用户名: 密码: 验证码:
多分量地震自适应极化滤波方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与常规单分量反射地震相比,多分量地震的波场信息更加丰富,联合利用纵波激发、多分量检波器接收的多波地震资料,可以解决复杂构造成像、裂隙描述及岩性勘探等难题。但是,由于多分量地震的波场比较复杂,根据不同的勘探目的,需要将不同的波场信息进行分离及去噪,为后续的资料处理和解释提供高质量的数据。
     不同类型地震波的极化特性不同,实际采集到的地震波是不同类型、不同极化特性的振动相互干涉和叠加的结果。极化分析就是一种基于地震波的极化特性基础上的信号处理方法,通过测量各种类型地震波的极化属性来简化信息的提取,在特定波型的识别与分离、各类噪声的压制、横波分裂分析、多波震相识别和确定波至到时等方面都有很好的效果。因此,多分量地震极化分析研究对于多分量地震的理论研究和实际应用有着深远的意义。
     本文针对多分量地震,在时间域和时频域分别研究了极化分析和滤波方法,取得了如下成果:
     (1)在S变换的基础上,提出了一种改进的广义S变换(NGST)。改进的广义S变换主要针对窗函数进行改造,引入了一个以频率为自变量的调节函数,该时窗采用宽度可变的高斯函数,通过设置调节因子,使得窗函数的宽度可以随信号频率呈线性或指数变化。这样,不仅能使窗函数的时宽随频率变化的速率变快,同时,窗函数时宽大小随频率的变化不再受线性变化的约束,这更符合非平稳地震信号的特点。通过合成信号的S变换和NGST时频谱对比分析,NGST时频谱在各频率成份的能量中心的聚集性更好,时频分辨率得到了提高,为后续时频域极化分析方法的研究奠定了数学基础。
     (2)标准协方差矩阵的时间域极化分析方法窗口长度固定,在实际应用中,时窗长度的选择完全依赖于经验判断,而且在给定长度的时窗内求得的极化参数不具有时变特性,因此,不可避免地会出现解释上的假象。另外,由于时窗长度的影响,无法确定记录开始和结束部分的极化参数。目前,该方法在实际应用中有很大的局限性。鉴于此,本文引入了自适应窗函数,该窗函数的长度自适应于三分量地震记录的瞬时频率,避免了在选择时窗长度时的人为影响。而且该极化分析方法是在三分量地震记录的每一个时间采样点上求极化特征参数的,因此不需要进行插值处理。
     (3)将自适应协方差极化分析方法和时频分析方法相结合,研究了基于小波变换和广义S变换的时频域自适应协方差极化分析方法。该方法建立在协方差矩阵的基础上,用一个近似方程来计算时窗内的协方差矩阵,这个时窗是由多分量记录的瞬时频率确定的,其长度自适应于每个时频点处的地震波的优势周期;在每个时频点估计极化特征参数,不需要进行插值;明确地将极化分布和时频分析方法联系起来,在时频域设计中滤波器,进行波场识别和分离。处理结果表明,该方法可以在时频域中准确提取各个采样点的所有极化属性,具有一定的实用性。
     (4)在广义S变换时频分析方法基础上,实现了一种时频域瞬时极化分析新方法。该方法不再依赖协方差矩阵,而是根据多分量信号的时频谱及瞬时相位来计算极化参数,例如极化主轴、极化次轴、极化率、平面化向量等。由于该方法在时频域中实现,结合了时频分析方法的优势,在波形识别方面更加准确。通过极化率可以识别并分离线性极化波和椭圆及圆形极化波,通过平面化向量与各分量之间的夹角大小,定性识别平面波和非平面波。
     (5)结合广义S变换和谱分解方法,在时频域通过多分量地震数据时频谱的实部和虚部来表征极化椭圆,通过求取时频域中极化椭圆在每一个时频点的极化参数,将各分量信号分解为“线性”信号和“圆形”信号,再对各分量的“线性”信号和“圆形”信号进行广义S反变换,最终得到线性极化波和椭圆极化波,达到波场分离的目的。该方法的一个优点在于在压制具有某一种极化特性的地震波的同时不会影响其他极化特性的地震波的振幅,比如在压制椭圆极化波的时候,能够完全保留线性极化波。
     由于各种极化分析方法在不同滤波目的情况下,效果也不尽相同。因此,在论文的结论部分,给出了针对不同处理目的的极化方法选择方案。
The multi-components Seismic data contain more information as compared withconventional single-component reflection seismic exploration. We can use the jointmulti-wave information to resolve many problems which cannot be realized with reflectionseismic. Meanwhile, because the wave-field of multi-wave Multi-component Seismic is morecomplex, in order to provide high-quality data for subsequent data processing andinterpretation, we need to separate and denoising according to specific exploration target.
