Engineering Fracture mechanics,1985,21(2):293-305.
    [4]匡震邦,顾海澄,李中华.材料的力学行为[M].高等教育出版社,1997.
    [5]王荣.金属材料的腐蚀疲劳[M].西北工业大学出版社,2001.
    [6] Miller KJ, Akid R. The application of microstructural fracture mechanics to various metalSurface States[J]. Proc. R. Soc.Lond. A,1996,452:1411-1432.
    [7] Akid R. In effects of environment on the initiation of crack growth[J]. ASTM STP,1997,1298:1-17.
    [8] Hoeppner DW. Model for prediction of fatigue lives based upon a pitting corrosionfatigue process[J]. ASTM-STP,1979,675:841-870.
    [9] Parkins RN. Localized corrosion and crack initiation. Mats. Sci. and Eng. A,1988,103(1):143-156.
    [10] Kondo Y. Prediction of fatigue crack initiation life based on pit growth[J]. Corrosion,1989,45(1):7-11.
    [11] Hirose Y, Mura T. Crack nucleation and propogation of corrosion fatigue inhigh-strength steel[J]. Eng. Fract. Mech.,1985,22(5):859-870.
    [12] Griffiths AJ, Hutchings R, Turnbull A. Validation of the role of bulk charging ofhydrogen in the corrosion fatigue cracking of a low alloy steel[J]. Scripta Metallurgicaet Materialia,1993,29:623-626.
    [13] Sudarshan TS, Louthan MRJ. Gaseous environment effects on fatigue behaviour ofmetals[J]. International Materials Review,1987,32:121-151.
    [14] Hartt WH, Tennant JS, Hooper Wc. Solution chemistry modification withincorrosion-fatigue crack[J]. ASTM-STP,1978,642:5-18.
    [15] Wei RP, Rao PS, Hart RG, Weir TW, Simmons GW. Fracture mechanics and surfacechemistry studies of fatigue crack growth in an aluminum alloy[J]. Met. Trans.A,1960,11(1):151-158.
    [16] Vosikovsky O. Effects of stress ratio on fatigue crack growth rates in X70pipeline steelin air and saltwater[J]. Journal of Testing and Evalution,1980,8(2):68-73.
    [17] Wei RJ, Liao CM, Gao M. ASTM study of micro-constituent induced corrosion in2024-T3and7057-T6aluminum alloy[J]. Metallurgical and Material Transaction,1998,29:1153-1160.
    [18] Turnbull A. Issues in modeling of environment assisted cracking[J]. Corrosion Science,1993,34(6):921-960.
    [19] Foley RT. Complex formation in metal dissolution and metal treatment[J]. Ind. Eng.Chem. Prod. Res. Dev.,1978,17(1):14-18.
    [20] Foley RT, Nguyen TH.The chemical nature of aluminum corrosion[J]. J. Electrochem.Soc.,1982,129(3):464-466.
    [21] Foley RT. Localized corrosion of aluminum alloys-a review[J]. Corrosion,1986,42(5):277-288.
    [22] Liao CM. Particle induced corrosion of aluminum alloy[D]. Ph.D dissertation, LehighUniversity,1997.
    [23] Liao CM, Olive GM, Gao M, Wei RP. In-situ monitoring of pitting corrosion inaluminum alloy2024[J]. Corrosion,1998,54(6):451-458.
    [24] Chen GS, Gao M, Wei RP. Microconstituent-induced pitting corrosion in aluminumalloy2024-T3[J]. Corrosion,1996,52(1):8-15.
    [25] Chen GS, Wan KC, Gao M, Wei RP, Flourney TH. Transition from pitting to fatiguecrack growth-modeling of corrosion fatigue crack nucleation in a2024-T3aluminumalloy[J]. Material Science and Engineering A,1996,219:126-132.
    [26] Guillaumin V, Mankowski G. Localized corrosion of2024T351aluminum alloy inchloride media[J]. Corrosion Science,1998,41(3):421-438.
    [27] Godard HP. Corrosion behavior of aluminum in natural waters[J]. Can. J. Chem. Eng.,1960,38:167-173.
