用户名: 密码: 验证码:
硝基苯在河流—地下水系统中的行为特征与模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河流与地下水存在着密切的水力联系,在河流补给地下水过程中,一旦被污染往往在较短时间内极易导致事发下游河流大面积污染,进而导致地下水污染,而在地下水中最难治理和危害最大的是有机污染,因此河流有机污染对地下水的影响已经成为一个世界性的水环境热点问题。对有机污染物在河流-地下水系统中的行为特征进行研究具有十分重要的理论和实际意义。本研究以国家自然科学基金:“河流污染对地下水的影响和模拟研究(40872163)”项目及国家水重大专项“渭河关中段地下水对河流生态基流的保障研究(2008ZX07012-002-003-003)”为依托,选择具有代表性的“三致”有机化合物硝基苯为特征污染物,以环境化学理论和多孔介质流体动力学为指导,采用室内批量试验与数值模拟相结合的方法,开展硝基苯在渭河及其沿岸地下水中的对流迁移、水动力弥散、吸附阻滞、生物化学转化、模拟预测及修复技术的系统研究,揭示其行为特征,为深入研究硝基苯在河流-地下水系统中的污染机理和修复技术提供参考依据。取得以下成果:
     迁移试验表明,硝基苯受对流弥散、吸附和生物降解等作用,各观测点的浓度随时空推移逐渐变小,直至低于检出限。通过渗流槽示踪试验,获得了硝基苯在渗流槽中的水动力弥散系数(0.37cm2/min)和平均孔隙流速(0.026cm/min)等基本水文地质参数。
     等温非平衡吸附试验结果表明,渭河关中段上、中、下游三个代表断面的沉积物在2~3小时内对硝基苯能快速达到最大吸附量,且最大吸附量与沉积物中所含有机碳(f oc)正相关,在10~13小时内可达到表观平衡。等温平衡吸附试验结果表明,由Linear和Langmuir方程组成的双模式吸附模型可较好地描述硝基苯的等温平衡吸附规律,并可反映出吸附的主导控制性作用,即对于f oc含量低的沉积物,Langmuir吸附作用强,主要影响因素是与孔内充填或毛细凝结作用;对于f oc含量高的沉积物,Linear吸附作用强,主要影响因素是固相有机质的吸收作用。根据污染物在地下水中运移的数学模型,建立了以Linear和Langmuir组成的双模式吸附特性的阻滞系数(R)表达式,揭示了溶质液相浓度与阻滞系数之间的相关性。试验结果得出渭河原砂的最大吸附容量S0(2.02mg/km)、吸附系数Kd(3.23L/kg)和吸附表面亲合性常数b(2.54L/mg)等吸附特征参数。
     硝基苯的生物降解过程满足Monod方程。在渭河上、中、下游三个代表性断面水体中,当硝基苯浓度接近1.5mg/L时,微生物最大比生长速率(q max)达最大;浓度大于1.5mg/L时,因体系微生物生长受到抑制,降解效果增加不明显,甚至还有下降趋势,在河水-沉积物共存条件下,当硝基苯为0.5mg/L时,三个断面中微生物最大比生长速率q max(平均0.40/h左右)均大于河水相同条件的对应值(平均0.29/h左右),此时硝基苯已未检出,说明河水-沉积物共存体系降解能力提高。
     基于室内试验所获得的基本水文地质参数,构建了硝基苯在地下水中迁移转化规律的数学模型,用以对模拟渗流槽中硝基苯的迁移转化规律进行数值模拟,其模拟值与实测值相近,效果较为满意。对所得参数做一些相关修正后,将该模型用于研究区地下水中硝基苯污染的模拟预测,其预测结果可为河流硝基苯污染突发事件的控制提供参考。
     针对进入含水层介质中的硝基苯有限、浓度一般较低的特性,尝试采用KMnO_4-O_3、KMnO_4-H_2O_2、KMnO_4-超声波三种方法分别进行修复研究,其修复效率可分别达到95%、90%、93.5%以上,三种反应体系均符合一级反应动力学规律。
Rivers and groundwater are closely hydraulic connection. In the process of river rechargegroundwater. The river once contaminated, often in a relatively short time easily lead to thedownstream of large area pollution, resulting in groundwater contamination,However, theorganic contamination in groundwater is the most difficult to control and most harmful.Therefore, the impact of river organic pollution of groundwater has become a global hotissues of the water environment. The behavioral characteristics of organic pollutants in theriver-groundwater system have important theoretical and practical significance. In this study,the National Natural Science Foundation:" the project of river pollution impact ongroundwater and simulation studies (40,872,163), and the major projects of the NationalWater Weihe Guan middle of groundwater to the river ecosystem base flow protection(2008ZX07012-002-003-003)" as the basis, and select representative organic compounds"three to" nitrobenzene as characterized pollutants, and the theory of environmentalchemistry as a guide, using a combination of indoor batch experiment and numericalsimulation methods, carried out the system study of nitrobenzene on migration convection,hydrodynamic dispersion, adsorption and block, biochemical conversion, analog forecastand repair in the Weihe River and its coastal groundwater, and reveal the behavioralcharacteristics, provides the reference for the deep research nitrobenzene's pollutionmechanism and the repair technology in rivers-groundwater system. Makes the followingprogress:
     The hydrodynamic force dispersion coefficient (0.38cm2/min) and other basic hydrologygeology parameter were obtained by the tracing experiment in seepage trough. The migrationlaw show that By convective diffusion, adsorption and biodegradation, the role ofnitrobenzene concentration of the observation points over time and space became smaller andsmaller, until below the detection limit.
