用户名: 密码: 验证码:
沙漠湖盆区地下水生态系统及植被生态演替机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水是地球上一切生物赖以生存的宝贵资源。地下水,作为水资源的重要组成部分,对于自然环境和人类社会经济活动的可持续发展具有不可替代的作用,特别是在降水稀少的干旱荒漠区,是维系荒漠区天然植被生态平衡的重要部分。因而,深入探讨地下水生态系统变化与天然植被生态演替之间的机制,具有重要意义。
     干旱荒漠区,气候干燥、降水稀少、蒸发量大,自然环境条件恶劣,植被生态环境退化,土地沙漠化加剧。究其原因,除了地质构造变动、全球气候条件变化外,与地下水系统变化密切相关。例如我国西北的干旱荒漠区,从地理空间格局看,具有山地和盆地相间分布的特殊地理空间格局。其中,大型内流盆地主要包括甘肃河西走廊、新疆准噶尔盆地、塔里木盆地、青海的柴达木盆地以及吉兰泰—河套盆地等。由于气候极端干旱,盆地内呈现出典型的荒漠景观,然而盆地周边都有高山峻岭分布,如著名的祁连山、天山、昆仑山、贺兰山、阴山等,这些山脉在区域上成为干旱地区大气中水分凝聚中心,降水量相对较大,为风沙覆盖的山前洪积平原和湖积盆地地下水提供了重来的补给来源。所以说,在沙漠湖盆区,尽管生态环境恶劣,但是在地下水浅埋的风沙覆盖盐湖附近仍然生长着许多天然植被,它们对于维护该地区生态环境起着重要的作用。
     本文选取沙漠湖盆区为研究对象,依托SEE生态协会资助项目:“乌兰布和沙漠地下水资源及其生态效应研究”,以乌兰布和沙漠覆盖的吉兰泰湖盆地区为例,综合运用理论分析、野外调查、室内试验的方法,通过对研究区地下水生态系统指标体系的构建,开展了沙漠湖盆区地下水生态系统及植被生态演替机制研究,本文的主要研究成果:
     1作者重新界定了地下水生态系统定义,认为地下水生态系统,是指地下水系统及与地下水有依赖关系的生态系统,包括地下水系统及地下水生植物系统。地下水系统主要包括地下水流系统、地下水结构系统以及地下水系统生物。地下水生植物系统是指直接或者间接依赖地下水生存的植物系统。
     2研究了在地下水位上升和下降条件下,地下水系统对沙漠植被生态系统的制约作用和沙漠植被生态系统对地下水系统变化的适应机制。
     3从水分垂直循环角度分析了地下水、毛细带水与土壤水转化关系及沙漠凝结水与地下水的联系及生态意义,认为在沙漠覆盖湖盆区地下水较为丰富,水位埋深浅,风沙土毛细作用强烈,潜水面之上普遍存在着毛细水带。毛细带水与大气水、植物水、土壤水和地下水一起构成沙漠湖盆区独特的沙漠水文生态系统,并在其中起着联结纽带作用,是干旱区水文循环的重要环节。地下水系统动态、毛细水上升特性等决定了西北沙漠湖盆区土壤水分补给状况,进而控制沙漠植被种群的分布格局,影响着所存在植被的稳定性及演替趋势。而温度场的动态是影响潜水、毛细水、土壤水分转化的关键因素。
     4明确了沙漠湖盆区地下水生态水位的概念,认为生态水位是指能够满足生态环境的要求、不致发生植被退化、土地沙漠化、土地盐渍化问题,能维持非地带性自然植被生长所需水分的浅层地下水埋藏深度。它是满足植物生态环境需要,受土壤毛细性质影响,具有时间、空间动态变化规律的一个区间。提出了适合于地下水生植物的最佳地下水生态环境的地下水位埋深。即:最佳地下水埋深=根系深度+毛细上升高度。
     5区域地下水位持续下降是植被衰退的主要原因。盆地潜水除了蒸发排泄外,吉兰泰镇工业、生活用水井的地下水开采,查哈尔滩农业灌溉井的地下水开采成为主要人工排泄方式。在乌兰布和沙漠吉兰泰盆地地下水系统中,由盆地边缘到湖盆内部潜水埋深逐渐变浅,变化范围为0.23-9.47m。从1984年到2010年,研究区内查哈尔滩绿洲灌区农业用水量持续增加,地下水位持续下降,地下水潜水位总共下降了6m到10m,平均每年下降0.27m到0.45m,承压水位年均降幅为0.20m,年变幅为1.50m-2.75m,吉兰泰盐湖以北现在水位已经下降到10-15m,自流泉消失,地下水生植被衰亡。
     6毛细水上升特性具有植被生态学意义。在植物生长阶段,如果植物根系能够探及毛细水带,则植物生长就能免受水分胁迫。地下水位下降,毛细带降低,植被获取水分减少,会导致水分胁迫。在研究区,风砂土下覆湖相红粘土毛细上升高度为3.1-4.2m。风沙土毛细上升理论最大高度为0.63-1.66m。
     7在乌兰布和沙漠吉兰泰湖盆区,天然植被群落可归纳为梭梭林、沙冬青灌丛、白刺灌丛、柠条灌丛、盐爪爪灌丛、红砂—珍珠灌丛和沙蒿灌丛等7种类型。典型依赖地下水生存的非地带性荒漠植物群落有天然梭梭次生林、沙冬青、白刺、盐爪爪、柠条等群落。它们对于维护该地区生态环境起着重要的作用。
     8从湖盆中心到外围的风成沙丘地,地下水生植物呈有规律的环带状分布。依次为水生芦苇,马蔺、盐爪爪、芨芨草,沙冬青、梭梭,白刺。在不同的地貌单元,植物生长状态和地下水位埋深的关系略有不同。在吉兰泰湖盆边缘地带,地下水埋深大于3m,植被覆盖度小于15%,梭梭群落覆盖度随着地下水埋深加大而减小;在吉兰泰湖盆内部,地下水埋深小于3m,植被覆盖度大于15%,梭梭群落覆盖度也随着地下水埋深加大而减小;而大于10m埋深,无梭梭出现;在沙丘间洼地,地下水埋深一般小于1.2m,梭梭分布稀少,覆盖度很小。
     9浅层地下水及毛细水是土壤湿层的主要水分来源,土壤湿层的存在,有利于植物在春季生长期内适应水分胁迫。通过研究区土壤剖面含水率测定结果分析认为,土壤剖面从地面往下40-80cm处为含水率相对较高的土壤湿层。根据吉兰泰气象站气温、地温的日变化与季节变化及季节冻土数据,进一步探讨了温度场及季节冻土作用下水汽运移对土壤水分补给机理,认为温度场的动态是影响地下潜水、毛细水、土壤水分转化的关键因素。
     10根据研究区地下水生植物梭梭与白刺这两种典型沙生植被生长区的毛细上升高度分析得到了研究区最佳地下水埋深为1.6-4.7m,在此地下水埋深范围内毛细水能为植物生长提供充足水分,植物生长良好,植物生态系统稳定。地下水位埋深下降至10m以下时,研究区以地下水为生的灌木退化、衰败,以降水为水分来源的超旱生灌木和草类植物种类占据群落主体。
     11在沙漠湖盆区,虽然生态环境恶劣,但是在地下水浅埋的风沙覆盖盐湖附近仍然生长着许多天然植被。针对沙漠湖盆区退化的植被生态系统,提出了基于重视恢复植物种类的选择,合理利用地下水资源,保护沙漠区生态环境的植被恢复和重建的具体措施与建议:1)以种植白刺、梭梭为主,生物和工程措施相结合,建立起较为完备的防风固沙的防护林体系;2)优化土地利用结构,实施退耕还草,发展生态畜牧业和节水农业;3)合理利用地下水资源,优先考虑沙漠区生态环境用水;4)建立地下水和植被生态的监测系统。
     预期研究成果将对乌兰布和沙漠生态保护和受损生态系统的恢复和重建具有重要的理论指导和实践意义,同时对其它沙漠湖盆地区水文生态研究具有重要的借鉴意义。
Water is a valuable resource which all the living things on earth live on. As an importantpart of forming water resource—groundwater, which plays an irreplaceable role in naturalenvironment and human social activities’ sustainable development. Especially in the ariddesert area with scarce precipitation, it is an important part in maintaining ecological balanceof natural vegetation in desert region. Therefore, it is of great significance to deeply probe themechanism between the changes of groundwater ecosystem and natural vegetation’ secological succession
     The vegetation’s ecological environment degenerated and land desertification intensifiedin arid desert region with dry climate, scarce precipitation, high evaporation and bad naturalenvironment. In addition to the tectonic and global climate condition changes, the reason isclosely related with the changes in groundwater system. For example, in the northwestern ariddesert region of our country, it takes on a special pattern of geographic space betweenmountains and basins from its geographic distribution characters. Among them the largeendorheic basins mainly include the Hexi Corridor of Gansu Province, Xinjiang Junggar basin,Tarim Basin, Qinghai Basin, Jilantai—Hetao Basin,ect..Due to the extremely dry climate,there appears typical desert landscape in basin’s heart. However, around the basin’s distributesome high ranges such as famous Qilian Mountains, Tianshan Mountains, Kunlun Mountains,Helan Mountains, Yinshan, and so on. And these mountains in the region become the moisturein atmosphere condensed centre in arid regions. With high precipitation providing importantrecharge sources for sand-covered alluvial plains and lacustrine basin groundwater. So,though the ecological environment is harsh in desert lake basin area, there grow many naturalvegetations in the sand–covered Salt Lake near the sand in shallow groundwater, which playan essential role in maintaining ecological environment of this area.
     This paper chose desert basin area as research object, relying on SEE(Society ofEntrepreneurs&Ecology)Ecological Association Fund Project-Study on the groundwaterresources and its ecological effects in Ulan Buh Desert, taking the area of Jilan Tai lake basin covered by Ulan Buh Desert as an example, carrying out the research on desert basingroundwater ecosystem and vegetation’s ecological succession mechanism throughintegratedly using theoretical analysis, field investigation, means of indoor test. The mainresearch results:
     1The author put forward the definition of groundwater ecosystem, which refers to thegroundwater and groundwater dependent ecosystem, including groundwater system andgroundwater aquatic plant system. And groundwater systems mainly consist of groundwaterflow system, groundwater formation system and groundwater system biology. Groundwateraquatic plant system means the plant system which lives directly or indirectly on groundwater.
