用户名: 密码: 验证码:
基于WOFOST-HYDRUS耦合模型的玉米遥感估产研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农业生态系统中作物生长与水文循环间相互关系和相互作用的研究有助于提高绿洲农业生产的水资源利用效率和优化灌溉,是缓解农业和生态用水矛盾的有效途径。基于模型耦合的方式构建作物生长-水文模型,可以综合考虑农业生态系统和水循环间的交互作用,能够量化环境条件与作物生长的关系,有助于我们更好地理解绿洲农业生态水文过程,进而为实现水资源的有效管理和节水农业提供参考。同时,基于作物生长-水文耦合模型实现区域作物估产将有助于政府管理者做出正确的决策,进而可以保护地区乃至国家的粮食安全。
     位于中国西北干旱区的黑河干流中游盆地是黑河流域经济和农业最发达的地区,然而随着经济发展和人口增长,该地区水资源供需矛盾日益突出。如何提高农业灌溉水利用效率,实现该地区有限水资源的有效利用是该地区可持续发展所需解决的主要问题之一。精确了解作物生长过程中作物需水量和蒸腾量对实现干旱区节水灌溉和合理利用有限的水资源具有非常重要的意义。本研究以双向松耦合方式耦合了作物生长模型WOFOST与包气带水文模型HYDRUS-1D,建立了作物生长-水文耦合模型。该耦合模型可用于量化作物在生长过程中对水的需求量和蒸腾量,并预测在不同环境和气候条件下的作物产量。WOFOST-HYDRUS耦合模型模拟计算所需要的作物生长参数和土壤水文特性参数通过FSEOPT优化程序和全局优化算法SCE-UA来标定。参数标定后WOFOST-HYDRUS耦合模型可以很好地模拟研究区玉米生长过程、土壤水分变化过程和蒸腾量,模型参数符合研究区玉米品种特性和土壤特性。基于标定后的耦合模型,本研究中将根的实际提水与潜在蒸腾的比值作为水利用效率的指示因子来指导灌溉,通过有效减少土壤深层渗漏得到了优化灌溉策略。与实际灌溉策略相比,优化灌溉策略既能保证玉米产量又能实现有效节水。基于优化灌溉策略,本研究中应用全局灵敏度分析方法测试了耦合模型的性能,定量分析了耦合模型参数、气候及环境因素对玉米产量的影响;应用不确定分析方法模拟分析了不确定环境条件下可能的玉米产量。灵敏度分析结果表明,土壤水力参数、地下水埋深、比叶面积、播种时间、初始光利用效率、最大根深、可见光消光系数和蒸腾速率校正因子这8个模型参数对玉米产量变化影响最大,耦合模型不存在过参数化现象。不确定分析结果表明Monte Carlo方法可以用于揭示作物参数和环境参数不确定对玉米产量概率分布的影响及灌溉减少对玉米产量的影响。基于耦合模型结合不同地下水埋深变化和灌溉量变化则可以模拟分析地下水埋深不确定性对玉米产量的影响,其模拟结果显示地下水埋深超过2.0m时玉米对灌溉的需求增大,地下水埋深在2.0m以上时玉米对灌溉的依赖不大,少量灌溉即可保证玉米生长。为了获取玉米种植分布信息,为实现耦合模型区域应用奠定基础,本研究中采用面向对象分类方法结合归一化植被指数(NDVI)时序数据和黑河中游主要农作物(小麦和玉米)物侯期特征,对黑河中游玉米种植分布信息进行了有效的提取。为了测试耦合模型区域应用的效果,采用集合卡尔曼滤波算法同化了叶面积指数(LAI)遥感观测值和耦合模型模拟值,初步实现了张掖绿洲玉米区域估产。
     以上研究结果表明,结合了参数优化算法与灵敏度不确定分析方法的WOFOST-HYDRUS耦合模型可以用来指导农业灌溉、预测作物产量和研究作物参数与环境因素对作物产量的影响。结合了NDVI时序分析和物候特征的面向对象分类方法可以有效区分作物类型。结合遥感信息利用集合卡尔曼滤波算法可以实现WOFOST-HYDRUS耦合模型区域应用。
Study on interactions and feedbacks between crop growth and water cycle in agro-ecosystems can provide help for increasing water efficiency of irrigated oasis, optimizing irrigation scheme and alleviating the competition between agricultural water and ecological water. Modeling interactions and feedbacks of relevant processes based on model coupling can help us to properly understand agro-eco-hydrological processes of irrigated oasis and to provide reference for water management and water saving. Realization of crop yield estimation based on coupled crop growth and hydrologic model can provide help for decision makers to ensure regional or national food security.
     The middle basin of Heihe River, located in arid region of northwest China, is the most developed area of Heihe river basin. However, with economic development and an increasing population, there is an increasing competition between the limited water resources and the increasing demand for crop irrigation. An increase in water efficiency of agro-ecosystems, especially irrigated agro-ecosystems in arid regions, is an urgent task. Accurate knowledge of water demand and transpiration during crop growth is critical for sustainable water management and water saving. To predict crop yield under different environmental conditions and climatic conditions, the crop growth model, WOFOST, and the vadose zone hydrologic model, HYDRUS-1D, are coupled to quantify water demand and transpiration during crop growth. FSEOPT program and SCE-UA algorithm are used to calibrate crop growth parameters and soil hydraulic parameters. The results show that the simulations agree well with the observations. The related parameter values are reasonable for local crop (maize) characteristics and soil properties in the study field. The calibrated model is then used to evaluate the water balance and to search for a potential, water-saving scheme. The ratio between actual root uptake and potential transpiration is used as an indicative factor to guide irrigation. The simulated results indicate decreasing in deep percolation can save irrigation water. Based on guided irrigation scheme and the coupled model, global sensitivity analysis (SA) method is further applied to study the effect of the coupled model parameters, climatic and environmental conditions on maize yield. The SA analysis results show that8out of33parameters (HYDRUS parameters, ZIT, SLATB1, IDSOW, EFFTB, RDMCR, KDIFIB, CFET) have great effect on output of the coupled model. The SA analysis results also suggest the coupled model has not over-parameterization. An uncertainty analysis (UA) method is used to predict probability of maize yield in uncertain environmental conditions. The UA analysis results indicate that the uncertainty analysis using Monte Carlo method can reveal the risk of a possible loss of maize yield with irrigation decrease and provide the probability of yield in the uncertainty range of crop parameters and environment parameters. The coupled model integrating with various groundwater depth and irrigation schemes can be used to evaluate the uncertainty influence of groundwater depth on maize yield. The results indicate that the irrigation demand of maize increases when groundwater depth more than2.0m. A small amount of irrigation can guarantee maize growth When groundwater depth less than2.0m. An object-oriented classification method integrated with NDVI time series data and crop phenological information is used to extract the planting distribution data of maize in middle basin of Heihe river. To apply the coupled model at the regional scale, the Ensemble Kalman filter (EnKF) is used to assimilate the leaf area index (LAI) data extracted from Lansat-ETM+imagery. As the result of assimilation, region-wide spatial distribution of the maize yield in Zhang Ye Oasis was obtained.