     Different type of seismic wave has different polarization properties. The actuallycollected seismic wave is interfered and superimposed by vibrations with different type anddifferent polarization property. Polarization analysis is a signal processing method based onpolarization characteristic of seismic wave. It can simplify the extraction of information bymeasuring the polarization properties of the various types of seismic waves. Thus, it havegood effects on specific wave-type identification and separation, separation of various typesof noise, noise suppression, multi-wave seismic phase identification and wave arrival timedetermination. With that said, researches of polarization analysis for multi-wavemulti-component Seismic has profound significance to the theoretical study and practicalapplication of the multi-wave multi-component seismic exploration.
     In this paper, we respectively studied polarization analysis and filtering methods in timedomain and time-frequency domain for the multi-wave multi-component seismic data, and gotthe following achievements:
     (1) An improved generalized S transform (NGST) is put forward based on S transform.The NGST introduces a tuning function whose independent variable is frequency in timewindow named variable-width Gaussian function. The width of the window function linearlyor exponentially changes with the frequency of signal by setting the adjustable factor. In thisway, On the one hand, we can make the rate of window function width with a frequencybecomes faster, On the other hand, the change of the window function width with thefrequency is no longer bounded by the linear changes, that is more correspond with thecharacteristics of the non-stationary seismic signals. Through comparing time-frequencyspectra of synthesized signal by S transform and NGST, we can find that NGST has a good aggregation in the energy center of the every frequency component and has a higherresolution, which has laid the mathematical foundation for the subsequent polarizationanalysis method in time-frequency domain.
     (2) The window length in Polarization analysis method based on standard covariancematrix in time domain is fixed. In the practical application, the selection of time windowlength of the standard covariance method is entirely dependent on the experience, and thepolarization attributions in given length window don’t have time-varying characteristic. So itwill inevitably appear gloss in interpretation. In addition, due to the impact of time windowlength, we cannot determine the beginning and end part of the polarization parameters, thatlead to this method has great limitation in the practical application. For this reason, the paperintroduces an adaptive window function, whose length adapts to instantaneous frequency ofthree-component seismic data and it reduces the factitious impact of the window lengthselection. Even more the polarization analysis method calculates the polarization parametersat each time sampling point of three-component seismic data without interpolation.
     (3) Combing the adaptive covariance matrix polarization analysis and time-frequencyanalysis method, we propose the adaptive covariance matrix polarization analysis based onwavelet transform and generalized S transform in time-frequency domain. Established oncovariance matrix, this method uses an approximate equation to calculate the covariancematrix within the time window. This time window is determined by the instantaneousfrequency of multi-component records and its length adapts to advantage cycle of wave ateach time-frequency point. It estimates the polarization characteristic parameters in eachtime-frequency point and don’t require interpolation, and it definitely links the polarizationdistributions and time-frequency analysis methods. We can design filter in time-frequencydomain and separate the wave fields. The results show that this method can accurately extractall polarization properties of each sampling point in time-frequency domain and is very usefulin practical applications.
     (4) Based on the generalized S transform, we propose a new polarization analysismethod in time-frequency domain. This method no longer depends on the covariance matrix,calculates the polarization parameters by the time-frequency spectrum and instantaneousphase of multi-component signals, such as semi-major axis, semi-minor axis, polarization ratio, planarity vector and so on. Because it combines the advantages of time-frequencyanalysis method in time-frequency domain, it is more accurate in waveform recognition. Wecan judge and separate linear polarized wave and ellipse and circular polarized wave bypolarization ratio, also can qualitatively identify the plane wave and out-of-plane wave by thecorresponding cosine direction of the planarity vector.
     (5) We characterize the polarization ellipse in time-frequency domain by combininggeneralized S transform and spectral decomposition technique. The signal of each componentis decomposed into “linear” and “circular” signal trough calculating polarization parametersof polarization ellipse at each time-frequency point, then the “linear” and “circular” signal ofeach component is done with the generalized S inverse transform and get linearly polarizedwaves and elliptically polarized waves at the end, to achieve the purpose of the wave fieldseparation. One of the advantages of the method is that it doesn’t affect the amplitude ofseismic wave having other polarization characteristics when suppressing a certain kind ofseismic wave, for example, the linear part can be fully retained when suppressing the circularpart of polarization ellipse.