    [28] Harlow DG, Wei RP. A probability modal for the growth of corrosion pits in aluminumalloys induced by constituent particles[J]. Engineering Fracture Mechanics,1998,59:305-325.
    [29] Rokhlin SI, Kim JY, Nagy H, Zoofan B. Effect of pitting corrosion on fatigue crackinitiation and fatigue life[J]. Eng. Fract. Mech.,1999,62:425-444.
    [30] Hunkeler F, Bohni H. Determination of pit growth rates on aluminum using a metal foiltechnique[J]. Corrosion,1981,37(11):645-650
    [31] Wang MH, Howard WP, Xu Y. Potential distribution, shape evolution, and modeling ofpit growth for Ni in sulfuric acid[J]. Electrochem. Soc.,1995,142(9):2986-2995.
    [32] Sehgal A, Frankel GS, Zoofan B, Rokhlinb S. Pit growth study in Al alloys by the foilpenetration technique[J]. Journal of the Electrochemical Society,2000,147(1):140-148.
    [33] Ernst P, Newman RC. Pit growth studies in stainless stell foils. I. Introduction and pitgrowth kinetics[J]. Corrosion Science,2002,44:927-941.
    [34] Nakajima M, Tokaji K. Initiation behavior of fatigue crack from corrosion pits[J].Journal of the Society of Materials Science,1996,45(11):1236-1241.
    [35] Rokhlin SI, Kim JY., Nagy H, Zoofan B. Eff.ect of pitting corrosion on fatigue crackinitiation andfatigue life[J]. Engineering Fracture Mechanics,1999,62:425-444.
    [36] DeBartolo EA, Hillberry BM. Characterization of fatigue crack nucleation sites in2024-T3aluminum alloy[J]. Proceedings of the Seventh International Fatigue Congress,1999,193-198.
    [37] Piascik RS, Willard SA. The growth of small corrosion fatigue cracks in alloy2024[J].Fatigue Fract Engng. Struct.,1994,17(11):1247-1259.
    [38] Kobayashi T, Schmidt CG, Shockey DA. A detailed look at the transition fromcorrosion pit to fatigue crack in aircraft skin[J]. Society for the Advancement ofMaterial and Process Engineering,1996:86-89.
    [39] Muller M. Theoretical considerations on corrosion fatigue crack initiation[J].Metallurgical Transactions A,1982,13:649-655.
    [40] Kim YH, Fine ME. Fatigue crack initiation and strain-controlled fatigue of some highstrength low alloy steels[J]. Metallurgical Transactions A,1982,13:59-72.
    [41] Kim YH, Laird C. Crack nucleation and stage I propagation in high strain fatigue-II.mechanism[J]. Acta Metallurgica,1978,26(5):789-799.
    [42] Zheng XL. A further study on fatigue crack initiation life-mechanical model for fatiguecrack initiation[J]. International Journal of Fatigue,1986,8(1):17-21.
    [43]郑斯滔,郑修麟.应力比和加载历程对局部应变范围的影响[J].航空学报,1988,9(S):92-94.
    [44]王荣,郑修麟.加载频率和超载对腐蚀疲劳裂纹起始寿命的影响[J].中国腐蚀与防护学报,1996,16(4):256-262.
    [45] Darrell FS. Fatigue-life prediction using local stress-strain concepts[J]. ExperimentalMechanics,1977,17(2):51-56.
    [46]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997.
    [47]许金泉.材料强度学[M].上海:上海交通大学出版社,2007.
    [48] Lemaitre J, Chaboche JL. Mechanics of solid materials[M]. Cambridge: CambridgeUniversity Press,1990.
    [49] Lemaitre J. A course on damage mechanics[M]. Berlin, Spring-Verlag,1992.
    [50] Lemaitre J. How to use damage mechanics[J]. Nucl. Eng. Design,1984,80:233-245.
    [51] Lemaitre J. A continuous damage mechanics model for ductile fracture[J]. J. Eng. Mater.And Tech.,1985,107:83-89.
    [52] Chaboche JL. Continuum damage mechanics: present state and fracture trends[J]. Nucl.Eng. Design,1987,105:19-33.