     Synthetically, the method of integrating the coupled WOFOST and HYDRUS models with uncertainty analysis and sensitivity analysis can be used for guiding agricultural irrigation, saving water resources, predicting agricultural production and researching effects of the climatic and environmental change on agricultural production. The method of integrating the object-oriented classification method with NDVI time series data and crop phenological information can be used to differentiate varieties of crops. The method of integrating the EnKF with remote sensing information can be used as a useful tool to apply the coupled WOFOST and HYDRUS models at regional scale.
引文
1. Addiscot T., Smith J., Bradbury N., Critical evaluation of models and their parameters. Journal Environmental Quality,1995,24:803-807.
    2. Aggarwal P. K., Uncertainties in crop, soil and weather inputs used in growth models implications for simulated outputs and their applications. Agricultural systems,1995,48(3): 361-384.
    3. Adler-Golden S.M., Matthew M.W., Bernstein L.S., Levine R.., Berk A., Richtsmeier S.C., Acharya P.K., Anderson G.P., Felde G., Gardner J., Hike M., Jeong L.S., Pukall B., Mello J., Ratkowski A., Burke H.H., Atmospheric correction for shortwave spectral imagery based on MODTRAN4. SPIE Proc. Imaging Spectrometry,1999,3753:61-69.
    4. Alagarswamy G., Ritchie J.T., Godwin D.C., Singh U., A user's guide to CERES Sorghum: Michigan State University, ICRISAT, IFDC and IBSNAT Joint Publication.1988.
    5. Allen R.G., Pereira L.S., Raes D., Smith M., Crop evapotranspiration. Guidelines for computing crop water requirements. Irrigation and Drainage, FAO, Rome, Italy.1998, Paper No.56.
    6. Analytical Imaging and Geophysics LLC (AIG), "ACORN User's Guide, Stand Alone Version," Analytical Imaging and Geophysics LLC,2001,64 p.
    7. Anderson G.L., Hanson J.D., Hass R.H., Evaluating Landsat Thematic Mapper Derived Vegetation Indices For Estimating Above-Ground Biomass 11 Semiarid Rang lands. Remote Sensing of Environment,1993,46(2):151-157.
    8. Andres L., Salas J., Skole D., Fourier analysis of multi-temporal AVHRR data applied to a land cover classification. International Journal of Remote Sensing,1994,5(5):1115-1121.
    9. Anwar M.R., McKenzie B.A., Hill G. D., Water-use efficiency and the effect of water deficits on crop growth and yield of kabuli chickpea (Cicer arietinum L.) in a cool-temperate sub humid climate. Journal of agricultural science,2003,141,285-301.
    10. Azzali S., Menenti M., Mapping vegetation-soil-climate complexes in southern Africa using tempo r al Fourier analysis o f NOAA-AVHRR NDVI data. International Journal of Remote Sensing,2000,21(5):973-996.
    11. Bach, H., Verhoef, W., Schneider, K. Coupling remote sensing observation models and a growth model forimproved retrieval of (Geo) Biophysical Information from Optical remote sensing Data. In:remote sensing for agriculture, ecosystems, and hydrology II. Barcelona, Spain,2000, pp.1-11.
    12. Baret, F., Guyot G., Major D.J., TSAVI:A Vegetation Index Which Minimizes Soil Brightness Effects On LAI And APAR Estimation:Geoscience and Remote Sensing Symposium. IGARSS'89.12th Canadian Symposium on Remote Sensing,1989,1355-1358.
    13. Berge H.F.M., Aggarwal P.K., Kropff, M.J. (Eds.), Applications of Rice Modelling. Elsevier, The Netherlands,1997,166pp.
    14. Berk A., Bernstein L.S., Robertson D.C., "MODTRAN:A Moderate Resolution Model for LOWTRAN 7", GL-TR-89-0122,1989.
    15. Berk A., Anderson G.P., Bernstein L.S., Acharya P.K., Dothe H., Matthew M.W., Adler-Golden S.M., Chetwynd Jr. J.H.,, Richtsmeier S.C., Pukall B., Allred C.L., Jeong L.S., Hoke M.L., "MODTRAN4 Radiative Transfer Modeling for Atmospheric Correction," SPIE Proceeding, Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research Ⅲ,1999, Volume 3756.
    16. Beven K., Germann P., Macropores and water flow in soils. Water Resource Research,1982, 18(5):1311-1325.
    17. Boken V.K. Shaykewich C.F., Improving an operational wheat yield model using phonological phase-based Normalized Difference vegetation Index. International Journal of Remote Sensing,2002,23:4155-4168.
    18. Boogaard H.L., Van Diepen C.A., Rotter R.P., Cabrera J.C.M.A., Van Laar H.H., WOFOST 7.1:User's Guide for the WOFOST 7.1 Crop Growth Simulation Model and WOFOST Control Center 1.5, Techn. Doc.52, Alterra, WUR, Wageningen, The Netherlands,1998,144 pp.
    19. Booltink H.W.G, van Alphen B.J, Batchelor W.D, Paz J.O, Stoorvogel J.J, Vargas R., Tools for optimizing management of spatially-variable fields. Agricultural Systems,2001,70: 445-476.
    20. Boons-Prins E.R., de Koning G.H.J., Van Diepen C.A., Penning de Vries F.W.T., Crop specific simulation parameters for yield forecasting across the European Community, Simulation Reports CABO-TT 32, CABO-DLO, DLO Winand Staring Centre, JRC, Wageningen,1993.
    21. Bouma J., Soil morphology and preferential flow along macropores. Agricultural Water Management,1981,3:235-250.
    22. Bouman B.A.M., Linking physical remote sensing models with crop growth simulation models, applied for sugar beet. International Journal of Remote Sensing,1992, 13:2565-2581.
    23. Bouman B.A.M., Kropff M.J., Tuong T.P., Wopereis M.C.S., Ten Berge H.F.M., Van Laar H. H., ORYZA2000:modeling lowland rice, IRRI/Wageningen University,2001.
    24. Bouman B.A.M., van Keulen H., van Laar H.H., The school of de Wit crop growth simulation models:A pedigree and historical overview. Agricultural System,1996, 52:171-198.
    25. Brisson N., Gary C., Justes E., Roche R., Mary B., Ripoche D., Zimmer D., Sierra J., Bertuzzi P., Burger P., Bussiere F., Cabidoche Y. M., Cellier P., Debaeke P., Gaudillere J. P., Henault C., Maraux F., Seguin B., Sinoquet H., An overview of the crop model. European Journal of Agronomy,2003,18:309-332.