     A variety of polarization analysis methods have different effect due to different filteringpurposes. So, this paper gives the options of polarization methods based on different filteringpurpose.
引文
[1]加尔彼林ЕИ.地震勘探偏振法[M].何樵登,杨宝俊译.北京:石油工业出版社,1989.
    [2]赵邦六等著.多分量地震勘探技术理论与实践[M].北京:石油工业出版社,2007.
    [3] Schimmel M, Gallart J. The use of instantaneous polarization attributes for seismicsignal detection and image enhancement [J]. Geophys J Int,2003,155:653-668.
    [4] Li X L, Crampin S. Complex component analysis of shear wave splitting: theory[J]. Goephys J Int.,1991,107:597-604.
    [5] Meissner R, Hegazy M A. The ratio of the PP-to the SS-reflection coefficients: apossible future method to estimate oil and gas reservoirs [J]. Geophys Prosp,1981,29:533-540.
    [6] Helbig K, Mesdag C S. The potential of shear wave observations [J]. GeophysProsp,1982,30:413-431.
    [7]黄忠贤,陈虹,王贵华,等.面波偏振与中国大陆岩石层横向不均匀性[J].地球物理学报,1994a,37(4):456-468.
    [8]张中杰.多分量地震资料的各向异性处理与解释方法[M].哈尔滨:黑龙江教育出版社,2002.
    [9] Reading A M, Mao W, Gubbins D. Polarization filtering for automatic picking ofseismic data and improved converted phase detection[J]. Goephys J Int.,2001,147:227-234.
    [10] Bai C-Y, Kennett B L N. Automatic phase-detection and identification by full useof a single three-component broadband seismogram [J]. Bull Seism Soc Am,2000,90:187-198.
    [11] Bai C-Y, Kennett B L N. Phase identification and attribute analysis of broadbandseismogram at far-regional distances [J]. Journal of Seismology,2001,5:217-231.
    [12]赵鸿儒,孙进忠等著.全波震相分析[M].地震出版社,北京,1991.
    [13]唐建明.转换波三维三分量地震勘探方法技术研究[D].成都理工大学博士博文,2010.
    [14] Cohen L著,白居宪译.时—频分析:理论与应用[M].西安:西安交通大学出版社,1998.
    [15]葛哲学,陈仲生.时频分析及其应用[M].北京:人民邮电出版社,2006.
    [16]张贤达,保铮.非平稳信号分析与处理(第二版)[M].北京:清华大学出版社,2002.
    [17] Soma, N., Niitsuma, H., Baria, R.. Reflection technique in time–frequencydomain using multicomponent acoustic emission signals and application togeothermal reservoirs[J]. Geophysics2002,67,928–938.
    [18] Schimmel, M., Gallart, J.. The inverse S-transform in filters with time–frequencylocalization[J]. IEEE Transactions on Signal Processing,2005,53,4417–4422.
    [19] Diallo, M.S., Kulesh, M., Holschneider, M., Scherbaum, F.. Instantaneouspolarization attributes in the time–frequency domain and wavefield separation[J].Geophysical Prospecting,2005,53,723–731.
    [20] Diallo, M.S., Kulesh, M., Holschneider, M., Kurennaya, K., Scherbaum, F..Instantaneous polarization attributes based on an adaptive approximatecovariance method[J]. Geophysics,2006a,71, V99–V104.
    [21] Diallo, M.S., Kulesh, M., Holschneider, M., Scherbaum, F., Adler, F..Characterization of polarization attributes of seismic waves using continuouswavelet transforms[J]. Geophysics,2006b,71, V67–V77.
    [22] Pinnegar C.R.. Polarization analysis and polarization filtering of three-componentsignals with the time–frequency S transform[J]. Geophysical JournalInternational,2006,165,596–606.
    [23] Pacor, F., Bindi, D., Luzi, L., Parolai, S., Marzorati, S., Monachesi, G..Characteristics of strong ground motion data recorded in the Gubbio sedimentarybasin (central Italy)[J]. Bulletin of Earthquake Engineering,2007,5,27–43.