    [53]张行,赵军.金属构件应用疲劳损伤力学[M].北京:国防工业出版社,1998.
    [54]毋玲.环境腐蚀及其应力耦合的损伤力学方法和结构性能预测研究[D].西北工业大学博士论文,2006.
    [55]毋玲,陈召涛,孙秦.应力腐蚀损伤裂纹起始寿命计算模型[J].机械强度,2004,26(S):58-59.
    [56] Wei RP, Speidel MO. In corrosion fatigue: chemistry, mechanics, and microstructure[R].America: National Association of Corrosion Engineers,1972.
    [57] Gangloff RP. The criticality of crack size on aqueous corrosion fatigue[J]. Res. Mech.Lett.,1981,1:299-306.
    [58] Tanaka K, Wei RP. Growth of short fatigue crack in HY-130steel in3.5%NaClsolution[J]. Eng. Fract. Mech.,1985,21(2):293-305.
    [59] Nakai Y, Alavi A, Wei RP. Effect of frequency and temperature on short fatigue crackgrowth in aqueous environments[J]. Metall. Trans. A,1988,19(3):543-548.
    [60] Gangloff RP, Ritchie RO. In fundamentals of deformation and fracture[M]. Cambridge:Cambridge University Press,1985.
    [61] Haddad MHE, Smith KN, Topper TH. Fatigue crack propagation of short cracks[J]. J.Eng. Mater. Tech.,1979,101:42-46.
    [62] Tanaka K, Nakai Y, Yamashita M. Fatigue growth threshold of small cracks[J]. Int. J.Fract.,1981,17:519-533.
    [63] Piascik RS, Willard SA. The growth of small corrosion fatigue cracks in alloy2024[J].Fatigue&Fracture of Engineering Materials,1994,17:1247-1259.
    [64] Scott P M, Thorpe TW, Silvester DRV. Rate-determining processes for corrosionfatigue crack growth in ferritic steels in seawater[J]. Corrosion Science,1983,23(6):559-575.
    [65] Stoltz RE, Pelloux RM. Mechanisms of corrosion fatigue crack propagation inAl-Zn-Mg alloys[J]. Metallurgical Transactions,1972,3:2433-2441.
    [66]贾斯克,杨德钧.海洋工程中的金属腐蚀疲劳[M].北京:冶金工业出版社,1989.
    [67] McEvily AJ, Wei RP. In corrosion fatigue: chemistry, mechanics, and microstructure[R].America: National Association of Corrosion Engineers,1972.
    [68] Wei RP, Landes ID. Correlation between sustained-load and fatigue crack growth inhigh-strength steel[J]. Mater. Res. Stand.,1969,9(1):25-27.
    [69] Wei RP, Simmons GW. Recent progress in understanding environment assisted fatiguecrack growth[J]. International Journal of Fracture,1981,17:235-247.
    [70] Weir TW, Simmons GW, Hart RG, Wei RP. A model for surface reaction and transportcontrolled fatigue crack growth[J]. Scripta Metallurgica,1980,14:357-364.
    [71] Austen IM, Mclntyre P. Corrosion fatigue of high strength steel in low pressurehydrogen gas[J]. Metal Science,1979,13(7):420-428.
    [72] Holroyd NJH, Hardie D. Factors controlling crack velocity in7000series aluminiumalloys during fatigue in an aggressive environment[J]. Corrosion Science,1983,23(6):527-546.
    [73] Suresh S. Fatigue of Materials[M]. Cambridge University Press,1991.
    [74] Dowling NE. Mechanical Behavior of Materials[M]. PrenticeHall Inc., EnglewoodCliffs,1993.
    [75] Barsom JM, Rolfe ST. Fatigue and fracture control in structures: applications of fracturemechanics[M]. Prentice-Hall, Inc., Englewood Cliffs,1987.
    [76] Taylor D. Fatigue Thresholds[M]. EMAS Ltd., Warley Heath,1982.
    [77] Dawson DB, Pelloux RM. Corrosion fatigue crack growth of titanium alloys in aqueousenvironments[J]. Metallurgical Transactions A,1974,5:723-731.