     2The author studied the conditions of groundwater level rising and falling, the restrictivefunction of groundwater system to desert vegetation ecological system and the adaptationmechanism of desert vegetation’s ecological system to the change of groundwater system.
     3From the water vertical angle, the author analyzed the transformation relationshipamong groundwater, capillary water and soil water and the contact as well as ecologicalsignificance between desert condensation and groundwater. The author also considered thatthe groundwater in desert-covered lake basin is relatively rich and the groundwater table isshallow. Meanwhile, sandy soil capillary zones generally exist on water table. The uniquedesert hydrological ecosystem in desert basin area consists of capillary fringe together withatmosphere water, plant water, soil water and groundwater. And capillary fringe plays the roleof connection in hydrological ecosystem. At the same time, it is an important link ofhydrological circle in arid region. The characteristics of groundwater dynamic and capillarywater rising decide the conditions of soil water supply in northwestern desert lake basin area,controlling the distribution pattern of desert vegetation divided by species and influencing thestability of existing vegetation and succession trend. But the dynamic of temperature field isthe key factor affecting groundwater, capillary water and soil water’s transformation.
     4The author clarified the definition of ecological level of groundwater in desert lakebasin and believed that it could meet the requirements of ecological environment, prevent thedegradation of vegetation, land desertification, soil salinization problems and maintain theburied depth of groundwater for azonal natural vegetation growth needed water. And it is alsoa zone to satisfy the needs of plant ecological environment and influenced by the properties of capillary soil with dynamic variations in time and space. Here the author also put forward theamount of optimal groundwater eco-environment’s groundwater depth and capillary which arefit for groundwater aquatic plants to grow. That is-the best groundwater buried depth isequal to root depth plus capillary rising height. And the amount of capillary water rise is equalto the amount of root which carries water plus the amount of soil moisture evaporation.
     5The main reason for vegetation degeneration is that the regional groundwater leveldeclines continuously. Besides basin phreatic water’s evaporation, the exploration ofgroundwater for Jilan Tai town’ s industry, living water and agricultural irrigation wells inChahar beach have become the main way of artificial excretion. The depth of phreatic watergradually becomes shallow ranging from0.23-9.47metres from the basin edge to the basininterior in Jilai Tai basin’s groundwater system of Ulan Buh Desert. From1984to2010, inresearch area the amount of water used in agriculture in Chahar beach oasis irrigation region,and the groundwater level continued to decline in the range of6-10metres at an average of0.27-0.45metres per year. Meanwhile, confined groundwater level fell at an annual average of0.20meters varying from1.50-2.75metres. And now the water in the north of Jilan tai SalineLake has fallen10-15metres with the artesian spring disappearing and groundwater aquaticvegetation degenerating.
     6The height, velocity and water volume of capillary rise are three elements with greatsignificance in vegetation ecology. During the plant growing period, if the plant roots are ableto reach capillary fringe, plant growth can be free of water stress. On the contrary, if thegroundwater falls, capillary fringe decreases and the chances for vegetation to get waterreduce, then plant growth will lead to water stress. In the research area, the height of capillaryrise of sand-covered lake red clay is3.1-4.2metres. And the theoretical maximum height ofaeolian sand soil capillary rise is0.63-1.66metres.
     7In Jilan Tai lake basin area of Ulan Buh Desert, natural vegetations can be divided into7groups, including Haloxylon ammodendron forest, Ammopiptanthus mongolicus shrub,White thorn Scrub, Caragana shrub, Salt claw shrub, Red sand pearl Scrub and Artemisiasphaerocephala. And among them natural Haloxylon ammodendron forest, Ammopiptanthusmongolicus shrub, Nitraria tangutorum, Kalidium, Caragana microphylla and other speciesare plant communities that are typically groundwater-dependent and azonic desert plants, which also play an important role in maintaining ecological environment in this area.
     8Groundwater aquatic plants appear in regular ring-belt distributions in an order ofAquatic reeds, Iris lacteals, Kalidiums, Achnatherum splendens, Ammopiptanthus mongolicas,Haloxylon ammodendrons and Nitraria tangutorums from the lake basin center to the dunefield made by outside sand. The relationship between plant growth statement and groundwaterdepth is slightly different in various geomorphic features. At the edge of Jilan tai lake basin,groundwater depth is more than3metres, and the amount of vegetation coverage is less than15%. Here with the groundwater depth increasing, the coverage of Haloxylon ammodendrongradually decreases. At the same time, in the interior of Jilan tai lake basin, with thegroundwater depth increasing, the coverage of Haloxylon ammodendron also graduallydecreases between the groundwater depth which is less than3metres and the amount ofvegetation coverage which is more than15%. But there will be no Haloxylon ammodendronsif the groundwater depth is above10metres. In the dune depressions, here in general thegroundwater depth is less than1.2metres and Haloxylon ammodendrons scarcely distributewith small coverage.
     9Shallow groundwater and capillary water are the main source of water for wet layer insoil. The existence of wet layer in soil is beneficial to plants to adapt themselves to waterstress in plant growth period of spring. The analysis through studying the measurements ofcontent water in soil profiles show that the soil profile from the ground below40-80meters isthe wet layer in soil contains relatively high water content. According to the statistics of airtemperature and ground temperature’s diurnal and seasonal variations as well as seasonalfrozen soil from Jilan tai meteorological station, the paper probed the mechanism of rechargewhich the movement of moisture showed to soil moisture with the effect of temperature fieldand seasonal frozen soil, considering the dynamic of temperature field is the key factor ofinfluencing shallow groundwater, capillary water and soil water’s transformation.
     10According to the analysis that the height of capillary rise in these two kinds of typicaldesert vegetation land in research area where underground aquatic plants-Haloxylonammodendron and Nitraria grow, it was proved that optimal groundwater depth in researcharea is1.6-4.7metres. Within the range of this groundwater depth capillary water can offeradequate water to plant growth. And if the plants grow well, the plant ecosystem will be stable.But if the groundwater depth drops to less than10metres, the shrubs in the research areawhich live on water will degrade and decline and the super-xerophytic shrubs together withgrass plant species which depend on precipitation as water resource will dominate the principal part of community.
     11Though the environment in desert basin area is bad, many natural vegetations still growaround the shallow groundwater and sand-covered saline lakes. The author recommendedsome concrete measures and suggestions on paying more attention to recovery of plantspecies’ selection, reasonable utilization of groundwater resources and protection ofecological environment’s vegetation restoration and reconstruction in desert area according todegraded vegetation ecological system in desert lake basin area. Seventhly, in order to protectthe ecological environment in desert area and promote coordinate development amongregional economy, society and environment, four aspects of vegetation ecosystem restorationmeasures are proposed as the followings: First of all, to build perfect sand-fixation shelterbeltsystem with Nitrarias and Haloxylon ammodendrons widely planted as well as biological andengineering measures combined.Secondly, optimizing land utilization structure, implementingthe strategy of returning the grain plots to grass and developing ecological stock raising aswell as water-saving agriculture. Thirdly, making rational use of groundwater and givingpriority to eco-environment water consumption in desert area. Finally, establishinggroundwater and vegetation’s ecological monitoring system.The expected research results will be of great theoretical conduct and practical significancefor Ulan Buh Desert ecological protection and damaged ecosystem restoration andreconstruction. Meanwhile, the research results will offer important lessons forhydro-ecosystem study of other desert lake basin areas.
引文
[1] Beal.J.多孔介质流体动力学[M].李竞生,陈崇希译,孙纳正较.中国建筑工业出版社,1983
    [2] Biospheric Aspects of Hydrological Cycle.The Operational Plan,IGBP:A Study of GlobalChange of ICSU. IGBP Report No.27,Sotkholm,1993,1-84
    [3] Brown R. W. The water relations of range plants: Adaptations to water deficits.1995:291-411inD. J. Bedunah, R. E. Sosebee (eds.), Rangeland plant physiology and morphology. Society forRange Management, Denver, Colorado
    [4] Briske D.D., Richards J. H. Plant responses to defoliation: A physiologic, morphologic anddemographic evaluation.1995:22-58in D. J. Bedunah, R. E. Sosebee (eds.), Wildland plants:Physiological ecology and developmental morphology.Society for Range Management. Denver,Colorado
    [5] Caldwell M. M., Dawson T. E., and Richards J. H. Hydraulic Lift: Consequences of water effluxfrom the roots of plants [J].Oecologia,1998,113:151-161
    [6] Cooper D.J, et al. Effects of long-term water table drawdown on evapotranspirationandvegetation in an arid region phreatophyte community [J]. Journal of Hydrology,2006,325:21-3433
    [7] Crawford R.M.M., Studer-Ehrensberg K., Studer C.1997. Flood-induced change on a dune slackobserved over24years. In: Garcia Novo, F., Crawford, R.M.M., Diaz Barradas, M.C.(Eds.),TheEcology and Conservation of European Dunes. Serv. Publications Universidad de Sevilla,Sevilla, pp27-40
    [8] Cronk J. K., Fennessy M. S. Wetland plants: Biology and ecology. Lewis Publishers, Boca Raton,2001,462
    [9] David J. Cooper, John S. Sanderson, David I. Stannard, et al. Effects of long-term water tabledrawdown on evapotranspirationand vegetation in an arid region phreatophyte community[J].Journal of Hydrology,2006,(325):21-34
    [10] de Castro, F. Computer simulation of the dynamics of a dune system[J]. Ecological Modelling,1995,78:205-217
    [11] de Castro, F.,Mun oz Reinoso, J.C. Model of long term water table dynamics at Don ana NationalPark [J]. Water Research,1997,31:2586-2596
    [12] Drew M. C. Oxygen deficiency and root metabolism: Injury and acclimation under hypoxia andanoxia [J]. Annual Review of Plant Physiology,1997,48:223-250
    [13] D希勒尔著,华孟,叶和才译.土壤和水—物理原理和过程.北京农业出版杜,1981,127-136
    [14] Fenner P. W., Brady W., Patton D. R. Observations on Seeds and Seedlings of FremontCottonwood [J]. Desert Plants,1984,6:55-58
    [15] Fernandez O. A., and Caldwell M. Phenology and Dynamics of Root Growth of Three CoolSemi-Desert Shrubs under Field Conditions [J]. Journal of Ecology,1975,63:703-714
    [16] Gillette D A,Hanson K J.Spatial and temporal variability of dust production cause by winderosion in the United States.J.Geophys.Rcs.,1989,94(D2):2197-2206.