    [24] Kulesh, M., Diallo, M.S., Holschneider, M., Kurennaya, K., Kruger, F.,Ohrnberger, M., Scherbaum, F.. Polarization analysis in the wavelet domainbased on the adaptive covariance method[J]. Geophysical Journal International,2007a,170,667–678.
    [25] Kulesh M., Holschneider M., Diallo M.S.,et al. Elliptic properties of elasticsurface waves in wavelet domain[J]. Proceedings of the International SummerSchool "Advanced Problems in Mechanics",2005:361-366.
    [26] Diallo M.S., Kulesh M., Holschneider M., et al. Estimating polarization attributeswith an adaptive covariance method in the wavelet domain[J]. SEG TechnicalProgram Expanded Abstracts,2005,24:1014-1017.
    [27] Kulesh M., Nose M., Holschneider M., et al. Polarization analysis of a Pi2pulsation using continuous wavelet transform[J]. Earth Planets Space,2007,59(8):961-970.
    [28] Kulesh, M., Holschneider, M., Diallo, M.S., Xie, Q., Scherbaum, F.. Modeling ofwave dispersion using continuous wavelet transforms[J]. Pure and AppliedGeophysics,2005a,162,843–855.
    [29] Kulesh, M.A., Diallo, M.S., Holschneider, M.. Wavelet analysis of ellipticity,dispersion, and dissipation properties of Rayleigh waves[J]. Acoustical Physics,2005b,51,425–434.
    [30]胡建平,包乾宗,等.时频分析在实测瞬态瑞雷波相速度提取中的应用[J].煤田地质与勘探,2003,33(6):53-55.
    [31]马见青,李庆春,等.基于S变换的瑞利面波频散分析[J].地球科学与环境学报,2010,32(3):319-323.
    [32] Holschneider M., Diallo M.S., Kulesh M., et al. Characterization of dispersivesurface waves using continuous wavelet transforms[J]. Geophysical JournalInternational,2005,163(2):463-478.
    [33] Levshin, A.L., Pisarenko, V.F., Pogrebinsky, G.A.. On a frequency-time analysisof oscillations[J]. Annales Geophysicae,1972,28,211–218.
    [34] Prosser, W.H., Seale, M.D., Smith, B.T.. Time–frequency analysis of thedispersion of Lamb modes[J]. The Journal of the Acoustical Society of America,1999,105,2669–2676.
    [35] Pedersen, H.A., Mars, J.I., Amblard, P.-O.. Improving surface-wave groupvelocity measurements by energy reassignment[J]. Geophysics,2003,68,677–684.
    [36] Holschneider, M., Diallo, M.S., Kulesh, M., Ohrnberger, M., Luck, E.,Scherbaum, F.. Characterization of dispersive surface waves using continuouswavelet transforms[J]. Geophysical Journal International,2005,163,463–478.
    [37] Kulesh, M., Holschneider, M., Ohrnberger, M., Luck, E.. Modeling of wavedispersion using continuous wavelet transforms II: wavelet basedfrequency–velocity analysis[J]. Pure and Applied Geophysics,2008,165,255–270.
    [38] Kulesh M., Holschneider M., Diallo M.S., et al. Estimating attenuation, phaseand group velocity of surface waves observed on2D shallow seismic line usingcontinuous wavelet transform[J]. Proceedings of the XXXII InternationalSummer School "Advanced Problems in Mechanics",2004:257-262.
    [39] Kulesh M., Holschneider M., Diallo M.S..Geophysical wavelet library:applications of the continuous wavelet transform to the polarization anddispersion analysis of signals[J]. Computers and Geosciences,2008,34(12):1732-1752.
    [40] Kulesh M. and Holschneider M.. Geophysical Wavelet Library: Applications ofthe Continuous Wavelet Transform to the Polarization and Dispersion Analysisof Signals[J]. Proceedings of the2007International Conference on ScientificComputing, USA,2007:133-139.
    [41]赵淑红,朱光明. S变换时频滤波去噪方法[J].石油地球物理勘探,2007,42(4):402-406.
    [42]章珂,等.二进小波变换方法的地震信号分时、分频去噪处理[J].地球物理学报,1996,39(2):265-270.
    [43]李晶,王振国,陈裕明,等.小波包变换叠前地震资料去噪方法研究[J].成都理工大学学报:自然科学版,2003,30(5):41-546.
    [44]高静怀,满蔚仕,陈树民.广义S变换域有色噪声与信号识别方法[J].地球物理学报,2004,47(5):869-875.