    26. Burman R., Pochop L.O., Evaporation, evapotranspiration and climatic data, in: Developments in Atmospheric Science, Elsevier, Amsterdam, The Netherlands,1994, vol.22, 278pp.
    27. Butters G.L, Jury W.A., Field scale transport of bromide in an unsaturated soil. Dispersion modeling. Water Resources Research,1989,25(7):1583-1589.
    28. Center for the Study of Earth from Space (CSES), Atmosphere Removal Program (ATREM), Version 3.1, User's Guide, University of Colorado, Boulder,1999,12 p.
    29. Chapin S.F., Matson P., Mooney H.A., Principles of Terrestrial Ecosystem Ecology. New York:Springer-Verlag Press,2002.
    30. Clevers, J.G.P.W., A simplified approach for yield prediction of sugar beet based on optical remote sensing data. Remote Sensing of Environment,1997,61:221-228.
    31. Clevers J.G.P.W., Van Leeuwen H.I.C., A framework for monitoring crop growth by combining directional and spectral remote sensing information. Remote Sensing of Environment,1994,25:161-170.
    32. Clevers J.G.P.W., Van Leeuwen, H.I.C., Combined use of optical and microwave remote sensing data for crop growth monitoring. Remote Sensing of Environment,1996,56:42-51.
    33. David, G., Hazy Reasoning Behind Clean Air:science alone can't determine how regulations are written, Nature 453,2008, April 3,519.
    34. Deardorff W., Efficient Prediction of Ground Surface Temperature and Moisture with Inclusion of a Layer of Vegetation. Journal of Geophysical Research,1978,83:1889-1903.
    35. Delecolle R., Guerif M., Introducing spectral data into a plant process model for improving its prediction ability. Proceedings of the 4th International Colloquium on Spectral Signatures of Objects in Remote Sensing, Aussois, France,1988,125-127.
    36. Dente L., Satalino G., Mattia F., Rinaldi M., Assimilation of leaf area index derived from ASAR and MERIS data into CERES-Wheat model to map wheat yield. Remote Sensing Environment,2008,112:1395-1407.
    37. De Wit, C.T., Dynamic concepts in biology. Prediction and Management of Photosynthetic Productivity, Proceedings International Biological Program Plant Production Technical Meeting, Wageningen, Netherlands:PUDOC,1970,17-23.
    38. De Wit, C.T., Simulation of assimilation, respiration and transpiration of crops. Simulation Monographs. Wageningen, The Netherlands:PUDOC,1978,18-56.
    39. De Wit A.J.W., Van Diepen C.A., Crop model data assimilation with the Ensemble Kalman Filter for improving regional crop yield forecasts. Agricultural and Forest Meteorology,2007, 146:38-56.
    40. Dey C.H., Morone L.L., Evolution of the National Meteorological Center global data assimilation system:January 1982-December 1983. Mon Weather Rev,1985,113:304-318.
    41. Dickinson R.E, Henderson-Sellers A., Kennedy P.J., Biosphere-Atmosphere Transfer Scheme (BATS) Version le as coupled to the NCAR Community Climate Model. NCAR technical note, NCAR,1993,72.
    42. Duan Q., Gupta V. K., Sorooshian S., A shuffled complex evolution approach for effective and efficient global minimization, Journal of Optimization Theory and Applications,1993, 76:501-521.
    43. Eagleson P.S., Eco-hydrology:Darwinian Expression of Vegetation Form and Function. Cambridge:Cambridge University Press,2002.
    44. Eitzinger J., Trnka M., Hosch J., Zalud Z., Dubrovsky'M., Comparison of CERES, WOFOST and SWAP models in simulating soil water content during growing season under different soil conditions, Ecological Modelling,2004,171:223-246.
    45. Evensen G., Sequential data assimilation with a non-linear quasi-geostrophic model using Monte-Carlo methods to forecast error statistics. Journal of Geophysical Research,1994, 99(C5):10143-10162.
    46. Faber A., Forstner W., Scale characteristics of local autocovariances for texture segmentation. Int. Arch. Photogrammetry & Remote Sensing, Valladolid,1999,32:74-78.
    47. Fang H.L., Liang S.L., Retrieving Leaf Area Index with a Neural Network Method: Simulation and Validation. IEEE Transactions on geoscience and remote sensing,2003, 41:2052-2062.
    48. Fang H.L., Liang S.L., A hybrid inversion method for mapping leaf area index from MODIS data:experiments and application to broadleaf and needle leaf canopies. Remote sensing of Environment,2005,94:405-424.
    49. Fang H.L., Liang S.L., Hoogenboom G., Teasdale J., Cavigelli M., Corn-yield estimation through assimilation of remotely sensed data into the CSM-CERES-Maize model. International Journal of Remote Sensing,2008,29(10):3011-3032.
    50. Feddes R.A., Kowalik P.J., Zaradny H., Simulation of field water use and crop yield. Simulation Monograph, Pudoc, Wageningen, The Netherlands,1978,9-30.
    51. Finsterle S., Doughty C., Kowalsky M.B., Moridis G.J., Pan L., Xu T., Zhang Y., Pruess K., Advanced vadose zone simulations using TOUGH. Vadose Zone Journal,2008,7:601-609.
    52. Fox G.A., Munoz-Carpena R., Sabbagh G.J., Influence of flow concentration on parameter importance and prediction uncertainty of pesticide trapping by vegetative filter strips. Journal of Hydrology,2010,384:164-173.
    53. Gartuza-Payan J., Shuttleworth W.J., Encinas D., McNeil D.D., Stewart J.B., DeBruin H., Watts C., Measurement and modelling evaporation for irrigated crops in northwest Mexico. Hydrological Processes,1998,12:1397-1418.
    54. Gao L.Z., Jin Z.Q., Huang Y., Zhang L.Zh., Rice clock model computer model to simulate rice development, Agricultural and Forest Meteorology,1992,(60):1-16.
    55. Gee G.W., Or D., Particle size analysis, in:Methods of Soil Analysis, Part 4, SSSA Book Series, vol.5., edited by:Dane, J. and Topp, C., American Society of Agronomy, Madison, Wisconsin,2002,255-294.
    56. Goel N.S., Thompson R.L., Inversion of vegetation canopy reflectance models for estimating agronomic variables:V. Estimation of Leaf Area Index and Average Leaf Angle using measured canopy reflectances. Remote Sensing of Environment,1984,16:69-85.
    57. Goudriaan J., van Laar H.H., Modelling potential crop growth processes. Dordrecht, The Netherlands:Kluwer Academic Publishers,1994.
    58. Grossman R.B., Reinsch T.G., Bulk density and linear extensibility, in:Methods of Soil Analysis, Part 4, SSSA Book Series, vol.5., edited by:Dane, J. and Topp, C., American Society of Agronomy, Madison, Wisconsin,2002,201-228.