    [17] Girault D., Piezometrical measurements as an aid in establishing a typology of forestcommunities growing on hydromorphic soils [J]. Vegetatio,1990,88:131-133
    [18] Gleick PH. Water in crisis: Paths to sustainablewater use [J]. Ecological Applications,1998,8(3):571-579.
    [19] Grootjans A.P., Hartog P.S., Fresco L.F.M., Esselink H. Succession and fluctuation in a wetduneslack in relation to hydrological changes [J]. Journal of Vegetation Science,1991,2:545-554
    [20] Hacke U. G., Sperry J. S., Pittermann J. Drought Experience and Cavitation Resistance in SixShrubs from the Great Basin Utah [J]. Basic and Applied Ecology,2000,1:31-41
    [21] Horton J. L., Clark J. L.,2001. Water table decline alters growth and survival of Salix gooddingiiand Tamarix chinensis seedlings [J]. Forest Ecology and Management,140:239-247
    [22] Horton J. L., Hart S. C.Hydrauliclift:a potentially important ecosystem process[J].Trends inEcology and Evolution,1998,13:232-235
    [23] Jackson R. B., Sperry J. S., Dawson T. E. Root water uptake and transport: using physiologicalprocesses in global predictions [J]. Trends in Plant Science,2000,5:482-488
    [24] Jauregui E. The dust storms of Mexico City [J]. International Journal of Climatology,1989,9(2):169-180
    [25] Kozlowski T. T. Physiological-ecological impacts of flooding on riparian forest ecosystems [J].Wetlands,2002,22:550-561
    [26] Kramer P. J. Plant and Soil Water Relationships: A modern synthesis. McGraw-Hill, New York1969, pp:482
    [27] Luca Ridolfi, Paolo D’Odoricob, Francesco Laio.Vegetation dynamics induced byphreatophyte–aquifer interactions[J]Journal of Theoretical Biology,2007,248:301–310
    [28] Lu N., Likos W. J. Rate of capillary rise in soil [J]. Journal of Geotechnical andGeoenvironmental Engineering,2004,130(6):646-650
    [29] Mahoney J. M., Rood. Streamflow Requirements for Cottonwood Seedling Recruitment-AnIntegrative Model [J]. Wetlands,1998,18:634-645
    [30] Martin D. W., Chambers J. C. Restoring degraded riparian meadow: biomass and speciesresponses [J]. Journal of Range Management,2001,54:284-291
    [31] McElrone A. J., Pockman W. T., J. Mart′nez-Vilalta, et al. Variation in xylem structure andfunction in stems and roots of trees to20m depth [J]. New Phytologist,2004,163:507-517
    [32] Merritt D.M., Cooper D.J. Riparian vegetation and channel change in response to river regulation:a comparative study ofregulated and unregulated streams in the Green River Basin, USA.Regulated Rivers: Research and Management,2000,16:543-564
    [33] Mohammad N., Dwyer D. D., Busby F. E. Responses of crested wheatgrass and russian wildryeto water stress and defoliation [J]. Journal of Range Management,1982,35:227-230
    [34] Munoz-Reinoso J.C., de Castro F.J. Application of a statistical water-table modelrevealsconnections between dunes and vegetation at Donana [J].Journal of Arid Environments,2005,60:663-679
    [35] Noest V. A hydrology–vegetation interaction model for predicting the occurrence of plantspecies in dune slacks. Journal of Environmental Management,1994,40:119-128
    [36] Noest V. Simulated impact of sea level rise on phreatic level and vegetation of dune slacks in theVoorne dune area (The Netherlands)[J]. Landscape Ecology,1991,6:89-97
    [37] Noest, V. A hydrology–vegetation interaction model for predicting the occurrence of plantspecies in dune slacks [J]. Journal of Environmental Management,1994,40:119-128
    [38] Now J.T., Mcclelland T.M. Dust devils at white sands missile range,New Mexico:1.temporaland spatial distributions.J.Geopphys,Res.,1990,95(D9):13,707-13,721
    [39] Pate J. S., Jeschke W. D., Aylward M. J. Hydraulic architecture and xylem structure of thedimorphic root systems of South-West Australian species of, Proteaceae [J]. Journal ofExperimental Botany,1995,46:907–915
    [40] Philip J. R.Plant Water Relations: Some Physical Aspects[J].Annual Review of Plant Physiology,1966,17:245-268
    [41] Philip J R,Vries D A.Moisture movement in porous materials under temperaturegradients[J].Trans Am Geophy Unionk,1957,38:222-231
    [42] Ramirez Diaz, L., Torres Martinez A. Tipologia y dinamica de los complejos ambientales delsistema de dunas moviles de la Reserva Biologica de Donana (Huelva)[J]. Boletin de la EstacionCentral de Ecologia,1977,11:3-11
    [43] Ren T, Kluitenberg G J, Horton IL. Determining soil water fluxand Pore water velocity by a heatPulse technique [J].soil Soc.Am.[J].2000,64:552-560
    [44] Ranwell D.S. Ecology of Salt Marshes and Sand Dunes. Chapman&Hall, London,1972, pp258
    [45] Ray Froend, Bea Sommer. Phreatophytic vegetation response to climatic and abstraction-inducedgroundwater drawdown: Examples of long-term spatial and temporal variability in communityresponse [J]. Ecological Engineering,2010,36:1191-1200
    [46] Richards J. H., Caldwell M. Hydraulic lift: Substantial nocturnal water transport between soillayers by Artemisia tridentata roots [J]. Oecologia,1987,71:486-489
    [47] Salih A. A. Root and shoot growth of Prosopis chilensis in response to soil impedance and soilmatric potential [J]. Journal of Arid Environments,1998,40:43-52
    [48] Shafroth P. B., Auble G. T., Stromberg J. C., et al. Establishment of woody riparian vegetation inrelation to annual patterns of streamflow, Bill Williams River, Arizona[J]. Wetlands,1998,18:577-590
    [49] Shafroth P. B., Stromberg J. C., Patten D. T. Woody riparian vegetation response to differentalluvial water table regimes [J]. Western North American Naturalist,2000,60:66-76
    [50] Seyoum Leta.A simple model for potential dewfall in an arid region [J].AtmosphericReserch,2002,64:285-295
    [51] Sival F.P., Grootjans A.P., Stuyfzand P.J., Verschoore de la Houssaye, T. Variation ingroundwater composition and decalciphication depth in a dune slack: effects on baiphilousvegetation[J].Journal of Coastal Conservation,1997,3:79-86
    [52] Siljestrom P.A., Clemente L.E. Geomorphology and soil evolution of a moving dune systeminsouth-west Spain (Don ana National Park)[J]. Journal of Arid Environments,1990,18:139-150
    [53] Smith S. D., Nowak R. S. Ecophysiology of plants in the intermountain lowlands.1990,179-241in G.M. Hidy (eds.), Plant biology of the basin and range. Springer, Berlin
    [54] Sperry J. S., Adler F. R., Campbell G. S., Comstock J. P. Limitation of plant water use byrhizosphere andxylem conductance: Results from a model. Plant [J]. Cell and Environment,1998,21:347-359
    [55] Stromberg J. C., Wilkins S. D., Tress J. A. Vegetation-hydrology models: implications formanagement of Prosopis velutina (velvet mesquite) riparian ecosystems [J]. EcologicalApplications,1993,3:307-314
    [56] Stromberg J. C. Restoration of riparian vegetation in the southwestern United States: importanceof flow regimes and fluvial dynamism [J]. Journal of Arid Environments,2001,49:17-34
    [57] Tyree M. T., Ewers F. W. the HydraulicArchitecture of Trees and other Woody Plants [J]. NewPhytologist,1991,119:345-360