    [78]王政富,魏学军,李劲,柯伟.阳极溶解及氢进入对裂纹尖端局部材料力学行为的作用[J].中国腐蚀与防护学报,1995,7(2):157-161.
    [79] Wang ZF, Zhu ZY, Zhang Y, Ke W. Stress corrosion cracking of an Al-Li-alloy[J].Metallurgical and MaterialsTransactions A,1991,23(1):3337-3341.
    [80] Moody NR. Hydrogen effects on material behavior. Warrendale (USA): TheMetallurgical Society Inc.,1990.
    [81] Suh D, Dauskardt RH. Hydrogen effects on the mechanical and fracture behavior of aZr-Ti-Ni-Cu-Be bulk metallic glass[J]. Scripta Mater.,2000,42(3):233–240.
    [82]张统一,褚武扬,肖纪美.氢致表观屈服应力下降原因-氢促进塑性变形机理[J].中国科学(A),1986,3:316-326.
    [83] Eliaz N, Shachar A,Tal B,Eliezer D.Characteristics of hydrogen embrittlement, stresscorrosion cracking and tempered martensite embrittlement in high-strength steels[J].Engineering Failure Analysis,2002,9(2):167-184.
    [84] Oriani RA. A mechanistic theory of hydrogen embrittlement of steels[J]. Berichte derBunsengesellschaft für Physikalische Chemie,1972,76(8):848-857.
    [85] Woodtli J, Kieselbach R.Damage due to hydrogen embrittlement and stress corrosioncracking[J]. Engineering Failure Analysis,2000,7(6):427-450.
    [86] Olive JM, Cwiek J, Desjardinsa D. Quantification of the hydrogen produced duringcorrosion fatigue crack propagation[J]. Corrosion Science,1999,41:956-967.
    [87] Trockels I, Lütjering G, Gysler A. Effect of frequency on fatigue crack propagationbehavior of the aluminum alloy6013in corrosive environment[J]. Materials Science Forum,1996,217(222):1599-1604.
    [88] Shipilov SA. Location of the fracture process zone for hydrogen-induced corrosionfatigue crack propagation[J]. Scripta Materialia,2002,47:301-305.
    [89] Gao M, Wei RP. A “hydrogen partitioning” model for hydrogen assisted crackgrowth[J]. Metallurgical Transactions A,1985,16:2039–2050.
    [90] Robertson IM. The effect of hydrogen on dislocation dynamics[J]. Engineering FractureMechanics,2001,68:671-692.
    [91]韩光炜,宋余九.腐蚀疲劳过程中裂尖阳极溶解对裂纹扩展的作用[J].中国腐蚀与防护学报,1991,11(4):297-308.
    [92]沈海军,吕国志.腐蚀疲劳裂纹扩展过程中裂尖阳极溶解的贡献[J].西北工业大学学报,2001,19(2):225-228.
    [93] Engelhardt GR, Macdonald DD. Modelling the crack propagation rate for corrosionfatigue at high frequency of applied stress[J]. Corrosion Science,2010,52:1115-1122.
    [94] Wei RP. Fatigue-crack propagation in a high-dtrength aluminum alloy[J]. TheInternational Journal of Fracture Mechanics,1968,4(2):159-168.
    [95]钱友荣,何向东.高强度钢腐蚀疲劳裂纹扩展的温度效应和过载迟滞效应[J].金属学报,1989,25(6):444-447.
    [96]路民旭,王荣,郑修麟,王建军,刘晓坤.超高强度钢腐蚀疲劳裂纹扩展的温度效应及物理机制[J].西北工业大学学报,1992,10(3):285-292.
    [97] Nakasa K, Takai H, Itoh H. Effect of temperature on frequency dependency of crackpropagation velocity in delayed failure under cyclic load[J]. Engineering FractureMechanics,1978,10:285-293.
    [98] Gangloff RP. Corrosion Fatigue crack propagation in metals[R]. USA: NationalAssociation of Corrosion Engineers,1989.