     Isothermal non-equilibrium adsorption results showed that sediments quickly reach themaximum adsorption capacity to nitrobenzene within2to3hours in Wei-he Guan middle ofthe upper, middle and lower reaches of the three represents section, and the maximumadsorption capacity and organic carbon contained in the sediments (f oc) positive correlation,and apparent equilibrium can be achieved within10to13hours. isothermal equilibriumadsorption test result indicated the double model type adsorption model which is composedof Linear and the Langmuir equation may describe the nitrobenzene isothermal equilibriumadsorption rule well, and may reflect the dominant and controlling role of adsorption,forsediments with low organic carbon content, the Langmuir adsorption is strong. the mainfactor is the role of hole filling or capillary condensation. For sediments with high organiccarbon content,linear adsorption is strong, the main factor is the absorption of the solid-phaseorganic matter. The combination of solute migration model in the aquifer, defines theexpression of the block coefficient(R) of the dual-mode adsorption isotherm model, andreveal a correlation between the solute liquid concentration and block coefficient.
     The nitrobenzene biodegradable process meet Monod equation. In Wei-he Guan middle ofthe upper, middle and lower reaches of the three represents section. when the nitrobenzene concentration near1.5mg/L, the microbial maximum specific growth rate reached themaximum after8days, this time the nitrobenzene biodegradation rate approximately is60%.When the nitrobenzene concentrations greater than1.5mg/L, microbial growth isinhibited, the degeneration effect increases not obviously, even also has the decliningtrend.Under river water-deposit coexistent condition,When nitrobenzene is0.5mg/L,maximum specific growth rate up to the maximum in three-section microorganisms (averageof about0.40/h),and are greater than the river(average of about0.29/h), thereforeexplained that river water-deposit coexistence system degeneration ability increases.
     Based on laboratory test results, and established a mathematical model of migration andconversion of nitrobenzene in underground water, and solute transport processes andadsorption, biodegradation can be mathematically simulated using the Matlab programmingto calculate a one-dimensional on the groundwater flow field in seepage trough, as a result,consistent with the experimental observations better,and the model was used to simulationand prediction of the nitrobenzene concentration in the groundwater of the study area, andalso achieved good results.
     In view of the nitrobenzene enters in the water-bearing stratum medium to be limited,the low concentration characteristic, the attempt use the three methods of KMnO_4-O_3,KMnO_4-H_2O_2, and KMnO_4-ultrasonic wave to conduct the repair research separatelygenerally, their repair efficiency can reach more than95%,90%,93.5%,and three reactionsystem are in line with the first-order reaction kinetics.
引文
[1]WHO.Nitrobenzene(Environmental Health Criterion230)[R].Geneva:WHO,2003.
    [2]汪民,吴永锋.地下水微量有机污染[J].地学前缘.1996,3(1-2):169-175.
    [3]美国地质调查局.李烨译.美国地下水和饮用水井中挥发性有机物分析.中国地质环境信息网,http://www.cigem.gov.cn/ReadNews.asp NewsID=8319,2007.1.28引用.
    [4]Spitz K,Moreno J.A praetical guide to groundwater and solute tansport modeling[M].New york:Johnwiley&Sons lnc,1996:365-386.