    59. Guerif M., Duke C.L., Calibration of the SUCROS emergence and early growth module for sugar beet using Optical remote sensing data assimilation. European journal of agronomy, 1998,127-136.
    60. Guerif M., Duke C.L., Adjustment procedures of a crop model to the site specific characteristics of soil and crop using remote sensing data assimilation. Agriculture, Ecosystem and Environment,2000,81:57-69.
    61. Harris P.P, Huntingford C., Cox P.M, Gash J.H.C., Malhi Y, Effect of soil moisture on canopy conductance of Amazonian rainforest. Agricultural and Forest Meteorology,2004, 122:215-227.
    62. Healy R.W., Simulating water, solute, and heat transport in the subsurface with the VS2DI software package. Vadose Zone Journal,2008,7:632-639.
    63. Hijmans R.J., Guiking Lens I.M., van Diepen C.A., User guide for the WOFOST 6.0. Crop growth simulation model. Technical document 12. In:DLO Winand Staing Centre, Wageningen,1994.
    64. Hoogenboom G., Jones J.W., Boote K J., Modeling growth, development, and yield of grain legumes using SOYGRO, PNUTGRO, and BEANGRO:A review. Trans ASAE,1992,35 (6):2043-2056.
    65. Hoogenboom G., Wilkens P.W., Tsuji G.Y. (Eds.). DSSAT Version 3, Volume 4. Honolulu, Hawaii:University of Hawaii,1999.
    66. Hornberger G.M., Spear R.C., An approach to the preliminary analysis of environmental systems, Journal of Environmental Management,1981,12:7-18.
    67. Houghton J.T, Jenkins G.J, Ephrayms J.J., Climate Change:The IPCC Scientific Assessment. Cambridge:Cambridge University Press,1990.
    68. Huete A., A soil adjusted vegetation index (SAVI). Remote Sensing of Environment,1998, 25:295-309.
    69. Huete A., Didan K., Miura T., Rodriguez E., Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment,2002, 83:195-213.
    70. Huete A., Justice C., Liu H., Development of vegetation and soil indices for MODIS-EOS. Remote Sensing of Environment,1994,49:224-234.
    71. Huete A.R., Liu H.Q., Batchily K., Van Leeuwen W.J.D., A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sensing of Environment,1997,59: 440-451.
    72. Ines A.V.M., Gupta A.D., Loof R., Application of GIS and crop growth models in estimating water productivity, Agricultural Water Management,2002,54,205-225.
    73. Jacquemoud S., Inversion of the PROSPECT+SAIL canopy reflectance model from AVIRIS equivalent spectra:theoretical study. Remote Sensing of Environment,1993,44:281-292.
    74. Jacquemoud S., Baret F., PROSPECT:A Model of Leaf Optical Properties Spectra. Remote sensing of Environment,1990,34:75-91.
    75. Jakubauskas M., Legates D., Kastens J., Crop identification using harmonic analysis of time-series AVHRR NDVI data. Computers and Electronics in Agriculture,2002, 37:127-139.
    76. Jawitz J.W., Munoz-Carpena R., Muller S., Grace K.A., James A.I., Development, Testing, and Sensitivity and Uncertainty Analyses of a Transport and Reaction Simulation Engine (TaRSE) for Spatially Distributed Modeling of Phosphorus in South Florida Peat Marsh Wetlands:U.S. Geological Survey Scientific Investigations Report 2008-5029,2008,109pp.
    77. Jones C.A., Kiniry J.R. CERES-Maize:A Simulation Model of Maize Growth and Development:Texas A & M University Press,1986.
    78. Jones J.W., Keating B.A., Porter C.H., Approaches to modular model development. Agricultural Systems,2001,70:421-443.
    79. Jones J. W., Hoogenboom G., Porter C.H., Boote K.J., Batchelor W.D., Hunt L.A., Wilkens P.W., Singh U., Gijsman A.J., Ritchie J.T., The DSSAT cropping system model. European Journal of Agronomy,2003,18:235-265.
    80. Jury W.A., Simulation of solute transport using a transfer functions model. Water Resources Research,1982,18(2):363-368.
    81. Jury W.A, Stolzy L.H, Shouse P., A field test of the transfer function model for predicting solute transport. Water Resources Research,1982,18:369-375.
    82. Kalman R.E. A new approach to linear filtering and prediction problems. Journal of Basic Engineering,1960,82(1):35-45.
    83. Kaufman Y.J., Tanre D., Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Transactions on Geoscience and Remote Sensing,1992,30:261-270.
    84. Kergoat L., Fischer A., Moulin S., Dedieu G., Satellite measurements as a constraint on estimates of vegetation carbon budget. Tellus,1995,47B:251-263
    85. Kersebaum K.C., Lorenz K., Reuter H.I., Wendroth O., Modeling crop growth and nitrogen dynamics for advisory purposes regarding spatial variability. In:Ahuja L.R, Ma L., and Howell T.A.(eds), Agricultural System Models in Field Research and Technology Transfer, Lewis Publishers, Boca Raton, Florida, USA,2002,229-252.
    86. Kneizys F.X., Shettle E.P., Abreu L.W., Chetwynd J.H., Anderson G.P., Gallery W.O., Selby J.E.A., Clough S.A., Users Guide to LOWTRAN 7, AFGL-TR-88-0177, (NTIS AD A206773),1988.
    87. Knyazikhin Y., Martonchik J.V., Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data. Journal of Geophysical Research,1998,103:32257-32276.
    88. Koetza B., Baret F., Poilve H., Hill J., Use of coupled canopy structure dynamic and radiative transfer models to estimate biophysical canopy characteristics. Remote Sensing of Environment,2005,95:115-124
    89. Kroes J.G., Van Damm J.C., Reference Manual SWAP:Version 3.0.3. Report 773. Alterra Green World Resource, Wageningen, Netherlands,2003.
    90. Kropff M.J, Goudriaan J., Competition for resource capture in agricultural crops. In: Monteith J.L., Scott R.K, Unsworth M.H. (Eds.), Gresource capture by crops. Nottingham University Press, Loughborough, Leicestershire,1994,233-253.
    91. Kropff M.J., Teng P.S., Aggarwal P.K., Bouman B., Bouma J., Van Laar H.H., Applications of Systems Approaches at the Field Level, vol.2, Kluwer Academic Publishers, The Netherlands,1996,465pp.
    92. Kropff M.J., van Laar H.H., Matthews R.B., ORYZA-1:an eco-physiological model for irrigated rice production. Los BanA os, Philippines:International Rice Research Institute, 1994.