    [99] Ruiz J, Elices M. Environmental fatigue in a7000series aluminum alloy[J]. CorrosionScience,1996,38(10):1815-1837
    [100] Selines RJ, Pelloux RM. Effect of cyclic stress wave form on corrosion fatigue crackpropagation in Al-Zn-Mg alloys[J]. Metallurgical Transactions,1972,3:2525-2531.
    [101] Corsetti LV, Duquette D J. The effect of mean stress and environment on corrosionfatigue behavior of7075-T6aluminum[J]. Metallurgical Transactions,1974,5:1087-1093.
    [102] Gingell ADB, King JE. The effect of frequency and microstructure on corrosionfatigue crack propagation in high strength aluminum alloys[J]. Acta. Mater.,1997,45(9):3855-3870.
    [103] Chlistovsky RM, Heffernan PJ, DuQuesnay DL. Corrosion-fatigue behaviour of7075-T651aluminumalloy subjected to periodic overloads[J]. International Journal ofFatigue,2007,29:1941-1949.
    [104] Ishihara S, McEvily AJ, Sato M, Taniguchi K, Goshima T. The effect of load ratio onfatigue life and crack propagation behavior of an extruded magnesium alloy[J].International Journal of Fatigue,2009,31:1788-1794.
    [105] Suresh S, Zamiski GF, Ritchie RO. Oxide-induced crack closure: an explanation fornear-threshold corrosion fatigue crack growth behavior[J]. Metallurigical transaction A,1981,12:1435-1443.
    [106] Vasudevan AK, Suresh S. Influence of corrosion deposits on near-threshold fatiguecrack growth behavior in2XXX and7XXX series aluminum alloys[J]. Metallurigicaltransaction A,1982,13:2271-2280.
    [107] Gangloff RP. Crack size effects on the chemical driving force for aqueous corrosionfatigue[J]. Metallurigical transaction A,1985,16:953-201.
    [108] Chun YG, Pyun SI. Crack closure in the fatigue crack propagation of a Cu-2wt.%Bealloy in dry air and ammoniacal solution[J]. Materials Science and Engineering A,1996,206:49-54.
    [109] Atkinson JD, Yu J, Chen ZY. An analysis of the effects of sulpher content andpotential on corrosion fatigue crack growth in reactor pressure vessel steel[J].Corrosion Science,1996,38(5):755-765.
    [110] Wahab MA, Park JH, Alama MS, Pang SS. Effect of corrosion prevention compoundson fatigue life in2024-T3aluminum alloy[J]. Journal of Materials ProcessingTechnology,2006,174:211-217.
    [111] Seifert HP, Ritter S. Corrosion fatigue crack growth behaviour of low-alloy reactorpressure vessel steels under boiling water reactor conditions[J]. Corrosion Science,2008,50:1884-1899.
    [112] Suresh S, Vasudevan AK, Bertz PE. Mechanics of slow fatigue crack growth in highstrength aluminum alloys: role of microstructure and environment[J]. MetallurgicalTransictions A,1984,15:369-379.
    [113] Wang Rong. A fracture model of corrosion fatigue crack propogation of aluminumalloys based on the material elements fracture ahead of a crack tip[J]. InternatioanlJournal of Fatigue,2008,30:1376-1386.
    [114] Lal DN, Weiss V. A notch analysis of fracture approach to fatigue crackpropagation[J]. Metallurgical and Materials Transactions A,1978,9(3):413-426.
    [115]刘晶晶,孙俊君,胡海云,邢修三.海洋腐蚀条件下材料环境失效的寿命预测[J].物理学报,2005,54(5):2414-2417.
    [116] Xing Xiu-San, Non-equilibrium statistical theory of fatigue fracture[J]. EngineeringFracture Mechanics,1987,26:393-419.
    [117]张宝宏,丛文博,杨萍.金属电化学腐蚀与防护[M].化学工业出版社,2005.
    [118]刘永辉,张佩芬.金属腐蚀学原理[M].航空工业出版社,1993.
    [119]高执棣.化学热力学基础[M].北京大学出版社,2006.
    [120]褚武扬,乔利杰,高克玮.阳极溶解型应力腐蚀[J].科学通报,2000,45(24):2581-2588.