    [5] Schirmer M.,Butler B.J..Transport behaviour and natural attenuation of organic contaminants at spillsites[J].Toxicology.2004,205(3):173-179.
    [6]仵彦卿.多孔介质污染物迁移动力学[M].上海:上海交通大学出版社.2007年:81-123.
    [7]薛禹群.地下水动力学(第二版)[M].北京:地质出版社,1986.
    [8]Huang W.,Peng P.,Yu Z.,et al..Effects of organic matter heterogeneity on sorption and desorption oforganic contaminants by soils and sediments[J].Applied Geochemistry.2003,18(7):955-972.
    [9]王连生.有机污染化学.北京:高等教育出版社.2005年:43
    [10]An T.C.,Chen H.,Zhan H.Z.,et al..Sorption kinetics of naphthalene and phenanthrene in loesssoils[J].Environmental Geology.2005,47(4):467-474.
    [11] Pignatello J.J.,Organic substances and sedments in water,Vol.2.Humics and soils.Chelsea,Michian:Lew is Publishers,1991,291-307.
    [12] Pignatello J.J. Xing B.Mechanisms of slow sorption of organic chemicals to natural particles[J].Environmental Science&Technology.1996,30:1-11
    [13]天津大学物理化学教研室.物理化学[M].北京:高等教育出版社,2009.
    [14]Lambert S M,Porter P E,Schieferstein R H.Weeds,1965,Vol.13,p185-190.
    [15]Chiou C T,Lee J F,Boyd S A.Surface are of soil organic matter[J].Environ Sci Technol,1990,24:1164-1166.
    [16] Chen,W,Kan A T,Tomson M B.Irreversible adsorption of chlorinateds to natural sedimentsLimplications for sediment quality criteria[J].Environ Sci Technol,2000,34:385-392.
    [17]Kanckhoff S W,Brown D S,Scott T A.Sorption of hydrophobic pollutants on nature sediments[J].WaterRes.,1979,Vol.13,241-248.
    [18]Brusseau M L, Rao P S C. sorption kinetics of organic chemicals. Methods,models and mechanisms[J]Soil Science Society of America,1991,27:281-302.
    [19]Weber W J Jr.,McGinley P M,Katz L E.Environ.Sci Technol.,1992,Vol.26,1956-1962.
    [20]Weber W J Jr.,Huang W.Environ.Sci Technol.,1996,Vol.30,881-888。
    [21] Bremle G,Okla L,Larsson P.Upeake of PCBs infish in contaminatd river systems:bioconcentrationfactorsmeasured in field[J].Environ SciTechnol,1995,29;2010-2015.
    [22] Chiou C T,Kile D E,Rutherford D W,Manes M.Sorption of selected organi ccompounds from water toa peat soil and its humic-acid and humin fractions: potential sources of the sorptionnonlinearity[J].Environ Sci Technol,2000,34(7):1254-1258.
    [23]Paaso N,Peuravuori J,Lehtonen T,Pihlaja K.Sediment-dissolved organic mattere quilibrium partitioningof pentachlorophenol:the role of humic acid[J].environmental International,2002,28:173-183.
    [24]Yang K.,Zhu L.Z.,Lou B.F.et al..Correlations of nonlinear sorption of organic solutes withsoil/sediment physicochemical properties[J].Chemosphere.2005,61:116-128.
    [25] Cary T. Chiou. partition and adsorption of organic contaminants in environmental systems[M]. a johnwileyY&sons, inc., publication,2002.
    [26]Fetter C.W..Contaminant hydrogeology.Second Edition,Prentice-Hall Inc.New Jersey, U.S.A.1999:121-140.
    [27]Silva J.K.,Bruant R.G.,Conklin M.H.et al..Equilibrium partitioning of chlorinated solvents in thevadose zone:low foc geomedia.Environmental[J].Science&Technology.2002,36:1613-1619.
    [28]李韵珠,李保国.土壤溶质运移.北京:科学出版社.1998年:145-156.
    [29]贝尔.J著,李竞生,陈崇希译.多孔介质流体动力学.北京:中国建筑工业出版社.1983年:151-200.
    [30]Chang C.M.,Wang M.K.,Chang T.W.,et al..Transport modeling of copper and cadmium with linear andnonlinear retardation factors[J].Chemosphere.2001,43(8):1133-1139
    [31]周群英,王士芬.环境工程微生物学[M].北京:高等教育出版社,2011.