    93. Lemmon H., COMAX:An expert system for cotton crop management. Science,1986, 233:29-33.
    94. Liang S.L., Quantitative Remote Sensing of Land Surfaces. New York:John Wiley and Sons, Inc,2004.
    95. Liang S.L., Senior Member, IEEE, Fang H.L., Chen M.Zh., Atmospheric Correction of Landsat ETM+ Land Surface Imagery-Part Ⅰ:Methods. IEEE Transactions on Geoscience and Remote Sensing,2001,39(11):2490-2497.
    96. Li X., Li X.W., Li Z.Y., Ma M.G., Wang J., Xiao Q., Liu Q., Che T., Chen E.X., Yan G.J., Hu Z.Y., Zhang L.X., Chu R.Z., Su P.X., Liu Q.H., Liu S.M., Wang J.D., Niu Z., Chen Y, Jin R., Wang W.Z., Ran Y.H., Xin X.Z., Ren H.Z., Watershed Allied Telemetry Experimental Research. Journal of Geophysical Research,114(D22103), doi:10.1029/2008JD011590, 2009.
    97. Li X., Li X.W., Roth K., Menenti M., Wagner W., Preface "Observing and modeling the catchment scale water cycle". Hydrology and Earth System Sciences,15(2):597-601, doi:10.5194/hess-15-597-2011,2011.
    98. Lomborg B., The Skeptical Environmentalist:Measuring the Real State of the World, Cambridge University Press, New York,2001.
    99. Ma Y., Wang S., Zhang L., Hou Y, Zhuang L., He Y, Wang F., Monitoring winter wheat growth in North China by combining a crop model and remote sensing data, International Journal of Applied Earth Observation Geoinformation.2008,10:426-437.
    100. Maas S.J., Use of remotely-sensed information in agricultural crop growth models. Ecological Modeling,1988,41:274-268.
    101. Maas S.J., Use of remotely-sensed information in plant growth simulation models. Advances in Agronomy,1991,1:17-26.
    102. Matthews R.B., Stephens W., Crop-soil Simulation Models, Applications in Developing Countries, CABI Publishing, Wallingford, United Kingdom,2002,277 pp.
    103. McCown R.L., Hammer G.L., Hargreaves J.N.G., APSIM:a novel software system for model development, model testing, and simulation in agricultural systems research. Agricultural Systems,1996,50:55-271.
    104. McKay M.D., Beckman R.J., Conover W.J., A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics,1979, 21:239-245.
    105. McKay M.D., Evaluating Prediction Uncertainty. NUREG/CR-6311. U.S. Nuclear Regulatory Commission and Los Alamos National Laboratory, Los Alamos, N.M.1995.
    106. Meinke H., Baethgen W.E., Carberry P.S., Donatellic M., Hammera G.L., Selvarajud R., Stocklee C.O., Increasing profits and reducing risks in crop production using participatory systems simulation approaches. Agricultural Systems,2001,70:493-513.
    107. Metzler V, Aach T., Thies C., A Novel Object-Oriented Approach To Image Analysis And Retrieval, Fifth IEEE Southwest Symposium on Image Analysis and Interpretation,2002, 14-18.
    108. Milly P.C.D., Moisture and heat transport in hysteretic, inhomogeneous porous media:A matric head-based formulation and a numerical model, Water Resources Research,1982, 18(3):489-498.
    109. Monteith J.L., Evaporation and environment, in:Proceedings of the 19th Symposium of the Society for Experimental Biology, Cambridge University Press, New York,1965,205-233.
    110. Monteith J. L., Evaporation and surface temperature, Quarterly Journal of Royal Meteorological society,1981,107:1-27.
    111. Monteith J. L., Unsworth M. H., Principles of environmental physics, Second Edition, London:Edwad Arnold, London, United Kingdom,1990.
    112. Moody A., Johnson D.M., Land-surface phenologies from AVHRR using the discrete fourier transform. Remote Sensing of Environment,2001,75(3):305-323.
    113. Moran M.S., Clarke T.R., Inoue Y, Vidal A., Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sensing of Environment,1994,49:246-263.
    114. Morris M., Factorial sampling plans for preliminary computational experiments, Technometrics,1991,33,161-174.
    115. Moulin S., Fischer A., Dedieu G., Assimilation of shortwave remote sensing observations within an agrometeorological model:crop production estimation. In:1996 International Geoscience and Remote Sensing Symposium. Lincoln, U.S.A.,1996,2366-2368.
    116. Moulin S., Fischer A., Dedieu G., Delecolle R., Temporal variations in satellite reflectances at field and regional scales compared with values simulated by lining crop growth and SAIL models. Remote sensing of Environment,1995,54:261-272.
    117. Mualem Y., A new model predicting the hydraulic conductivity of unsaturated porous media, Water Resources Research,1976,12:513-522.
    118. Munch J.C., Berkenkamp A., Sehy U., The effect of site specific fertilisation on N2O emissions and N-leaching-measurements and simulations. In:Horst WJ (eds.), et al., Plant Nutrition-Food Security and Sustainability of Agroecosystems, Kluwer Academic Publishers, Dordrecht, Netherlands,2001,902-903.
    119. Munoz-Carpena R., Fox G. A., Sabbagh G. J., Parameter importance and uncertainty in predicting runoff pesticide reduction with filter strips. Journal of Environmental Quality, 2010,39 (1):1-12.
    120. Nielsen D.R., Biggar J.W., Erh K.T., Spatial variability of field measured soil-water properties. Hilgardia,1973,42(7):215-259.
    121. Nelson R.P., Drapek R.J., Potentially complex biosphere responses to transient global warming. Global Biogeochemical Cycles,1998,4:505-521.
    122. Olsson L., Eklundh L., Fourier series for analysis of temporal sequences of satellite sensor imagery. International Journal of Remote Sensing,1994,15(18):3735-3741.
    123. Otter Nacke S.J., Ritchie J.T., Godwin D., Singh U., A User's Guide to CERES Barley V2.10. In. Alabama, USA:International Fertilizer Development Centre, Muscle Shoals,1991.
    124. Pachepsky Y.A., Smettem K.R.J., Vanderborght J., Herbst M., Vereecken H., Wosten J.H.M., Reality and fiction of models and data in soil hydrology. In:Feddes R.A. et al. (Eds.), Unsaturated-Zone Modeling. Kluwer Academic Publishers, Dordrecht, the Netherlands, 2004.
    125. Panday S., Huyakorn P.S., MODFLOW SURFACT:A state-of the-art use of vadose zone flow and transport equations and numerical techniques for environmental evaluations. Vadose Zone Journal,2008,7:610-631.
    126. Patil S.L., Sheelavantar M.N., Effect of cultural practices on soil properties, moisture conservation and grain yield of winter sorghum in semi-arid tropics of India, Hydrological Processes,2004,64:49-67.
    127. Paudyal G.N., Das Gupta A., Irrigation planning by multi-level optimization. Journal of Irrigation and Drainage Engineering, ASCE,1990,116:273-291.