    [58] Tyree M. T., Kolb K. J., Rood S. B., et al. Vulnerability to drought-induced cavitation of ripariancottonwoods in Alberta: a possible factor in the decline of The Ecosystem [J]. Tree Physiology,1994,14:455–466
    [59] van der Maarel E., Boot R., van Dorp D., Rijntjes J.1985. Vegetation succession on the dunesnear Oostvoorne, The Netherlands; a comparison of the vegetation in1959and1980. Vegetatio58:137-187
    [60] van Beckhoven K.1992. Effects of groundwater manipulation on soil processes and vegetation inwet dune slacks. In: Carter R.W.G., Curtis T.G.F., Sheehy-Skeffington M.J.(Eds.), CoastalDunes.Balkema, Rotterdam, pp:251-263
    [61] Williams M A J, Dunkerley D L, DeDeckker P.第四纪环境[M].刘东生,译.北京:科学出版社,1998.106-112
    [62] Zangvil A.Six year of dew observations in the Negev Desert,Israel[J].Journal of AridEnvironments,1996,32(4):361-371
    [63] Zangvil A,Druian P.Measurements of dew at a desert site in southern Israel[J].GeographicalResearch Forum,1980,2:26-34
    [64] Zoladeski C.A.,1991. Vegetation zonation in dune slacks on the Leba Bar, Polish Baltic Seacoast [J].Journal of Vegetation Science2,255-258
    [65]阿拉善盟计划委员会,阿拉善国土资源,内蒙古人民出版社,1991
    [66]阿拉善盟农牧业区划委员会,阿拉善农牧业区划,内蒙古人民出版社,1992
    [67]阿拉善左旗水务局.阿拉善左旗水工程及水资源普查报告[R].2004年
    [68]阿拉善澳援项目组.关于内蒙古阿拉善盟查哈尔滩绿洲地下水资源退化情况的报告[R].2006
    [69]阿拉盟环境保护局.阿拉善盟饮用水水源地基础环境调查与研究[R].2008
    [70]白爱宁,余建,边春雷,等.土壤吸湿凝结水研究进展[J].内蒙古林业科技,2010,36(1):50-53
    [71]白文明,左强,李保国.乌兰布和沙区紫花苜蓿根系吸水模型[J].植物生志学报,2001,25(4):43l-437
    [72]白智娟.调水后额济纳绿洲植被变化研究[D].内蒙古师范大学,2008
    [73]包梅荣,托亚,刘瑞军.乌兰布和沙漠东北部土壤水分变化特征的研究[J].内蒙古农业大学学报,2006,27(1):64-68
    [74]宝成,贾克力,范军等.阿拉善查汗套海滩生态建设区最佳水文地质环境评价研究[J].内蒙古农业大学学报,2001,22(4):12-16
    [75]曹成有,寇振武,蒋德明等.科尔沁沙地丘间地植被演变的研究[J].植物生态学报,2000,24(3):262-267
    [76]曹红霞,康绍忠,时学双.地下水埋深和灌水频率对土壤溶质(Br-)运移的影响[J].水土保持学报,2007,21(6):11-15
    [77]曹志恒.沙漠边缘保护地下水意义重大[J].草业科学,2003,05:
    [78]常兆丰,韩福贵,仲生年等.民勤荒漠草场植物群落自然更新和退化演替初探[J].草业科学,2008,25(8):13-18
    [79]常兆丰,李发江,韩福贵等.民勤荒漠草地主要植物群落生境条件的比较研究[J].草业科学,2009,26(7):12-18
    [80]常兆丰,福贵,仲生年等.民勤沙区人工梭梭林自然稀疏过程研究[J].西北植物学报,2008,28(1):147-154
    [81]成格尔,张武文,徐凯然.阿拉善地区沙尘暴与土地沙漠化关系的研究.内蒙古农业大学学报,2010,31(21):35-40
    [82]陈荷生,康跃虎.沙坡头地区凝结水及其在生态环境中的意义[J].干旱区资源与环境,1992,6(2):63-72
    [83]陈仁升,康尔泗,杨建平.黑河流域山前绿洲水量转化模拟研究[J].冰川冻土,2003,25(5):566-572
    [84]陈建生,汪集旸.试论巴丹吉林沙漠地下水库的发现对西部调水计划的影响[J].水利经济,2004,22(3):28-32
    [85]陈建生,汪集旸,赵霞.用同位素方法研究额济纳盆地承压含水层地下水的补给[J].地质论评,2004,50(6):649-657
    [86]陈建耀,吴凯.利用大型蒸渗仪分析潜水蒸发对农田蒸散量的影响[J]地理学报.1997,52(7):439-446
    [87]陈梦熊.西北干旱区水资源开发与防止生态环境恶化[J].水文地质工程地质,1997,(3):18-19
    [88]陈梦熊.环境水文地质学的最新发展与今后趋向[J].地质科技管理,1995(3):28-32
    [89]陈敏,陈亚宁,李卫红.塔里木河中游地区柽柳对地下水埋深的生理响应[J].西北植物学报,2008,28(7:1415-1421
    [90]陈善科,保平,张学英.阿拉善荒漠草地生态危机及其治理对策[J].草原与草坪,2000(3)90:9-11
    [91]陈素华,宫春宁.内蒙古气候变化特征与草原生态环境效应[J].中国农业气象,2005,26(4):246-249
    [92]陈文彬,徐锡伟.阿拉善地块南缘的左旋走滑断裂与阿尔金断裂带的东延[J].地震地质,2006,28(2):319-322
    [93]程先军.有作物生长影响和无作物时潜水蒸发关系的研究[J]水利学报,1993,6:37-42
    [94]陈晓光,李剑萍,李志军等.青海湖地区植被覆盖及其与气温降水变化的关系[J].中国沙漠,2007,27(5):797-803
    [95]陈宇松,王玉婷.贺兰山西侧山前平原地下水系统内氟离子分布规律及成因分析[J].科技情报开发与经济,2009,19(3):167-169
    [96]春喜.晚第四纪吉兰泰盐湖古湖面与环境变化研究[D].兰州大学,2006
    [97]春喜,陈发虎,范玉新等.乌兰布和沙漠的形成与环境变化[J].中国沙漠,2007,27(6):927-930
    [98]春喜,陈发虎,范育新等.乌兰布和沙漠腹地古湖存在的沙嘴证据及环境意义[J].地理学报,2009,64(3):339-348
    [99]春喜,王宗礼,夏敦胜等.吉兰泰盐湖的形成及指示的环境意义[J].盐湖研究,2008,16(3):11-18
    [100]陈发虎,范育新,D.B.Madsen等.河套地区新生代湖泊演化与”吉兰泰-河套”古大湖形成机制的初步研究[J].第四纪研究,2008,28(5):866-873
    [101]陈亚宁,李卫红,徐海量等.塔里木河下游地下水位对植被的影响[J].地理学报,2003,58(4):542-549
    [102]陈亚宁,陈亚鹏,李卫红,等.塔里木河下游胡杨脯氨酸积累对地下水位变化的响应[J].科学通报,2003(48):958
    [103]陈亚宁,张宏锋,李卫红,新疆塔里木河下游物种多样性变化与地下水位的关系[J].地球科学进展,2005,20(2):158-165
    [104]慈龙骏.中国荒漠化气候类型划分与潜在发生范围的确定[J].中国沙漠,1997,l7(2):107-111
    [105]崔亚莉,邵景力,韩双平.西北地区地下水的地质生态环境调节作用研究[J].地学前缘,2001,8(1):191-196
    [106]邓正波,束龙仓.塔里木河下游数字地下水埋深模型的构建[J].河海大学学报,2005,33(1):45-47
    [107]丁加丽,彭世彰,徐俊增.不同地下水埋深时甜椒需水量及作物系数试验研究[J].灌溉排水学报,2006,25(6):30-33
    [108]丁涛,张武文,张宇.阿拉善盟土地利用对生态环境的影响分析[J].内蒙古农业大学学报,2011,01:
    [109]丁文晖.干旱区土地利用_覆盖变化的地下水水文效应[D].西北师范大学,2006
    [110]董英,张茂省,卢娜.陕北能源化工基地资源开发引起的植被生态风险[J].地质通报,2008,27(8):1313-1322
    [111]董玉祥,刘玉璋,刘毅华.沙漠化若干问题研究[M].西安地图出版社,西安1995
    [112]杜方红,黄文浩.阿拉善地区生态环境问题及探讨[J].内蒙古环境保护,2005,17(3)
    [113]董斌,张喜发,李欣,等.毛细水上升高度综合试验研究[J].岩土力学,2008,30(10):1569-1574
    [114]范布和,王晓东.阿拉善盟生态环境建设探讨[J].内蒙古林业,2005,10:4-6
    [115]樊贵盛,郑秀清,潘光在.地下水埋深对冻融土壤水分入渗特性影响的试验研究[J].水利学报,1999(3):21-26
    [116]樊自立,马英杰,张宏.塔里木河流域生态地下水位及其合理深度确定[J].干旱区地理,2004,27(1):8-13
    [117]樊自立,陈亚宁,李和平,等.中国西北干旱区生态地下水埋深适宜深度的确定[J].干旱区资源与环境,2008,22(2):1-5
    [118]方生,陈秀玲.地下水开发引起的环境问题与治理[J].地下水,2001,23(1):8-11
    [119]方静,丁永建.荒漠绿洲边缘凝结水量及其影响因子[J].冰川冻土,2005,27(5):755-760
    [120]冯起,高前兆.半湿润沙地凝结水的初步研究[J].干旱区研究,1995,12(3):72-77·
    [121]冯金朝,刘立超,肖洪浪,等.沙坡头地区土壤水分吸湿凝结的动态观测与理论计算[J].中国沙漠,1998,18(1):10-15
    [122]付国义,盂庆喜,李德海等.乌兰布和秋浇制度改革探讨[J].内蒙古水利,2007(2),110:16-17
    [123]傅华,陈亚明,王彦荣等.阿拉善主要草地类型土壤有机碳特征及其影响因素[J].生态学报,2004,24(3):469-475
    [124]傅志敏,周志芳,李明武.基于地下水埋深效应的地温突变判据[J].江苏大学学报(自然科学版),2006,27(5):441-445
    [125]高长远.干旱区潜水位最佳埋深值的确定[J].新疆农垦科技,2000,22(3):105-106
    [126]高凌岩,贾鲜艳,张伟华.乌兰布和沙漠人工绿洲边缘植物群落演替趋势和区域可持续发展[J].水土保持研究,2002,9(3):54-56
    [127]高永.吉兰泰盐湖环境演化及沙害成因[J].干旱区研究,1996,13(4):54-56
    [128]葛廷近.浅谈干旱区盐碱对造林成活率的影响[J].新疆农垦科技,2007(05):72-73
    [129]龚斌.基于遥感技术的黑河下游水资源与生态环境研究[D].中国地质大学,2006
    [130]龚家栋,程国栋.黑河下游额济纳地区的环境演变[J].地球科学进展,2002,17(4):46-50
    [131]贡璐,潘晓玲,常顺利,等.SPAC系统研究进展及其在干旱区研究应用初探[J].新疆环境保护,2002,24(2):1-4
    [132]关宏斌,王晓兰.吉兰泰与乌梁素海两地盐土植物水势的测定及探讨[J].内蒙古师大学报,2000,29(1)55-58
    [133]顾慰祖,陆家驹,谢民等.乌兰布和沙漠北部地下水资源的环境同位素探讨[J].水科学进展,2002,13(3):326-332
    [134]顾慰祖,陈建生,汪集等.巴丹吉林高大沙山表层孔隙水现象的疑义[J].水科学进展,2004,15(6):695-698
    [135]桂祥友.厚风积砂覆盖区水资源预测与优化管理研究[D].辽宁工程技术大学,2005
    [136]郭春秀,李德禄,刘虎俊等.不同种源梭梭苗木耐盐性盆栽试验[J].甘肃农业大学学报,2008(06),43:110-112
    [137]郭枫,郭相平,袁静.地下水埋深对作物的影响研究现状[J].中国农村水利水电,2008(1):63-65
    [138]郭泉水,谭德远,刘玉军等.梭梭对干旱的适应及抗旱机理研究进展[J].林业科学研究,2004,17(6):796-803
    [139]郭亚娟.乌兰布和沙漠湿地植被与土壤分布规律研究[D].内蒙古农业大学,2009
    [140]郭忠升,邵明安.半干旱区人工林草地土壤旱化与土壤水分植被承载力[J].生态学报,2003,23(8):1640-1646
    [141]郭占荣,刘花台.西北内陆盆地天然植被的地下水生态埋深[J].干旱区资源与环境,2005,19(3):157-161
    [142]郭占荣,刘建辉.中国干旱半干旱地区土壤凝结水研究综述[J].干旱区研究,2005,22(4):576-580
    [143]郭占荣,韩双平.西北干旱地区凝结水试验研究[J].水科学进展,2002,13(5):623-628
    [144]海青,刘廷玺,王冠丽.沙地蒸散发与凝结变化规律野外试验分析.内蒙古科技与经济,2009,(24):54-57
    [145]韩海涛,胡文超,司建华.阿拉善荒漠地区近50年气候变化的多时间尺度分析[J].中国农业气象,2008,29(2):139-142
    [146]韩胜利,叶冬梅,秦佳琪.乌兰布和沙漠白刺灌丛土壤水分及物理特性的研究[J].干旱区地理,2005,28(4):506-510
    [147]韩永伟,王堃,张汝民等.吉兰泰地区退化梭梭蒸腾生态生理学特性[J].草业学报,2002,10(1):13-19
    [148]韩永伟.吉兰泰地区梭梭林光合生态生理特性及其退化死亡原因的研究[D].内蒙古农业大学
    [149]韩二牛,刘玉光,刘永利等.乌兰布和沙漠昆虫区系调查初报[J].内蒙古林业科技,2002(增刊):27-30
    [150]韩太平,樊文颖,王熠青等.乌兰布和沙漠区水土资源开发现状与持续性发展对策[J].水土保持通报,1998,18(6):39-41
    [151]郝兴明,陈亚宁,李卫红等.塔里木河中下游荒漠河岸林植被对地下水埋深变化的响应[J].地理学报,2008,63(11):1123-1130
    [152]郝兴明,陈亚宁,李卫红,等.新疆塔里木河下游荒漠河岸(林)植被合理生态水位[J].植物生态学报,2008,32(4):838-84
    [153]郝兴明,陈亚宁,李卫红,等.新疆塔里木河下游物种多样性与地下水位的关系[J].生态学报,2007,27(10):4106-4111
    [154]郝俊,梁军,张星耀.阿拉善地区荒漠灌木林有害生物发生及控制[J].中国森林病虫,2006,25(4):18-21
    [155]郝玉光.乌兰布和沙漠东北部绿洲化过程生态效应研究[D].北京林业大学,2007
    [156]郝玉光,刘芳,迟悦春.乌兰布和沙区人工绿洲土壤盐分动态研究[J].内蒙古农业大学学报,2009,30(2):157-160
    [157]何炎红.乌兰布和沙漠植被与水资源相互影响的研究[D].内蒙古农业大学,2006
    [158]何炎红,田友亮,郭连生.乌兰布和沙漠可能蒸散的研究[J].干旱气象,2007,25(2):61-66
    [159]侯仁之.历史地理理论与实践[M].北京:科学出版社,1965:69-94.