    [32] Stover EL, Kincannon DF. Biological treat ability of specific organic compounds found in chemicalindustry wastewaters [J]. J Water Pollut Control Fed,1983,55:97-109.
    [33] Anderson TA, Beauchamp JJ, Walton BT. Organic chemicals in the environment.of volatile and semivolatile organic chemicals in soils: a biotic losses [J]. J Environ Qual,1991,20:420-424.
    [34]徐冬英,吕锡武,吴敏,等.微生物降解硝基苯、酞酸酯类有机物试验研究[J].净水技术,2006,25(1):52-54.
    [35]侯轶,任源,韦朝海.硝基苯好氧降解菌筛选及其降解特性[J].环境科学研究,1999,12(6):25-36.
    [36]王庆生,李捍东,席北斗,等.利用白腐菌处理含硝基苯类化工废水的研究[J].环境科学研究,2002,15(2):19-21.
    [37]Chou WL, Speece RE, Siddiqi RH. Acclimation and degradation of petrochemical wastewatercomponents by methane fermentation [J]. Biotechnol Bioeng Symp,1978,8:391-414.
    [38]Narayanan B, Suidan-2, Gelderloos AB, et al. Treatment of semi-volatile compounds in high strengthusing an anaerobic expanded-bed GAC reactor[J]. Water Res.1993.27:171-180.
    [39]卢桂兰,郭观林,王世杰,谷庆宝,李发生.水体中硝基苯厌氧降解微生物的筛选及其降解特性研究[J].农业环境科学学报,2010,29(3):556-562.
    [40]Haigler B E,Spain J C.Biotransformation of nitrobenzene by bacteriacontaining toluene degradationpathways[J].Appl Environ Microbiol,1991,57(11):3156-3161.
    [41]任源,李湛江,吴超飞,等.硝基苯废水的厌氧—好氧基本试验与工艺理论分析[J].应用与环境生物学报,1999,(s):14-17
    [42]张波,孙剑辉.厌氧折流板反应器处理硝基苯废水的研究[J].环境污染治理技术与设备,2006,7(4):136—138.
    [43]曾苏,赵迁,傅大放.硝基苯降解菌在厌氧序批式反应器中处理硝基苯废水的应用[J].环境化学,2002,(06).
    [44]Billy E,Haiglar,Spain J C.Biotransmation of nitrobenzene by bacteria containing toluene degradationpathways[J].Applied Environ Microbiology,1991,57(4):3156-3161.
    [45]王建龙,文湘华.现代环境生物技术[M].北京清华大学出版社,2001:271.
    [46]刘明柱,陈鸿汉,胡丽琴等.生物降解作用下地下水中TCE, PCE迁移转化的数值模拟研究[J].地学前缘,200613(1),155-159.
    [47]刘晓丽,梁冰,薛强.地下水环境中有机污染物迁移转化动力学模型的研究[J].工程勘察.2003,1:24-28.
    [48]Sato T, Kimura Y, Takamizawa K.. Modeling transport and biodegradation of PCE in sandy soil.Brownfield Sites:Assessment[J], Rehabilitation and Development.2002:515-524.
    [49]Sun Y.W., Lu X.J., Petersen J.N. et al.. An analytical solution of tetrachloroethylene transport andbiodegradation[J]. Transport in Porous Media.2004,55::301-308.
    [50]张文静.佳木斯地区地下水、土中硝基苯迁移转化机理及其模拟预测.博士论文2007.
    [51]Lee J., Hundal L.S., Horton R. et al.. Sorption and transport behavior of naphthalene in an aggregatedsoil. Journal of Environmental Quality.2002,31(5):1716-1721.
    [52]Fesch C., Simon W., Haderlein S.B. et al.. Nonlinear sorption and nonequilibrium solutetransport inaggregated porous media: Experiments, process identification and modeling[J].Journal ofContaminant Hydrology.1998,31(3-4):373-407.
    [53]Mojid M.A., Vereecken H.. On the phsical meaning of retardation factor and velocity of a nonlinearlysorbing solute[J]. Journal of Hydrology.2005,302(1-4):127-136.
    [54]Balazova A., Slodicka M., Keer R. V. Parameter determination for reductive dechlorinationofchlorinated solvents[J]. Transport in Porous Media.2006,65:411-424.