    128. Pauwels V.R.N., Hoeben R., Verhoest N.E.C., DeTroch F.P., The importance of the spatial patterns of remotely sensed soil moisture in the improvement of discharge predictions for small-scale basins through data assimilation. Journal of Hydrology,2001,251:88-102.
    129. Peterson D.L., Spanner M.A., Running S.W., Teuber K.B., Relationship of Thematic Mapper Simulator Data to Leaf Area Index of Temperate Coniferous Forests, Remote Sensing of Environment,1987,22(3):323-341.
    130. Pearson R.L., Miller L. D., Remote mapping of standing crop biomass for estimation of the productivity of the short-grass prairie, Pawnee National Grasslands, Colorado, in:Proc. of the 8th International Symposium on Remote Sensing of Environment, ERIM, Ann Arbor, MI: ERIM.1972,1357-1381.
    131. Penning de Vries F.W.T., van Laar H. H., Simulation of growth processes and the model BACROS. In Penning de Vries F.W.T. & van Laar H.H. (Eds.), Simulation of plant growth and crop production. Simulation Monographs. Wageningen, The Netherlands:PUDOC,198, 114-135.
    132. Penning de Vries, F.W.T., Simulation models of growth of crops, particularly under nutrient stress. In:Physiological aspects of crop productivity. Proceedings of the 15th Colloquium. International Potash Institute, Bern,1980,213-226.
    133. Penning de Vries F.W.T., Jansen D.M., Ten Berge H.F.M., Bakema A.,1989. Simulation of ecophysiological processes of growth in several annual crops. Simulations Monographs, PUDOC, Netherlands,217p.
    134. Philip J.R., de Vries D.A., Moisture movement in porous media under temperature gradients, Transactions American Geophysical Union,1957,38(2):222-231.
    135. Philip J.R., The theory of infiltration 4. Sorptivity and algebraic infiltration equation. Soil Science,1957,84:257-264.
    136. Philip J.R., Plant Water Relations:Some Physical Aspects. Annual Review of Plant Physiology,1966,17:245-268.
    137. Pilkey, O.H., Pilkey-Jarvis L., Useless arithmetic:Why Environmental Scientists Can't Predict the Future, Columbia University Press, New York,2007.
    138. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P., Numerical Recipes in C. The Art of Scientific Computing,2nd edn, Cambridge University Press, Cambridge,1992.
    139. Price W.L., Global optimization algorithms for a CAD workstation. Journal of Optimization Theory and Applications,1987,55:133-146.
    140. Raman H., Mohan S., Rangacharya N.C.V., Decision support for crop planning during droughts, Journal of Irrigation and Drainage Engineering, ASCE,1992,118:229-241.
    141.Reichle R.H., Entekhabi D., McLaughlin D.B., Downscaling of radio brightness measurements for soil moisture estimation:A four dimensional variational data assimilation approach. Water Resources Research,2001,37 (9),2353-2364.
    142. Richardson A.J., Wiegand C.L., Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing,1977,43 (12):1541-1552.
    143. Richter R., A fast atmospheric correction algorithm applied to Landsat TM images. International Journal of Remote Sensing,1990,11:159-166.
    144. Ritchie J.T., Alocilja E.C., Singh U., Uehara G., IBSNAT and CERES-Rice model. Weather and Rice, Proceedings of the International Workshop on the Impact of Weather Parameters on Growth and Yield of Rice,7-10 April 1986. International Rice Research Institute, Manilla, Philippines,1987,271-281.
    145. Ritchie J.T., Otter S., Description and performance of CERES Wheat:A user oriented wheat yield model. USDA-ARS, ARS238,1985,159-175
    146. Rodriguez J., Duchemin B., Watts C. J. Er-Raki, S., Wheat yields estimation using remote sensing and crop modeling in Yaqui Valley in Mexico. Proc. IGARSS'03, Toulouse, France. 2003.
    147. Roujean J.L., Breon F.M., Estimating PAR absorbed by vegetation from bidirectional reflectance measurements, Remote Sensing of Environment,1995,51:375-384.
    148. Rouse J.W., Haas R.H., Schell J.A., Deering D.W., Harlan J.C., Monitoring the vernal advancement of retrogradation of natural vegetation. NASA/GSFC, Type Ⅲ, Final Report, Greenbelt, MD, USA,1974,1-371.
    149. Saltelli A., Chan K., Scott E.M., Sensitivity Analysis, Wiley Series in Probability and Statistics,2000.
    150. Saltelli A., Tarantola S., Campolongo F., Ratto, M., Sensitivity Analysis in practice, A Guide to Assessing Scientific Models, John Wiley & Sons, Joint Research Centre of the European Commission, Ispra, Italy,2004.
    151.Scanlon B.R., Healy R.W., Cook P.G., Choosing appropriate techniques for quantifying groundwater recharge, Hydrogeology Journal,2002,10:18-39.
    152. Schlerf M., Atzberger C., Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data. Remote sensing of Environment, 2006,100:281-294.
    153. Scurlock J.M.O., Johnson K., Olson R.J., Estimating net Primary Productivity from grassland biomass dynamics measurements. Global Change Biology.2002,8:736-753.
    154. Shabanov N.V., Huang D., Yang W., Tian B., Knyazikhin Y., Myneni R.B., Ahl D.E., Gower S.T., Huete A.R., Arogao L.E.O.C., Shimabukuro Y.E., Analysis and optimization of the MODIS leaf area index algorithm retrievals over broadleaf forests. IEEE Transactions on geoscience and remote sensing,2005,43:1855-1865.
    155. Shepherd A., McGinn S. M., Wyseure G.C.L., Simulation of the effect of water shortage on the yields of winter wheat in north-east England, Ecological Modelling,2002,147:41-52.
    156. Simunek J., Van Genuchten M.Th., Sejna M., The HYDRUS-1D Software Package for Simulating the Movement of Water, Heat, and Multiple Solutes in Variability Saturated Media, Version 3.0. Department of Environmental Sciences University of California Riverside, Riverside, California, USA,2005,270 pp.
    157. Smith J.A., LAI inversion using a back propagation neural network trained with a multiple scattering model. IEEE Transactions on geoscience and remote sensing,1993,31:1102-1106.
    158. Sobol I.M., Sensitivity estimates for nonlinear mathematical models, Mathematical Modelling and Computational Experiment,1993,1:407-414.
    159. Spanner M.A., Pierce L.L., Peterson D.J., Running S.W., Remote Sensing of Temperate Coniferous Forest Leaf Area Index, the Influence of Canopy Closure, understory Vegetation and Background Reflectance, International Journal of Remote Sensing,1990a,11 (1):95-111
    160. Spanner M.A., Pierce L.L., Running S.W., Peterson D.L., The Seasonality of AVHRR Data of Temperate Coniferous:Relationship with Leaf Area Index, Remote Sensing of Environment, 1990b,33:97-112.