    [160]侯仁之.乌兰布和沙漠的考古发现和地理环境变迁[J].考古,1973,2:92-107.
    [161]胡广录,赵文智.干旱半干旱区植被生态需水量计算方法评述[J].生态学报2008,28(12)
    [162]侯印伟,王常明.论水文地质环境在土地沙漠化发展过程中的控制作用[J].水文地质工程地质,1992,19(5):25-28
    [163]黄天明,庞忠和.应用环境示踪剂探讨巴丹吉林沙漠及古日乃绿洲地下水补给[J].现代地质,2007,21(4):624-629
    [164]乔云峰,王晓红,沈冰,纪昌明.和田绿洲地下水特征及其对生态植被的影响分析[J].长江科学院院报,2004,21(2):28-31
    [165]秦佳琪,乌兰布和沙漠不同沙地类型土坡水分变化规律的研究[D].内蒙古农业大学,2005
    [166]秦佳琪,托亚,叶冬梅等.乌兰布和沙漠不同沙地类型土壤水分特征的研究[J].内蒙古农业大学学报,2004,25(2):23-26
    [167]邱新法.我国沙尘暴的时空分布规律及其源地和移动路径[J].地理学报,200l,56(3):316-322
    [168]姬宝霖.乌兰布和沙区的水资源条件与治理开发的节水措施[J].内蒙古农技学院学报1999,20(2):87-90
    [169]姬宝霖.治理开发乌兰布和沙地建立新型的沙产业经济开发区[J].干旱区资源与环境,1999,13(2:74-78
    [170]季蒙.乌兰布和沙漠东北部影响杨树生长因素及其相应技术措施的研究[J].防护林科技,1994(1),18:12-17
    [171]吉喜斌,康尔泗,赵文智等.黑河流域山前绿洲灌溉农田蒸散发模拟研究[J].冰川冻土,2004,26(6):713-718
    [172]贾铁飞,银山,何雨等.乌兰布和沙漠东海子湖全新世湖相沉积结构分析及其环境意义[J].中国沙漠,2003(02):165-170
    [173]贾铁飞,银山.乌兰布和沙漠北部全新世地貌演化[J].地理科学,2004,24(2:217-221
    [174]贾铁飞,何雨,裴冬等.乌兰布和沙漠北部沉积物特征及环境意义[J].干旱区地理,1998,21(2):36-41
    [175]贾铁飞,石蕴琮,银山.乌兰布和沙漠形成时代的初步判定及意义[J].内蒙古师大学报,1997(3):46-49
    [176]贾文峰.乌兰布和沙漠东缘人工绿洲土壤质量演变研究[D].内蒙古农业大学,2009
    [177]贾玉奎,李钢铁,董锦兰.乌兰布和沙漠固沙林土壤水分变化规律的初步研究[J].干旱区资源与环境,2006,20(6):169-171
    [178]蒋瑾,王康富,张维静.沙地凝结水及在水分平衡中作用的研究[J].干旱区研究,1993,10(2):1-9
    [179]江天然,张立新,毕玉蓉,等.水分胁迫对梭梭叶片气体交换特征的影响[J].兰州大学学报,2001,37(6):57-61
    [180]焦克源,王瑞娟,苏利那.民族地区的生态移民效应分析-以内蒙古阿拉善移民为例[J].西北人口,2008(5),29:64-68
    [181]金红喜.西北干旱沙区四种主要造林灌木的蒸腾耗水研究[D].西北师范大学,2005
    [182]金红喜,刘左军,王继和.热平衡茎流计在荒漠灌木植物耗水研究中的应用[J].防护林科技,2004(6),63:9-13
    [183]金晓媚,胡光成,史晓杰.银川平原土壤盐渍化与植被发育和地下水埋深关系[J].现代地质,2009,23(1):23-27
    [184]康尔泗,李新,张济世.甘肃河西地区内陆河流域荒漠化的水资源问题[J].冰川冻土,2004,26(6):657-666
    [185]亢连强,齐学斌,马耀光.地下水埋深对再生水灌溉的夏玉米生长影响[J].灌溉排水学报,2007,26(5):43-47
    [186]李伯权.水文地质环境在土地沙漠化发展过程中的控制作用[J].甘肃农业,2001(1),174:7-9
    [187]李建新,李介均.磴口县境内乌兰布和流动沙区对黄河的危害及其防治[J].人民黄河,1993(5):14-16
    [188]李向义,张希明,何兴元.沙漠-绿洲过渡带四种多年生植物水分关系特征[J].生态学报,2004,24(6):1164-1171
    [189]李朝生,杨晓晖,张克斌等.沙漠-绿洲系统中降雨、土壤水分与地下水位的响应特征[J].北京林业大学学报,2007,29(4):129-134
    [190]李江风.沙漠生态系统与水分分布[J].新疆环境保护,1997,19(1):7-12
    [191]李慧卿,赵秀莲,张景波.乌兰布和沙漠东北缘不同灌溉模式绿洲外围半固定白刺群落格局研究[J].林业科学研究,2005,18(2):158-162
    [192]李宏川,赵广利.沙漠滩地的浅层地下水及开发利用[J].中国煤田地质,2007,19(4):42-44
    [193]李海涛,于贵瑞,袁嘉祖.中国现代气候变化规律及未来情景预测[J].中国农业气象,2003,24(4):1-4
    [194]李守中,肖洪浪,宋耀选等.腾格里沙漠人工固沙植被区生物土壤结皮对降水的拦截作用[J].中国沙漠,2002(6):612-615
    [195]李清河,赵英铭,江泽平.乌兰布和沙漠东北部绿洲灌区水资源供需平衡及其承载力研究[J].水土保持通报,2005,25(6):24-27
    [196]李清河,赵英铭,江泽平等.乌兰布和沙漠东北部天然植被动态及生态用水量研究[J].水土保持学报,2006,20(5):146-149
    [197]李清河,刘建锋,张景波等.乌兰布和沙漠东北部8种沙生灌木生长季末期的光合生理特性[J].西北植物学报,2006,26(11):2318-2323
    [198]李清河,赵英铭,刘建锋等.乌兰布和沙漠东北部不同起源的5种沙生灌木的光合及生长特性[J].林业科学研究2008,21(3):357-361
    [199]李锐,赵文光,陈善雄.基于GEO-SLOPE的膨胀土路基毛细水上升分析[J].华中科技大学学报(城市科学版),2006, S1:11-14
    [200]李瑞雪.阿拉善三大生态屏障受损原因分析[J].内蒙古科技与经济,2008,175(21):17-18
    [201]李善皋.盐渍土地区毛细水强烈上升高度计算公式的探讨[R]
    [202]李亚,张莹花,王继和,等.不同盐分胁迫对梭梭种子发芽的影响[J].中国农学通报,2007,23(9):293-297
    [203]李瑜,宋秀英,李辉.地下水生态系统保护探讨[J].水力水电快报,2008,29(增):4-6
    [204]李云峰,张益谦,王玮,等.向西安调水对原受益区生态环境影响研究[J].西安工程学院院报,2001,23(2):26-30
    [205]李发江.孙得祥.常兆丰.民勤沙区梭梭林自然更新机理初步研究[J].中国农学通报,2008,24(9):165-170
    [206]李亚峰,李雪峰.降水入渗补给量随地下水埋深变化的实验研究[J].水文,2007,27(5):58-60
    [207]李玉灵,朱帆,张国盛,等.毛乌素沙地凝结水动态变化及其影响因子的研究[J].干旱区资源与环境,2008,22(8):6l-66
    [208]栗现文,周金龙,赵玉杰,等.高矿化度对砂性土毛细水上升影响[J].农业工程学报,2011,27(8):84-89
    [209]雷志栋,尚松浩,杨诗秀.地下水浅埋条件下越冬期土壤水热迁移的数值模拟[J].冰川冻土,1998,20(1)51-54
    [210]林家鼎,孙菽芬.土壤内水分流动、温度分布及其表面蒸发效应的研究一土壤表面蒸发阻抗的探讨[J].水利学报,1983(7):1-8
    [211]林朝晖,刘辉志,谢正辉,等.陆面水文过程研究进展[J]..大气科学,2008,32(4):935-94
    [212]刘昌明.土壤-植物-大气系统水分运行的界面过程研究[J].地理学报,1997,52(4):366-373
    [213]刘昌明,孙睿.水循环的生态学方面:土壤-植被-大气系统水分能量平衡研究进展[J].水科学进展,1999,10(3):251-259
    [214]刘昌明.2002.关于生态需水量的概念和重要性[J].科学对社会的影响,(2):25-29.