    [121] Wei RP, Gao M. Reconsideration of the superposition model for environmentallyassisted fatigue crack growth[J]. Scripta Met.,1983,17:959-962.
    [122]路民旭,郑修麟,秦熊浦.腐蚀疲劳力学-化学模型研究进展[J].中国腐蚀与防护学报,1991,11(2):197-208.
    [123] Turnbull A, Ferriss DH. Mathematical modelling of the electrochemistry in corrosionfatigue cracks in structural steel cathodically protected in sea water[J]. CorrosionScience,1986,26(8):601-628.
    [124] Turnbull A. Theoretical analysis of influence of crack dimensions and geometry onmass transport in corrosion-fatigue cracks[J]. Materials Science and Technology,1985,1(9):700-710.
    [125] Turnbull A. Modelling of environment assisted cracking[J]. Corrosion Science,1993,34(6):921-960.
    [126] Turnbull A. A theoretical evaluation of the influence of mechanical variables on theconcentration of oxygen in a corrosion fatigue crack[J]. Corrosion Science,1982,22(9):877-893.
    [127] Ford FP. Corrosion fatigue crack propagation in aluminum-7%magnesium alloy.Corrosion,1979,35(7):281-287.
    [128] Ford FP, Povich MJ. The effect of oxygen temperature combinations on the stresscorrosion susceptibility of sensitized304stainless steel in high purity water[J].Corrosion,1979,35(12):569-574.
    [129] Ford FP, Silverman M. The Prediction of Stress Corrosion Cracking of Sensitized304Stainless Steel in0.01M Na2SO4at97deg C[J]. Corrosion,1980,36(10):558-565.
    [130]饶秋华,张淳源,贺跃辉.应力腐蚀裂纹扩展的研究[J].湘潭大学自然科学学报,1991,13(4):53-62.
    [131] Ruiz J, Elices M. The role of environmental exposure in the fatigue behavior of analuminum alloy[J]. Corrosion Science,1997,39:2117-2141.
    [132] Maeng WY, Kang YH, Nam TW, Ohashi S, Ishihara T. Synergistic interaction offatigue and stress corrosion crack growth behavior in Alloy600in high temperatureand high pressure water[J]. J. Nucl. Mater.,1999,275:194-200.
    [133] Goswami K, Hoeppner W. Pitting corrosion fatigue of structural materials[C].Structural Integrity in Aging Aircraft, ASME International Mechanical EngineeringCongress and Exposition, San Francisco, California,1995,12:129-139.
    [134] Harlow DG, Wei RP. Probability approach for prediction of corrosion and corrosionfatigue life[J]. AIAA J,1994,32:2073-2082.
    [135] Harlow DG, Wei RP. A probability model for the growth of corrosion pits inaluminum alloys induced by constituent particles[J]. Eng. Fract. Mech.,1998,59:305-325.
    [136] Shi P, Mahadevan S. Damage tolerance approach for probabilistic pitting corrosionfatigue life prediction[J]. Engineering Fracture Mechanics,2001,68:1493-1507.
    [137] Ghali E, Dietzel W. Testing of general and localized corrosion of magnesium alloys: Acritical review[J]. JMEPEG,2004,13:7-23.
    [138] Codaro EN, Nakazato RZ, Horovistiz AL, Ribeiro LMF, Ribeiro RB, Hein LRO. Animage processing method for morphological characterization and pitting corrosionevaluation[J]. Mater. Sci. Engng. A,2002,334:298-306.
    [139] Chen GS, Gao M, Harlow DG, Wei RP. Corrosion and corrosion fatigue of aluminiumalloys[M]. Mechanical Engineering and Mechanics, Lehigh University,1996.
    [140] Pyun SI, Orr SJ, Nam SW. Corrosion fatigue crack initiation of Al–Zn–Mg–Mn alloyin0.5M Na2SO4solution[J]. Mater. Sci. Eng.,1997, A241:281–284.
    [141] Dolley EJ, Lee B, Wei RP. The effect of pitting corrosion on fatigue life[J]. FatigueFract. Eng. Mater. Struct.,2000,23:555-560.