    161. Spitters C.J.T., van Keulen H., van Kraalingen D.W.G., A simple and universal crop growth simulator:UCROS87. In R. Rabbinge, S.A. Ward & H.H. van Laar (Eds.), Simulation and systems management in crop protection. Simulation Monographs. Wageningen, The Netherlands:PUDOC,1989.
    162. Stocker T.F., Raible C.C., Water cycle shifts gear. Nature,2005,434:830-833.
    163. Stokstad E., Agriculture:Dueling visions for a hungry world, Science,2008,319:1474.
    164. Stol W., Rouse D.L., van Kraalingen D.W.G., Klepper O., FSEOPT A FORTRAN Program for Calibration and Uncertainty Analysis of Simulation Models. A joint publication of Centre for Agrobiological Research (CABO-DLO) and Department of Theoretical Production Ecology, Agricultural University, Wageningen, The Netherlands,1992, p.24.
    165. Stockli R., Vidale P.L., European plant phenology and climate as seen in a 20-year AVHRR land-surface parameter dataset. International Journal of Remote Sensing,2002,25(17):3303-3330.
    166. Stroosnijder L., Simulation of the soil water balance. In F.W.T. Penning de Vries & H.H. van laar (Eds.), Simulation of plant growth and crop production. Simulation Monographs, PUDOC Wageningen, The Netherlands,1982,175-193.
    167. Suits G.H., The Calculation of the Directional Reflectance of a Vegetative Canopy. Remote sensing of Environment,1972,2:117-125.
    168. Tanre D., Deroo C., Duhaut P., Herman M., Morchrette J.J., Perbos J., Deschamps P.Y., Simulation of the Satellite Signal in the Solar Spectrum (5S), Users's Guide (U. S. T. de Lille, 59655 Villeneuve d'ascq, France:Laboratoire d'Optique Atmospherique),1986.
    169. Tian Y., Zhang Y., Knyazikhin Y., Myneni R.B., Glassy J.M., Dedieu G., Running S.W., Prototyping of MODIS LAI and FPAR algorithm with LASUR and LANDSAT data. IEEE Transactions on geoscience and remote sensing,2000,38:2387-2401.
    170. Tsuji G.Y., Hoogenboom G., Thornton P.K., Understanding Options for Agricultural Production, Kluwer Academic Publishers, The Netherlands,1998,399.
    171.Tuong T.P., Bhuiyan S.I., Increasing water-use efficiency in rice production:farm-level perspectives, Agricultural Water Management,1999,40:117-122.
    172. Turner D.P., Ritts W.D., Cohen W.B., Gower S.T., Running S.W., Zhao M.Sh., Costa M.H., Kirschbaum A.A., Ham J.M., Saleska S.R., Ahl D.E., Evaluation of MODIS NPP and GPP products across multiple biomass. Remote Sensing of Environment,2006,102:82-92.
    173. Uehara G., Tsuji G.Y., Overview of IBSNAT. In G.Y. Tsuji, G. Hoogenboom & P.K. Thornton (Eds.), Understanding Options for Agricultural Production. Dordrecht, The Netherlands: Kluwer Academic Publishers,1998,1-7.
    174. Van Dam J.C., Groenendijk P., Hendriks R.F.A., Kroes J.G., Advances of modeling water flow in variably saturated soils with SWAP. Vadose Zone Journal,2008,7:640-653.
    175. Van der Sluijs, J. P., A way out of the credibility crisis of models used in integrated environmental assessment, Futures,2002,34:133-146.
    176. van Diepen C.A., Rappoldt C., Wolf J., van Keulen H., Crop Growth Simulation Model WOFOST. Documentation v.4.1, Centre for World food studies, Wageningen, The Netherlands,1988, pp.99,299.
    177. Van Genuchten M.Th., A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Science Society of America Journal,1980,44:892-898.
    178. Van Keulen H., Wolf J., Modelling of agricultural production:Weather soils and crops, in: Simulation Monographs, Pudoc, Wageningen, The Netherlands,1986,479 pp.
    179. Van Laar H.H., Goudriaan J., Van Keulen, H., SUCROS 97:Simulation of crop growth for potential and water-limited production situations, as applied to spring wheat, Quantitative Approaches in Systems Analysis, vol.14, AB-DLO, Wageningen, The Netherlands.1997.
    180. Veld R. J., Willingly and Knowingly, LEMMA Publishers, The Netherlands,2000.
    181. Verhoef W.,. Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model. Remote Sensing of Environment,1984,16:125-141.
    182. Verhoef W., Menenti M., Azzali S., A colour composite of NOAA-AVHRR-NDVI based on time series analysis (1981-1992). International Journal o f Remote Sensing,1996,17:231-235.
    183. Vermote E., IEEE, Tanre D., Deuze J.L., Herman M., Morcrette J., Second simulation of the satellite signal in the solar spectrum,6S:An overview. IEEE Transactions on Geoscience and Remote Sensing,1997,35(3):675-686.
    184. Walthall C., Dulaney W., Anderson M., Norman J., Fang H.L., Liang, S.L., A comparison of empirical and neural network approaches for estimating corn and soybean leaf area index from Landsat ETM+ imagery. Remote sensing of Environment,2004,92:465-474.
    185. Wang G.X., Cheng G.D., Water resource development and its influence on the environment in arid of China -the case of the Heihe River basin. Journal of Arid Environments,1999, 43:121-131.
    186. Wang Y., Tian Y, Zhang Y, El-Saleous N.Z., Knyazikhin Y, Vermote E.F., Myneni R.B., Investigation of product accuracy as a function of input and model uncertainties:Case study with SeaWiFS and MODIS LAI/FPAR,2001.
    187. White M.D., Oostrom M., Rockhold M.L., Rosing M., Scalable modeling of carbon tetrachloride migration at the Hanford site using the STOMP simulator. Vadose Zone Journal, 2008,7:654-666.
    188. Wilkerson G.G., Jones J.W., Boote K.J., Ingram. K. T., Mishoe, J.W., Modeling soybean growth for crop management. Trans. ASAE,1983,26:63-73.
    189. Wolf, J., Comparison of two potato simulation models under climatic change. Ⅰ. Model calibration and sensitivity analysis, Climate Research,2002,21:173-186.
    190. Xu Z. W., Liu S. M., Gong L. J., Wang J. M., Li X. W., A study on the data processing and quality assessment of the eddy covariance system, Advances in Earth Science,2008, 23(4):357-370.
    191. Yin X., Struik P.C., Kropff M.J., Role of crop physiology in predicting gene-to-phenotype relationships. Trends in Plant Science,2004,9:426-432.