    [215]刘芳.乌兰布和沙区的植物资源[J].内蒙古师大学报自然科学(汉文)版,2002,9(3):215-220
    [216]刘发民,张应华,仵彦卿,等.黑河流域荒漠地区梭梭人工林地土壤水分动态研究.干旱区研究,2002,19(1)
    [217]刘发民,金燕,张小军.梭梭林“肥岛”效应的初步研究.干旱区资源与环境1999,13(3)
    [218]刘广明,杨劲松,李冬顺.地下水作用条件下粉砂壤土盐分动态研究[J].土壤学报,2001,38(3):365-371
    [219]刘广明,杨劲松.地下水作用条件下土壤积盐规律研究[J].土壤学报,2003,40(1):65-69
    [220]刘广明,杨劲松.土壤蒸发量与地下水作用条件的关系[J].土壤,2002(3):141-144
    [221]刘鸿旗,孙勤德.阿拉善地区水资源利用现状及对策[J].现代农业,2007(4):56
    [222]刘俊霞.乌兰布和沙漠东北边缘花棒种群空间分布格局及群落特征的研究[D].内蒙古农业大学,2008
    [223]刘丽.基于遗传算法的水资源系统评价方法的应用研究[D].合肥工业大学,2004
    [224]刘敏.和田绿洲地下水时空分布规律及其生态环境效应研究[D].西安理工大学,2007
    [225]刘树华,黄子琛,刘立超.土壤-植被-大气连续体中蒸散过程的数值模拟[J].地理学报,1996,51(2):118-126
    [226]刘廷玺,朱仲元,王亚娟.给水度的变化机理及其试验分析[J].内蒙古农业大学学报,2002,23(2):17-21
    [227]刘晓东.青藏高原隆升对亚洲季风形成和全球气候与环境变化的影响[J].高原气象,1999,18(3):321-332
    [228]刘晓燕.民勤和临泽绿洲-荒漠过渡带几种植物耐旱机制的研究[D].兰州大学,2004
    [229]刘兴起,葛文胜.吉兰泰盐湖区域地质特征及其形成演化的遥感解译[J].海洋与湖沼,2002,33(2):145-150
    [230]刘兴起,张辉.吉兰泰盐湖沙漠化及其治理的遥感监测研究[J].盐湖研究,2000,8(2):1-5
    [231]刘玉兰.下辽河平原地下水生态水位与水资源优化配置研究[D].辽宁师范大学,2007
    [232]刘薇.黑河流域沙漠化过程中水土、生态一环境变化研究[D].中国科学院研究生院,2006
    [233]刘钟龄,朱宗元.黑河(额济纳河)下游绿洲生态受损与生态保育对策[J].干旱资源与环境,2001,15(3)
    [234]卢玲,李新,程国栋,等.黑河流域景观结构分析[J].生态学报,2001,21(8):1217-1225
    [235]陆小明.浅层地下水水文地质参数分析[J].治淮,2004(6):24-26
    [236]罗江呼.额尔齐斯河流域开发对河谷生态的影响及保护[J].新疆环境保护,1992,14(2):1-7
    [237]罗玉昌,王哲,赵平和.毛乌素沙地土壤凝结水试验研究[J].内蒙古气,2007(4):35-37
    [238]毛诗敏,杨诗秀,雷志栋,等.叶尔羌河流域裸地潜水蒸发的数值模拟研究[J]水科学进展,1997,8(4):313-320
    [239]毛旭阁.靖边北部风沙滩地区地下水开发及其环境效应分析[D].西北大学,2008
    [240] Mebus A Geyh,顾慰祖,刘涌,等.阿拉善高原地下水的稳定同位素异常[J].水科学进展,1998,9(4):333-336
    [241]马斌,周志宇,张莉丽.阿拉善左旗植物物种多样性空间分布特征[J].生态学报,2008,28(12):6099-6105
    [242]马海波,包根晓,马微东,等.内蒙古梭梭荒漠草地资源及其保护利用,草业科学,2000,17(4)
    [243]马金珠,张惠昌,易立新,等.腾格里沙漠包气带水、汽、热运动的耦合模型及水热状况模拟[J].中国沙漠,1998,18(4):340-345
    [244]马金珠,朱中华,李吉均.塔克拉玛干沙漠南缘地下水在脆弱生态环境中的作用[J].兰州大学学报(自然科学版),2000,36(4):88-94
    [245]马全林.退化人工梭梭林的群落特征及其恢复研究[D].西北师范大学,2004
    [246]马绍休,王涛,张建民,等民勤地区供水和生态需水量分析[J].水上保持研究,2006,13(6)
    [247]马兴华,王桑.甘肃疏勒河流域植被退化与地下水位及矿化度的关系[J].甘肃林业科技,2005,30(2):53-54
    [248]孟伟超,孟种,刘磊.不同地下水埋深、气象因子及作物影响的潜水蒸发模型研究[J].太原理工大学学报,2008,39(4):422-425
    [249]苗春燕,郑秀清,陈军锋.季节性冻融期不同地下水位埋深下土壤温度变化特征[J].农业工程科学,2008,24(1):496-502
    [250]苗强强,陈正汉,田卿燕,等.非饱和含黏土砂毛细上升试验研究[J].岩土力学,2011,32(S1):327-322
    [251]莫治新,尹林克.塔里木河中下游不同植被群系下土壤盐分及地下水特征研究[J].干旱区资源与环境,2005,19(1):163-166
    [252]娜仁图雅,张东明.阿拉善荒漠化生态治理对策研究[J].当代畜禽养殖业,2009(2):50-53
    [253]内蒙古地质研究所.吉兰泰盐湖供水水文地质详查报告[R].2002
    [254]聂振龙.黑河干流中游盆地地下水循环及更新性研究[D].中国地质科学院研究生部,2004
    [255]牛俊杰,赵淑贞,任世芳.历史时期乌兰布和沙漠北部的环境变迁[J].中国沙漠,19(3):223-226
    [256]潘存喜,李建华,姜雪峰.阿拉善左旗黄河沿岸水土流失的治理与开发利用[J].现代农业,2009:72-73
    [257]庞西磊,尹辉.阿拉善高原盐湖水化学特征的主成分分析研究[J].地质学报,2009,29(2):199-203
    [258]庞西磊.中国吉兰泰盐湖的资源环境演化研究[D].湖南师范大学,2009
    [259]彭轩明,吴青柏,田明中.黄河源区地下水位下降对生态环境的影响[J].冰川冻土,2003,25(6):667-671
    [260]彭淑娟.干旱地区典型生态系统水资源评价技术方法研究[D].内蒙古农业大学,2007
    [261]秦佳琪,托亚,叶冬梅.乌兰布和沙漠不同沙地类型土壤水分特征的研究[J].内蒙古农业大学学报,2004,25(2):23-26
    [262]钱鞠,塔克拉玛干沙漠公路沿线地下水空间变异性研究[D].中国科学院研究生院,2005
    [263]仇亚琴.水资源综合评价及水资源演变规律研究[D].中国水利水电科学研究院,2007
    [264]曲炜.西北内陆干旱区水资源可利用量研究[D].河海大学,2005
    [265]任世芳.历史时期乌兰布和沙漠环境变迁的再探讨[J].太原师范学院学报(自然科学版),2003,2(3):87-91
    [266]任海,彭少麟.恢复生态学导论.北京:科学出版社,2001
    [267]盛晋华,刘宏义,潘多智等.梭梭Haloxylon+ammodendron+CAMey++Bunge物候期的观察[J].中国农业科技导报,2003,5(3):60-62
    [268]盛晋华,乔永祥,刘宏义等.梭梭根系的研究[J].草地学报,2004,12(2):91-94
    [269]沈红道.阿拉善地区地下水资源概算及评价[J].内蒙古水利,2007(1),109:18-22
    [270]施炯林.地下水与绿洲可持续发展[J].地下水,2000,22(1):25-28
    [271]史晓燕.荒漠过渡带几种植物耐旱机制的研究[D].兰州大学,2007
    [272]司艳姣译,王章奇校.沙漠植物成功的秘诀[J]研究与发现,1997,2(总331期)
    [273]宋长春,邓伟.吉林西部地下水特征及其与土壤盐溃化的关系[J].地理科学,2000(3):246-250
    [274]宋菲,马国青,张煜星.乌兰布和沙漠东北部主要土地利用类型的动态变化分析[J].内蒙古农业大学学报,2004,25(2):18-22
    [275]宋菲,马国青,张煜星.乌兰布和沙漠东北部流动沙地危害及防治对策分析[J].内蒙古农业大学学报,2004,25(3):33-359
    [276]宋英春,李凤日.乌兰布和沙漠灌木种群空间格局研究[J].植物研究,2007,27(3):331-337
    [277]宋郁东,樊自立,等.中国塔里木河流域水资源与生态问题研究.新疆人民出版社,乌鲁木齐:2000
    [278]苏里坦,张展羽,宋郁东,等.塔里木河下游土地沙漠化对地下水位动态的响应[J].干旱区资源与环境,2005,19(2):62-65
    [279]苏里坦,宋郁东,张展羽.天山北麓地下水与自然植被的空间变异及其分形特征[J].山地学报,2005,23(1):14-20