    [55]Park E., Zhan H. Analytical solutions of contaminant transport from finite one-, two-, andthree-dimensional sources in a finite-thickness aquifer. Journal of Contaminant[J].Hydrology.2001,53(1-2):41-61.
    [56]宋汉周,Woodburv A.D.抽出处理措施的有效性评价一某碳酸盐岩含水层中地下水有机污染及其去除研究之三[J].河海大学学报.2000,28(4):67-71.
    [57]Matheson L.J., Tratnyek P.G.,Reductive dehalogenation of chlorinated methanes by iron metal[J].Environmental Science&Technology.1994,28(12):2045-2053.
    [58]Gillham R.W., O'Hannesin S.F.,Enhanced degradation of halogenated aliphhatics by zero-valentiron[J]. Ground Water.1994,32:958-967.
    [59]Liping Qiu Wenke Wang S-3ergetic Oxidation of Nitrobenzene in Ground Water and Its Kinetics2011International Symposium on Water Resource and Environmental Protection (ISWREP2011):132-135.
    [60]王文科,王雁林,段磊,孔金令等.关中盆地地下水环境演化与可再生维持途径[M].河南:黄河水利出版社,2006,1-6。
    [61]2010年陕西省环境状况公报
    [62]水质自动监测周报(2011年第3周)
    [63]陕西省环保厅网站
    [64]Schirmer M.,Butler B.J..Transport behaviour and natural attenuation of organic contaminants at spillsites[J].Toxicology.2004,205(3):173-179.
    [65]Hellerich L.A., Nikolaidis N.P.,Sorption studies of mixed chromium and chlorinated ethenes at thefield and laboratory scales[J]. Journal of Environmental Management.2005,75:77-88.
    [66]张春生,刘忠保.现代河湖沉积与模拟试验[M].北京:地质出版社,1997,136-147.
    [67]雷天朝。西安市城区地下水资源校核与调控措施.第二届渭河论坛,2008.10
    [68]Kasprzyk-Hordern B,Zilek M,Nawrocki J.Cataly tic ozonation and methods of enhancing molecularozone reactions in water treatment[J].Applied Catalysis B:Environmental,2003,46(4):639~669.
    [69]Wu J N,Rudy K,Spark J.Oxidation of aqueous phenol by ozoneand peroxides. Advances inEnvironment Research,2000,4(4):339~346.
    [70]谢协忠,张钰雷,于瑞生等.水分析化学.北京:中国电力出版社,2007.5.269-271.
    [71]刘玉勇,吴艳春.气相色谱质谱法测定水中硝基苯化合物[J].黑龙江水利科技,2008,36(1):73-74.
    [72]俞统馨.环境工程微生物检验手册[M].北京:中国环境科学出版社,1990:144
    [73]国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].第4版,北京:中国环境出版社,2002,12.
    [74]吴晓娟.西安市地下水污染脆弱性与时空动态分析.硕士论文2007.
    [75]郑西来,吴新利,荆静.西安市潜水污染的潜在性分析与评价[J].工程勘察,1997,4,:22-26.
    [76]宋新山,邓伟.环境数学模型[M].北京:科学出版社,2004.
    [77]孙讷正.地下水流的数学模型和数值方法[M].北京:地质出版社,1981.
    [78]宋新山.《Matlab在环境科学中的应用》[M].122-125.
    [79]Allen-King R.M., Grathwohl P., Ball W.P.,New modeling paradigms for the sorption of hydrophobicorganic chemicals to heterogeneous carbonaceous matter in soils, sediments, and rocks[J].. Advancesin Water Resources.2002,25:985-1016.
    [80]Mouvet C., Barberis D., Bourg A.C.,Adsorption isotherms of tri-and tetrachloroethylene by variousnatural solids[J]. Journal of hdrology.1993,149:163-182.
    [81]Thornton S.F.,Lemer D.N.,Banwart SA.Assessing the natural attenuation of organiccontaminants inaquifers using plume-scale electron and carbon balances:model development with analysis of uncertaintyand parameter sensitivity[J].Journal of Contaminant Hydrology.2001,53:199-232.
    [82]薛禹群,谢春红.地下水数值模拟[M].北京:科学出版社,2007:20-23.
    [83]郑彤,陈春云.环境系统数学模型[M].北京:化学工业出版社.2003年:100-120.
    [84]陈崇希,唐仲华.地下水流动问题数值方法[M].武汉:中国地质大学出版社,2002:18-18.