    [45]罗国安,杜世通.小波变换及信号重建在压制面波中的应用[J].石油地球物理勘探,1996,31(3):337-349.
    [46]詹毅,钟本善.利用小波变换提高地震波初至拾取的精确度[J].成都理工大学学报:自然科学版,2004,31(6):703-707.
    [47]邹文,陈爱萍,顾汉明,等. S变换初至拾取技术及其在复杂山区中的应用[J].石油天然气学报,2006,28(2):63-65.
    [48]李鲍鹏,张学工,李衍达.基于小波包分解的地层吸收补偿[J].地球物理学报,2000,43(4):542-549.
    [49]刘喜武,年静波,刘洪.基于广义S变换的地层吸收地震波衰减补偿[J].石油物探,2006,45(1):9-14.
    [50]李庆春,朱光明.基于小波变换的薄层地震信号奇点的检测[J].地震学报,2000,32(1):54-58.
    [51]高静怀,陈文超,李幼铭,等.广义S变换与薄互层地震响应分析[J].地球物理学报,2003,46(4):526-532.
    [52]赵淑红,张文波.短时傅立叶变换在研究沉积旋回地质体中的应用[J].长安大学学报(地球科学版),2003,25(2):59-62.
    [53]刘喜武,年静波,黄文松.利用广义S变换提取地震旋回的方法[J].石油物探,2006,45(2):129-133.
    [54] Gabor D. Theory of Communication[J]. Inst.Elect. Eng,1946,93(3):429-457.
    [55] Gressmann A., Morlet J.. Decomposition of hardy functions into squareintegrable wavelets of constant shape[J]. SIAM J.Math.Anal,1984(15):236-243.
    [56] Jeffrey C., William J.. On the existence of discrete Wigner distributions[J]. IEEESignal Processing Letters,1999,6(12):304-306.
    [57] Cohen L.. Generalized phase-space distribution functions[J]. Jour. Math. Phys,1966,7:781-787.
    [58] Jeffrey C., William J.. Shift covariant time-frequency distributions of discretesignals[J].1999,47(1):133-146.
    [59]葛哲学,陈仲生编著. Matlab时频分析技术及其应用[M].人民邮电出版社.北京,2006.
    [60] Stockwell R.G., Lowe R.P., Mansinha L.. Instantaneous wave vector analysis[J].Wavelet Applications,1996a, IV,3078:349-358.
    [61] Stockwell R.G., Lowe R.P., Mansinha L.. Localized cross spectral analysis withphase corrected wavelets[J]. Wavelet Applications,1996b, III,2762:557-564.
    [62] Stockwell R.G., Mansinha L., Lowe R.P.. Localization of the complex spectrum:the S transform[J]. IEEE Transactions on Signal Processing,1996c,44(4):998-1001.
    [63] Mansinha L.,Stockwell R.G., Lowe R.R.. Patten analysis withtwo-dimensionspectral localization: Applications of two-dimensional S-transform[J]. Physica A.,1997,239:286-295.
    [64] Pinnegar C.R., Mansinha L.. The S-transform with windows of arbitrary andvarying shape[J]. Geophysics,2003,68(1):381-385.
    [65] Pinnegar C.R., Mansinha L.. The bi-gaussian S-transform[J]. SIAM Journal ofScientific Computing.2003,24(5):1678-1692.
    [66] Ervin, Djurovi, Jin Jiang. A window width optimized S-transform[J]. EURASIPJournal on Advances in Signal Processing,2008:1-13.
    [67]陈学华,贺振华.改进的S变换及在地震信号处理中的应用[J].数据采集与处理,2005,20(4):449-453.
    [68]刘丽娟,王山山.广义S变换窗函数的分析和改进[J].岩性油气藏,2007,19(2):76-79.
    [69]武国宁,曹思远,马宁,等. S变换的时频分析特性及其改进[J].地球物理学进展,2011,26(5):1661-1667.
    [70] Flinn E A. Signal analysis using rectilinearity and direction of particle motion [J].Proceedings of the IEEE,1965,53(12):1874-1876.
    [71] Montalbetti J F, Kanasewich E R. Enhancement of teleseismic body phase with apolarization filter [J]. Geophys J Rastr Soc,1970,12:19-29.
    [72] Kanssewich E R. Time series sequence analysis in geophysics[M]. University ofAlberta Press, Edmonton, Alberta,1981.