    [280]苏培玺,严巧娣. C4荒漠植物梭梭和沙拐枣在不同水分条件下的光合作用特征[J].生态学报,2006,26(1):75-81
    [281]苏永红,冯起,朱高峰.额济纳旗浅层地下水环境分析[J].冰川冻土,2005,27(2):297-302
    [282]粟晓玲.石羊河流域面向生态的水资源合理配置理论与模型研究[D].西北农林科技大学,2007
    [283]孙才志.下辽河平原地下水生态水位与可持续开发调控研究[J].吉林大学学报,2007,37(2):249-254
    [284]孙才志,刘玉兰,杨俊.辽河流域平原区地下水生态水位及水量调控研究[J].水利水电科技进展,2007,27(4):15-19
    [285]孙承志.干旱山区地下水资源开发应用研究[D].中国地质大学,2007
    [286]孙勤德,李鹏飞,孙旺.阿拉善盟今年两起山洪灾害的几点思考[J].内蒙古水利,2008(1),113:14-15
    [287]孙建华,刘建军,康博文.陕北毛乌素沙地土壤水分时空变异规律研究[J].干旱区农业研究,2009,27(2):244-247
    [288]孙仕军,丁跃元,马树文等.地下水埋深较大条件下井灌区土壤水分动态变化特征[J].农业工程学报,2003,19(2):70-74
    [289]孙宪春,金晓媚,万力.应用混合分布研究银川平原地下水埋深对植被的影响[J].地学前沿,2008,15(5):344-348
    [290]孙菽芬,土壤水分流动及温度分布计算—耦合型模型[J].力学学报,1987,19(4):374-380
    [291]孙菽芬,牛国跃,洪钟祥.干旱及半干旱区土壤水热传输模式研究[J].大气科学,1998,22(1):1-10
    [292]孙洋.吉兰泰盐湖DEM与晚第四纪湖泊演化的初步研究[D].中国科学院研究生院,2006
    [293]孙自永,余绍文,周爱国,等.新疆罗布泊地区凝结水试验[J].地质科技情报,27(2):91-96
    [294]宋永昌.植被生态学[M].上海:华东师范大学出版社,2001,142
    [295]塔西甫拉提·特依拜,崔建永,丁建丽.热红外遥感技术探测干旱区绿洲-荒漠交错带地下水分布的方法研究[J].干旱区地理,2005,28(2):252-256
    [296]陶希东,石培基,李鸣骥.西北干旱区水资源利用与生态环境重建研究[J].干旱区研究,2001,18(1):18-21
    [297]谭丽鹏,何兴东,王海涛,等.腾格里沙漠油蒿群落土壤水分与碳酸钙淀积关系分析[J].中国沙漠,2008,28(4):701-704
    [298]汤梦玲,徐恒力,曹李靖;西北地区地下水对植被生存演替的作用[J].地质科技情报,2001(02):
    [299]田有亮,何炎红,郭连生.乌兰布和沙漠东北部土壤水分植被承载力[J].林业科学,2008,44(9:13-19
    [300]万力,曹文炳,胡伏生等.生态水文学与生态水文地质学.地质通报[J],2005,24(8):700-703
    [301]汪飞,玉米提·哈力克,翟富春,等.应急输水干扰下塔里木河下游荒漠植被的变化[J].新疆农业科学,2009,46(1):179-183
    [302]王丁,费良军.层状土壤上升毛管水运移特性试验研究[J].地下水,2009,31(1):35-37
    [303]王根绪,程国栋,徐中民.中国西北干旱区水资源利用及其生态环境问题[J].自然资源学报,1999,14(2):110-116
    [304]王根绪,程国栋.干旱荒漠绿洲景观空间格局及其受水资源条件的影响分析[J].生态学报,2000,20(3):363-368
    [305]王根绪,程国栋.近50年以来黑河流域水文及生态环境的变化[J].中国沙漠,1998,18(3)
    [306]王根绪,钱鞠,程国栋.生态水文科学研究的现状与展望[J].地球科学进展,2001,16(3):314-323
    [307]王根绪,程国栋,沈永平.干旱区受水资源胁迫的下游绿洲动态变化趋势分析-以黑河流域额济纳绿洲为例[J].应用生态学
    [308]王根绪,程国栋.荒漠绿洲生态系统的景观格局分析-景观空间方法与应用[J].干旱区研究,1999,16(3):6-11
    [309]王根绪,程国栋.干旱荒漠绿洲景观空间格局及其受水资源条件的影响分析[J].生态学报,2000,20(3):363-368
    [310]王继和,马全林.民勤绿洲人工梭梭林退化现状、特征与恢复对策[J].西北植物学报,2003,23(12);2107-2112
    [311]王积强.关于沙地凝结水测定问题—与蒋瑾等同志商榷[J].干旱区地理,1993,10(4):54-56
    [312]王君厚,司守霞.乌兰布和沙漠东北边缘人工绿洲地下水动态研究[J].干旱区资源与环境,1998,12(2):19-29
    [313]王君厚,周士威,任培玫.乌兰布和沙漠东北边缘植物群落物种多样性及其生态环境[J].中国沙漠,1996,16(3):258-264
    [314]王培亮.乌兰布和灌区黄灌与井渠双灌关系浅议[J].内蒙古水利,2006(4),108:363-368
    [315]王式功.我国西北地区沙尘暴时空分布及其成因分析[C].中国科协第二届青年学术年会论文集.北京:中国科学技术出版社,1995,364-370
    [316]王式功.中国北方地区沙尘暴变化趋势初探.自然灾害学报,1996,5(2):86-94
    [317]王式功,王金艳,周自江,等.中国沙尘天气的区域特征.地理学报,2003,58(2):
    [318]王涛.中国沙漠与沙漠化[M].石家庄:河北科学技术出版社,2005
    [319]王学凤.干旱区水资源分配理论及流域演化模型研究[D].中国科学院上海冶金研究所,2000
    [320]王文彬,干旱半干旱草原区植被恢复生态用水研究[D].中国农业科学院,2007
    [321]王文化.乌兰布和垦区发展节水灌溉迫在眉睫[J].内蒙古水利,2004(2),97:117-118
    [322]王炜,刘钟龄,郝敦元等.内蒙古草原退化群落恢复演替的研究[J].植物生态学报,1996,20(5):460-471
    [323]王有昌,付强.红黏土毛细水上升影响因素对比试验研究[J].公路与汽运,2011(3):100-104
    [324]王玉魁,闫艳霞.乌兰布和沙漠自然环境特征与生态环境建设研究[A].2005年中国科协学术年会分26会场论文集[C].2005:118-120
    [325]文海燕,赵哈林.退化沙质草地植被与土壤分布特征及相关分析[J].干旱区研究,2004,1(1)
    [326]乌拉,张国庆,李炜.乌兰布和沙漠东北部磴口县地下水资源开发利用存在问题与对策[J].内蒙古水利,2007(4),112:124-125
    [327]乌拉.乌兰布和沙漠植被及其保护[J].陕西林业科技,2007,(4):133-137
    [328]武选民.干旱、半干旱地区水文地质研究现状[J].水文地质工程地质,1999(4):41-46
    [329]武文一,于显威,杨晓晖等.库布齐沙漠北缘沙丘不同部位露水凝结量的初步研究[J].水土保持研究,2008,15(3):88-92
    [330]向伟玲.阜康市地下水时空动态变化及生态影响研究[D].新疆大学,2007
    [331]肖彩红,王志刚,李永义.关于乌兰布和沙漠综合治理的几点意见[J].内蒙古林业科技,2001,增刊:95-98
    [332]肖彩虹,王志刚,刘芳,等.乌兰布和沙区5种沙生植物扦插繁殖试验[J].林业实用技术,2007(9):11-12
    [333]肖彩虹,王志刚,李永义.关于乌兰布和沙漠综合治理的几点意见[J].内蒙古林业科技,2001(增刊):95-98
    [334]肖彩虹,郝玉光,马学献.乌兰布和沙漠东北部干旱指数的变化特征[J].防护林科技,2008(2),83:4-6
    [335]肖彩虹,郝玉光,贾培云等.乌兰布和沙漠东北部磴口绿洲近52a水分因子的变化[J].干旱区资源与环境,2008,22(6):161-165
    [336]肖彩虹,郝玉光,郭承德等.乌兰布和沙区人工绿洲小气候的变化[J].中国农业气象,2003,24(2):31-33
    [337]肖生春,肖洪浪,周茂先.近百年来西居延海湖泊水位变化的湖岸林树轮记录[J].冰川冻土,2004,26(5):557-561
    [338]徐恒力,周爱国,肖国强,等.西北地区干旱化趋势及水盐失衡的生态环境效应[J].地球科学,2000,25(5):500-504
    [339]徐海量,陈亚宁,李卫红.塔里木河下游生态输水后地下水的响应研究[J].环境科学研究,2003,16(2):19-23
    [340]徐海量,宋郁东,王强,等.塔里木河中下游地区不同地下水位对植被的影响[J].植物生态学报,2004,28(3):400-405.