    192. Yin X., Van Laar H.H., Crop systems dynamics:an ecophysiological simulation model for genotype by environment interactions. Wageningen Academic Publishers, The Netherlands, 2005,155pp.
    193. Zehe E., Becker R., Ardossy A.B., Plate E., Uncertainty of simulated catchment runoff response in the presence of threshold processes:Role of initial soil moisture and precipitation. Journal of Hydrology,2005,315:183-202.
    194. Zhang Y, Tian Y, Knyazikhin Y, Martonchik J.V., Diner D.J., Leroy M., Myneni R.B., Prototyping of MISR LAI and FPAR algorithm with POLDER data over Africa. IEEE Transactions on geoscience and remote sensing,2000,38:2402-2418.
    195.曹巧红,龚元石,应用HYDRUS-1D模型模拟分析冬小麦农田水分氮素运移特征.植物营养与肥料学报,2003,9(4):139-145.
    196.池宝亮,黄学芳,张冬梅,李保国,点源地下滴灌土壤水分运动数值模拟及验证.农业工程学报,2005,21(3):56-59.
    197.冯利平,高亮之,金之庆,马新明,小麦发育期动态模拟模型研究.作物学报,1997,23(4):418-424.
    198.高亮之,金之庆,黄耀,水稻栽培计算机模拟优化决策系统.北京:中国农业科技出版社.1992.124-134.
    199.郝芳华,孙雯,曾阿妍,李鹏,张嘉勋,岳勇,HYDRUS-1D模型对河套地区不同灌溉情景下氮素迁移的模拟.环境科学学报,2008,28(5):853-858.
    200.侯英雨,王建林,利用气象卫星资料估算全球作物总产研究.气象,2005,31(8)18-21.
    201.黄季焜,斯·罗泽尔,迈向21世纪的中国粮食经济.北京:中国农业出版,1998,5-13.
    202.雷波,农业水资源效用评价研究.博士学位论文,北京:中国农业科学院农业资源与农业 区划研究所,2010,80p.
    203.雷志栋,胡和平,杨诗秀,土壤水研究进展与评述.水科学进展,1999,10(3)311-318.
    204.雷志栋,杨诗秀,谢森传,土壤水动力学.北京:清华大学出版社,1988
    205.李道西,罗金耀,地下滴灌土壤水分运动数值模拟.节水灌溉,2004,(4)4-7.
    206.李亮,基于遥感技术与HYDRUS-1D模型河套灌区盐荒地水盐运移规律研究,博士学位论文,呼和浩特:内蒙古农业大学,2011,124p.
    207.李卫国,李秉柏,作物长势遥感监测应用现状和展望.江苏农业科学,2006,(3):12-15.
    208.梁青青,朱厚岩,我国节水农业发展现状研究.中国环境管理,2011,4:16-19.
    209.刘昌明,周长青,张士锋,王小莉,小麦水分生产函数及其效益的研究.地理研究,1996,24(1):1-5.
    210.刘增进,柴红敏,徐建新,冬小麦土壤水分运动数值计算.灌溉排水学报,2004,23(2):73-76.
    211.李新,黄春林,车涛,晋锐,王书功,王介民,高峰,张述文,邱崇践,王澄海,中国陆面数据同化系统研究的进展与前瞻.自然科学进展,2007,17(2):163-173.
    212.潘学标,韩湘玲,石元春,COTGROW(?)棉花生长发育模拟模型.棉花学报,1996,8(4):180-188.
    213.浦瑞良,宫鹏,高光谱遥感及其应用.北京:高等教育出版社,2000.
    214.任建强,陈仲新,唐华俊,DIS-NDVI小麦遥感估产—以山东省济宁市为例.用生态学报,2006,7(12):2371-2375.
    215.尚宗波,杨继武,殷红,罗新兰,赵世勇,玉米生长生理生态学模拟模型.植物学报,2000,42(2):184-194.
    216.石玉林,卢良恕,中国农业蓄水与节水高效农业建设,北京:中国水利水电出版社,2001.
    217.宋开山,张柏,于磊,王宗明,玉米地上鲜生物量的高光谱遥感估算模型研究.农业系统科学与综合研究,2005,21(1):65-67.
    218.孙纳正,地下水的数值模型和数值方法.北京:地质出版社,1981.
    219.汤奇成,绿洲的发展与水资源的合理利用.干旱区资源与环境,1995,9(3):107-111.
    220.万华伟,融合多源遥感数据反演地表参数的方法研究.学位论文,北京:北京师范大学,2007,126p.
    221.王大成,王纪华,靳宁,王芊,李存军,黄敬峰,王渊,黄芳,用神经网络和高光谱植被指数估算小麦生物量.农业工程学报,2008,24(增刊2):196-201.
    222.王石立,王馥棠,李友文,郭友三,春小麦生长简化模拟模式的研究.应用气象学报,1991,3:293-299.
    223.王水献,周金龙,余芳,董新光,应用HYDRUS-1D模型评价土壤水资源量.水土保持研究,2005,12(2):36-38.
    224.王人潮,黄敬峰,水稻遥感估产.北京:中国农业出版社,2002.
    225.王秀珍,黄敬峰,李云梅,王人潮,水稻叶面积指数的多光谱遥感估算模型研究.遥感技术与应用,2003,18(2):57-65.
    226.谢云,Kiniry, J.R,国外作物生长模型发展综述.作物学报,2002,28:190-195.
    227.闫岩,柳钦火,刘强,李静,陈良富,基于遥感数据与作物生长模型同化的冬小麦长势监测与估产方法研究.遥感学报,2006,10:804-811.
    228.杨舒媛,严登华,李扬,胡东来,俞烜,张明珠,生态水文耦合研究进展.水利水电技术,2009,40(2):1-4.
    229.杨星卫,王长耀,全球稻谷主产国遥感估产可行性研究,应用气象学报,1998,9(2):251-256
    230.尹大凯,胡和平,青铜峡银北灌区井灌井排水盐运动数值模拟.农业工程学报,2002,18(3):1-4.
    231.宇振荣,Driessen, P.M.,基于遥感反演作物冠层温度的作物生长模拟和预报.中国农业大学学报,2003,8(suppl):71-75.
    232.张峰,吴炳方,刘成林,罗治敏.利用时序植被指数监测作物物候的方法研究.农业工程学报,2004,20(1):155-159.
    233.张黎,王石立,何延波,马玉,庄立伟,侯英雨,遥感信息应用于水分胁迫条件下的华北冬小麦生长模拟研究.作物学报,2007,33:401-410.
    234.赵静,黑河流域陆地水循环模式及其对人类活动相应的研究.博士学位论文, 北京:中国地质大学,2010,96p.
    235.赵艳霞,遥感信息与作物生长模型结合方法研究及初步应用.博士学位论文,北京:北京大学,2005,135p.
    236.赵英时,遥感应用分析原理与方法.科学出版社,2003,478p.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700