    [142] Wang QY, Pidaparti RM, Palakal MJ. Comparative study of corrosion-fatigue inaircraft materials[J]. AIAA J,2001,39:325-330.
    [143] Eshelby JD. The Determination of the elastic field of an ellipsoidal inclusion, andrelated problems[J]. Proceedings of the royal society of London, Series A,Mathematical and Physical Sciences,1957,241:376-396.
    [144] Wang H, Li Z. Diffusive shrinkage of a void within a grian of a stressed polycrystal[J].J. Mech. Phys. Solids,2003,51:961-976.
    [145] El Haddad MH, Topper TH, Smith KN. Prediction of non propagating cracks[J].Engineering Fracture Mechanics,1979,11(3):573-584.
    [146] Xing XS. Nonequilibrium statistical theory of fatigue fracture[J]. Engineering FractureMechanics,1987,26:393-419.
    [147] Rajasankar J, Iyer N R. A probability-based model for growth of corrosion pits inaluminium alloys[J]. Engineering Fracture Mechanics,2006,73:553-570.
    [148] Wang H, Li Z. Stability and shrinkage of a cavity in stressed grain[J]. Journal ofApplied Physics,2004,95(11):6025-6031.
    [149] Wang H, Li Z. The three-dimensional analysis for diffusive shrinkage of agrain-boundary void in stressed solid[J]. Journal of Materials Science,2004,39:25-3432.
    [150] Sriraman MR, Pidaparti RM. Crack initiation life of materials under combined pittingcorrosion and cyclic loading[J]. Journal of Materials Engineering and Performance,2010,19(1):1-12.
    [151] Ishiara S, Saka S, Nan ZY, Goshima T, Sunada S. Prediction of corrosion fatigue livesof aluminium alloy on the basis of corrosion pit growth law[J]. Fatigue Fract EngngMater Struct,2006,29:472-480.
    [152]邢修三.疲劳断裂的微观机理和非平衡统计特性[J].北京工业学院学报,1984,4:53-65.
    [153]邢修三.疲劳断裂非平衡统计理论-I疲劳微裂纹长大的位错理论与统计特性[J].中国科学(A辑),1986,5:501-510.
    [154]蒋兴钢,褚武扬,肖纪美.应力腐蚀门槛值和断口分形维的定量关系[J].中国腐蚀与防护学报,1995,15(1):57-60.
    [155] Donahue RJ, Clark HM, Atanmo P, Kumble R, McEvily AJ. Crack openingdisplacement and the rate of fatigue crack growth[J]. International Journal of FractureMechanics,1972,8(2):209-219.
    [156] Mott NF. Fracture of metals: theoretical consideration[J]. Engineering,1948,165:16-18.
    [157]范天佑.非线性介质中运动裂纹的动能公式[J].北京工业学院学报,1986,3:3-27.
    [158]韩斌,邢修三.二维位错裂纹的稳定性分析[J].力学学报,1997,29(2):224-230.
    [159] GB/T20120.2-1998,金属与合金的腐蚀-腐蚀疲劳试验第2部分:预裂纹试样裂纹扩展试验试验[S].北京:中国标准出版社,1998.
    [160] GB/T6398-2000,金属材料裂纹扩展速率试验方法[S].北京:国家质量技术监督局,2000.
    [161]尚德广,王德俊.多轴疲劳强度.北京:科学出版社,2007.
    [162] Frost NE.A relation between the criticalalternating propagation stress and crack lengthfor mild steel[J].Proc. Istn. Mech. Engrs.,1959,173(35):811-827.
    [163]孙东立,安希墉.形变对LY12铝合金应力腐蚀开裂性能的影响[J].金属科学与工艺,1991,10(1):42-46.
    [164]高镇同,蒋新桐,熊峻江.疲劳性能试验设计和数据处理-直升机金属材料疲料性能可靠性手册[M].北京:北京航空航天大学出版社,1999.
    [165]常红,韩恩厚,王俭秋,柯伟.阴极极化对LY12CZ铝合金腐蚀疲劳寿命的影响[J].金属学报,205,41(5):556-560.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700