    [341]徐启运.我国西北地区沙尘暴天气时空分布特征分析.见:方宗义编,中国沙尘暴研究[M].气象出版社,北京,1997,11-15
    [342]闫德仁,张玉峰,王丽等.沙漠生物结皮层覆盖对风沙土水分蒸发特征的影响[J].内蒙古林业科技,2009,35(1):5-9
    [343]颜宏.全国沙尘暴天气研讨会会议总结[J].甘肃气象,1993,11(3):6-11
    [344]闫满存,王光谦,李保生.巴丹吉林沙漠高大沙山的形成发育研究[J].地理学报,2001,56(1)83:83-90
    [345]杨红斌.艾比湖流域生态环境调控研究[D].西安科技大学,2007
    [346]杨建锋.地下水-土壤水-大气水界面水分转化研究综述[J].水科学进展,1999,10(2):183-189
    [347]杨丽萍.基于遥感与DEM的“吉兰泰-河套”古大湖重建研究[D].兰州大学,2008
    [348]杨根生,刘连友,刘志民.磴口县土地沙漠化及其治理[J].干旱区资源与环境,1991,5(1):1-11
    [349]杨美霞,邹受益,赵学勇.吉兰泰地区梭梭林天然更新研究[J].内蒙古林学院学报,1995,17(2):74-86
    [350]杨文斌.风成沙丘上梭梭林衰亡的水分特性研究[J].干旱区研究,1991(1):30-33
    [351]杨蕤.西夏时期河套平原、阿拉善高原、河西走廊等地区生态与植被[J].敦煌学辑刊,2006(3),53:45-151
    [352]杨小平.近3万年来巴丹吉林沙漠的景观发育与雨量变化[J].科学通报,2000,45(4):428-433
    [353]杨鑫光.霸王对干旱胁迫的响应及根系提水研究[D].兰州大学,2006
    [354]杨泽元.地下水引起的表生生态效应及其评价研究[D].长安大学,2004
    [355]杨泽元,王文科,黄金廷等.陕北风沙滩地区生态安全地下水位埋深研究[J].西北农林科技大学学报(自然科学版),2006,34(8):67-74
    [356]杨自辉,高志海.荒漠绿洲边缘降水和地下水对白刺群落消长的影响[J].应用生态学报,2000,11(6):923-926
    [357]杨自辉.民勤沙井子地区40年来荒漠植被变迁初探[J].中国沙漠,1999,19(6):395-398
    [358]姚德良,沈卫明,李家春.塔里木盆地陆气水热交换数值模拟[J].水利学报,1994(5):31-37
    [359]易秀.干早半干早地区地下水问题[J].干旱区研究,2001,18(3):54-57
    [360]叶冬梅.乌兰布和沙漠土壤水分动态和白刺群落特征研究[D].内蒙古农业大学,2005
    [361]叶冬梅,秦佳琪,韩胜利.乌兰布和沙漠流动沙地土壤水分动态、土壤水势特征的研究[J].干旱区资源与环境,2005,19(3):126-130
    [362]叶冬梅,秦佳琪,韩胜利.乌兰布和沙漠流动沙丘不同部位水分动态研究[J].干旱区资源与环境,2005,22(3):367-369
    [363]于梅艳,陈曦,包安明.绿洲地物类型动态变化的生态响应分析[J].干旱区资源与环境,2008,22(2):48-52
    [364]袁长极.地下水临界深度的确定[J].水利学报,1964,3:50-53
    [365]曾瑜,熊黑钢,谭新萍.奇台绿洲地下水开采及其对地表生态环境作用分析[J].干旱区资源与环境,2004,18(4):124-126
    [366]赵立祥.开垦草原导致荒漠化的物理过程[J].中国草地,2004,26(2):5-9
    [367]赵明,郭志中,王耀琳.不同地下水位植物蒸腾耗水特性研究[J].干旱区研究,2003,20(4):286-291
    [368]赵明,李爱德,王耀琳.沙生植物的蒸腾耗水与气象因素的关系研究[J].干旱区资源与环境,2003,17(6):131-137
    [369]赵秀芳.地下水埋深对额济纳绿洲植被生态需水量的影响研究[D].内蒙古农业大学,2008
    [370]赵文智,刘鹄.荒漠区植被对地下水埋深响应研究进展[J].应用生态学报,2006,26(8):2702-2707
    [371]赵文智,常学礼,李启森,等.荒漠绿洲区芦苇种群构件生物量与地下水埋深关系[J].生态学报,2003,23(6):1138-1144
    [372]赵文智,常学礼,何志斌,等.额济纳荒漠绿洲植被生态需水量研究[J].中国科学,D辑,2006,36(6):559-566.
    [373]朱宏.干旱区荒漠灌木林地土壤呼吸及其影响因素分析[J]干旱区地理2006,29(6)
    [374]朱宏,赵成义,李君,等.柽柳和梭梭林地土壤呼吸研究[J]水土保持学报,2007,21(1)
    [375]赵成.地下水资源评价中有关概念的讨论[J].甘肃地质学报,1999,8(1):78-85
    [376]赵文智,程国栋.干旱区生态水文过程研究若干问题评述[J].科学通报,2001,46(22):1851-1857
    [377]赵明,郭志中,王耀琳,等.不同地下水位植物蒸腾耗水特性研究[J].干旱区研究,2003.20(4):286-291
    [378]赵维峰,朱玉来.沙漠植物进化探秘[J].新疆林业,2007,1
    [379]张长春,邵景力,李慈君.华北平原地下水生态环境水位研究[J].吉林大学学报(地球科学版),2003,33(3):323-326
    [380]张长春,邵景力,李慈君,等.地下水位生态环境效应及生态环境指标[J].水文地质工程地质,2003,3:6-9
    [381]张春霞.阿拉善左旗巴润别立镇生态农业建设途径的探讨[J].内蒙古林业,2009(1):28-29
    [382]张国庆.乌兰布和沙漠东北部磴口县生态环境受水资源的影响及对策[J].内蒙古水利,2007(4),112:80-81
    [383]张国威,周聿超.新疆内陆干旱区蒸发的计算和分析.水科学进展,1992,3(3):226-232
    [384]张凯,韩永翔,司建华,等.民勤绿洲生态需水与生态恢复对策[J].生态学杂志,2006,25(7):813-817
    [385]张凯,司建华,王润元.气候变化对阿拉善荒漠植被的影响研究[J].中国沙漠,2008,28(9):882-884
    [386]张惠昌.干旱区地下水生态平衡埋深[J].勘察科学技术,1992,(6):9-13
    [387]张进,李锦轶,李彦峰.阿拉善地块新生代构造作用[J].地质学报,2007,81(11):1481-1495
    [388]张建国,赵惠君.地下水毛细上升高度及确定[J].地下水,1988(3):135-139
    [389]张建山.沙漠滩区凝结水补给机理研究[J].地下水,1995,17(2):76-77
    [390]水文地质环境在土地沙漠化发展过程中的控制作用[J].甘肃农业,2001(174):7-9
    [391]张丽,董增川,黄晓玲.干旱区典型植物生长与地下水位关系的模型研究[J].中国沙漠,2004,24(1):110-113
    [392]张红利.乌兰布和沙漠东北部农林复合系统综合效益研究[D].内蒙古农业大学,2009
    [393]张国威,周聿超.新疆内陆干旱区蒸发的计算和分析[J].水科学进展,1992,3(3):226-232
    [394]张辉,韩凤清,刘兴起.吉兰泰盐湖地区沙漠环境变化的遥感研究[J].盐湖研究,2001,9(4):48-51
    [395]张海清.额济纳旗胡杨林主要建群种生态用水研究[D].内蒙古农业大学,2006
    [396]张强,王胜.干旱荒漠区土壤水热特征和地表辐射平衡年变化规律研究[J]自然科学进展,17(2)2007,
    [397]张荣旺.阿拉善盟贺兰山西麓水资源调查研究区降水入渗补给系数α的确定[J].内蒙古水利,2009(2),120:50-51
    [398]张荣旺,贺连忠.阿拉善盟贺兰山西麓水资源调查研究区井灌回归系数β井的确定[J].内蒙古水利,2009(2),120:46-47
    [399]张荣旺.阿拉善盟贺兰山西麓水资源调查研究区沙漠凝结水补给系数的确定[J].内蒙古水利,2009(3):121:86
    [400]张森琦,王永贵,朱桦,等.黄河源区水环境变化及其生态环境地质效应[J].水文地质工程地质,2003,03:
    [401]张天曾.中国干旱区水资源利用与生态环境[J].自然资源,1980,4:62-70
    [402]张蔚榛.地下水与土壤水动力学[M].北京:中国水利水电出版社,1991:236-250
    [403]张武文,史生胜.额济纳绿洲地下水动态与植被退化关系的研究[J].冰川冻土,2002,24(4):421-424
    [404]张武文,马秀珍,谭志刚.额济纳平原植被分布与地下水关系的研究[J].干旱区资源与环境,2000,14(增刊):31-35
    [405]张希林.浅析阿拉善荒漠梭梭林的退化原因和保护利用[J].内蒙古林业科技,1999(2):1-3
    [406]张兴鲁.干旱地区沙丘水汽凝结及其意义[J].水文地质工程地质,1986(6):39-42
    [407]张小由.额济纳绿洲生态耗水与水量平衡研究[D].中国科学院寒区旱区环境与工程研究所,2006
    [408]张小由,康尔泗,司建华.黑河下游胡杨林耗水规律研究[J].干旱区资源与环境,2006,20(1):195-197
    [409]张晓影,李小雁,王卫,等.毛乌素沙地南缘凝结水观测实验分析[J].干旱气象,2008,26(3):8-13
    [410]郑丹,李卫红,陈亚鹏等.干旱区地下水与天然植被关系研究综述[J].资源科学,2005,27(4):160-165
    [411]郑庆钟.民勤绿洲边缘沙漠化治理与水环境驱动机制研究[D].甘肃农业大学,2006
    [412]钟华平,刘恒,王义,等.黑河流域下游额济纳绿洲与水资源的关系[J].水科学进展,2002,13(2):223-228
    [413]钟瑞森.干旱绿洲区分布式三维水盐运移模型研究与应用实践[D].新疆农业大学,2008
    [414]周建秀,杨海.阿拉善地区沙尘暴的统计分析和发生规律及防治对策[J].内蒙古环境保护,2002,14(1):26-30
    [415]周金龙,艾克阿不都拉,董新光.天山北麓平原区凝结水的观测实验分析[J].新疆农业大学学报,2002,25(1):49-53
    [416]周爱国,徐恒力,陈刚.北方地区地下水系统退化的气候干旱化效应[J].地球科学,2000,25(5):510-513
    [417]周爱国,马瑞,张晨.中国西北内陆盆地水分垂直循环及其生态学意义[J].水科学进展,2005,16(1):127-133
    [418]周茅先,肖洪浪,罗芳等.额济纳三角洲地下水水盐特征与植被生长的相关研究[J].中国沙漠,2004,24(4):431-436
    [419]周绪.干旱区地下水位降幅对天然植被退化过程的影响分析[D].新疆大学,2006
    [420]周志宇,付华,陈亚明.阿拉善荒漠草地恢复演替过程中物种多样性与生产力的变化[J].草业学报,2003,12(1):34-40
    [421]周自江.近45年中国扬沙和沙尘暴天气[J].第四纪研究,2001,21(1):9-16
    [422]周自江,王锡稳,牛若芸.近47年中国沙尘暴气候特征研究.应用气象学报[J].2002,13(2):
    [423]中共阿拉善盟委、阿拉善行政公署1996年《垮世纪宏伟蓝图》(内刊)
    [424]中国科学院学部.内蒙古阿拉善地区生态困局与对策[J].中国科学院院刊,2009,24(3):278-282
    [425]朱震达,等.中国的沙漠化及其治理[M].北京:科学出版社,1989:4-5
    [426]朱震达,陈广庭,等.中国土地沙质荒漠化[M].北京:科学出版社,1990:1-37
    [427]朱宗元,梁存柱,王炜,等.阿拉善荒漠区的景观生态分区[J].干旱区资源与环境,2000,14(4):37-48
    [428]庄丽,陈亚宁,李卫红.塔里木河下游荒漠植被保护酶活性与地下水位变化的关系[J].西北植物学报.2005,25(7):1287-1291
    [429]庄艳丽赵文智.干旱区凝结水研究进展.地球科学进展,2008,23(1):31-38
    [430]邹受益,李吉成,李美仁,等.吉兰泰地区梭梭林生境与分布特征研究[J].内蒙古林学院学报,1995,17(2):19-34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700