    [85]马长文.地下水中四氯乙烯迁移归宿与修复技术研究.博士论文,2007.
    [86]Mojid M.A.,Vereecken H..On the physical meaning of retardation factor and velocity of anonlinearlysorbing solute[J].Journal of Hydrology.2005,302(1-4):127-136.
    [87]徐仲艳,王晓蓉.改性土壤对模拟含硝基苯废水的吸附[J].环境化学,2002,21(3):235-239.
    [88]鲁如坤,土壤农业化学性质分析方法[M].中国农业科技出版社,2004.4.
    [89]奚旦立,孙裕生.环境监测(第四版)[M].高等教育出版社,2010.12.
    [90]Hoelen T P,Reinhard M..Complete biological dehalogenation of chlorinated ethylenes insulfatecontaining groundwater[J].Biodegradation,2004,15:395-403.
    [91]董建.硝基苯废水治理技术的研究进展[J].化学工业与工程,2008,25(3):264-268.
    [92]臧荣春,夏凤毅.微生物动力模型[M].北京:化学工业出版社,2004,149-152.
    [93]陈崇希,李国敏.地下水溶质运移理论及模型[M).北京:中国地质大学出版社,1996,26-31.
    [94]马会强,张兰英,李爽.低温混合菌降解硝基苯的研究[J].环境科学与技术,2007,30(12):5-7.
    [95]Borden R C,Gomez C A,Becker M T. Geochemical indicators of intrinsic bioremediation [J]. GroundWater,1995,33(2):180-189.
    [96]Bruce E. Rittmann, Perry L. McCarty.Biotechnology:Principles andApplications [M]. New York:McGraw-Hill Companies, Inc,2002:128-135.
    [97]Chapelle F H.microbiology and geochemistry [M]. New York:John Wiley&Sons INC,1993,265-294.
    [98]宝鸡峡灌区农业污染物对地下水水质的影响(西北农林科技大学2011届本科毕业论文),2011.6.
    [99]Borden R C,Gomez C A,Becker M T. Geochemical indicators of intrinsic bioremediation [J]. GroundWater,1995,33(2):180-189.
    [100]桥本奖.新活性污泥法[M].北京:学术书刊出版社,1990,22.
    [101]马荣,石建省.对流弥散方程显式差分法稳定性分析方法的初探[J].水资源与水工程学报.2010。.21(1):132-134.
    [102]陈崇希,李国敏.地下水溶质运移理论及模型[M).北京:中国地质大学出版社,1996,26-31.
    [103]贺玉龙,杨立中,杨吉义.非饱和岩体三场耦合控制方程[J].西南交通大学学报.2006,41(4).
    [104]U.S.EPA. Office of Research and Development.Pump-and-Treat Ground-water Remediation: A Guidefor Decision Makers and Practitioners [M]. Washington, DC.1996.1266.
    [105]U.S.EPA.of Selected Enhancements for Soil Vapor Extraction (EPA:542-R-97-007)[M]. WashingtonDC:National Service Center for Environmental Publications,1997.36-74.
    [106]The Interstate Technology and Regulatory Council (ITRC) of United Permeable Reactive Barriers:Lessons Learned/New Directions[M]. Washington DC:Interstate Technology&Regulatory Council,2005.8-25.
    [107]Pope D, Hurt K, Wilson B, et al. Performance Monitoreding of MNA Remedies for VOC in GroundWater (EPA:600-R-04-027)[M]. Washington DC: National Service Center for EnvironmentalPublications,2004.22-30.
    [108]王磊,陈锦烽,吕效平,等.O3/H2O2处理水中4,4′2二溴联苯及其动力学研究[J].环境科学,2007,28(9):1998-2003.
    [109]WEI Chao-hai,REN Yuan,XIE Bo,et al.Study of cooperate biodegradation of waster water containingnitrobenzene and aniline[J].Research of Environmental Sciences,1999,12(3):10-13.
    [110]荣国斌.高等有机化学基础[M].北京:化学工业出版社2009
    [111]沈吉敏,陈忠林,李学艳,等. O3/H2O2去除水中硝基苯效果与机理[J].环境科学,2006.27(9):1791~1797
    [112]傅洵,许泳吉,解从霞.基础化学教程[M].北京:科学出版社,2007
    [113]天津大学.有机化学[M].北京:高等教育出版社,1984.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700