    [73] Samson J C, Olson J V. Some comments on the description of the polarizationstates of waves[J]. Geophys J Rastr Soc,1980,61:115-130.
    [74] Samson J C, Olson J V. Data-adaptive polarization filter for multichannelgeophysical data [J]. Geophysics,1981,46:1423-1431.
    [75] Jurkevics A. Polarization analysis of three-component array data[J]. Bull. Seism.Soc. Am.,1988,78:1725-1743.
    [76] Bataille K, Chiu J M. Polarization analysis of high-frequency, three-componentseismic data[J]. Bull. Seism. Soc. Am.,1991,81:622-642.
    [77] Perelberg A I, Hornbostel S C. Application of seismic polarization analysis[J].Geophysics,1994,59(1):119-130.
    [78] Zhang J, Walter W R, et al. Time-domain pure-state polarization analysis ofsurface waves traversing California [J]. Pure. Appl. Geophys.,2003,160:1447-1478.
    [79] Hearn S., Hendrick N.. A revier of signal station time domain polarizationanalysis techniques[J]. Journal of Seismic Exploration,1999,8:181-202.
    [80] Rene R M, Fitter J L, Forsyth P M, et al. Multicomponent seismic studies usingcomplex trace analysis[J]. Geophysics,1986,51:1235-1251.
    [81] Ren R M. Multicomponent seismic studies using complex trace analysis[J].Geophysics,1989,54(6):1235-1251.
    [82] Li X L, Crampin S. Complex component analysis of shear wave splitting: theory[J]. Goephys J Int.,1991,107:597-604.
    [83] Alkaz V.G., Ornofrash N.I., Perelberg A.I.. Polarization analysis of seismicwaves[J]. Shtiintca Press(in Russian),1977,6(5):951-962.
    [84] Samson J C. The spectral matrix, eigenvalues, and principal componentsin theanalysis of multichannel geophysical data[J]. Ann. Geophys.,1983,1:115-130.
    [85] Park J, Vernon F L, Lindberg C R. Frequency dependent polarization analysis ofhigh-frequency seismograms [J]. J Geophys Res.,1987,92:12664-12674.
    [86] Morozov I B, Smithson S B. Instantaneous polarization attributes and directionfiltering [J]. Geophysics,1996,61:872-881.
    [87] Diallo M S, Kulesh M, Holschneider M, et al. Instantaneous polarizationattributes based on adaptive covariance method[J]. Geophysics,2006,71(5):99-104.
    [88] Viddale, J.E.. Complex polarization analysis of particle motion[J]. Bull.Seismol.Soc. Am.,1986,76(5):1393–1405.
    [89] Rene, R.M., Fitter, J.L., Forsyth, P.M., et al. Multicomponent seismic studiesusing complex trace analysis[J]. Geophysics,198651(6):1235–1251.
    [90] Cohen L. Time-frequency analysis: Theory and application [M]. EnglewoodCliffs: Prentice Hall PTR.,1995.
    [91] Reading A M, Mao W, Gubbins D. Polarization filtering for automatic picking ofseismic data and improved converted phase detection[J]. Goephys J Int.,2001,147:227-234.
    [92]李桐基.极化滤波[J].海洋技术,1996,15(4):130-137.
    [93]李英康,崔作舟.分离纵波和横波的偏振旋转法[J].地球物理学报,1994,37(A02):372-382.
    [94]黄中玉,高林,徐亦鸣,等.三分量数据的偏振分析及其应用[J].石油物探,1996,35(2):9-16.
    [95]葛勇,韩立国,韩文明,等.极化分析研究及其在波场分离中的应用[J].长春地质学院学报,1996,26(1):83-88.
    [96]朱衍镛.两分量记录的空间方向滤波[J].石油地球物理勘探,1995,30(增刊2):116-125.
    [97] Benhama A., Cliet C., and Dubesset M.. Study and applications of spatialdirectional filtering in three-component recordings[J].Geophys,1988;36:591-613.
    [98]张玉芬,周建新.影响空间方向滤波效果的因素分析[J].石油与天然气地质,1999,20(3):212-215.
    [99]李锦飞,李人厚,刘贵忠,等.基于小波多分辨分析的极化分析和滤波方法[J].信号处理,1999,15(1):88-92,97.
    [100]陈赟,张中杰,田小波.基于加窗Hilbert变换的复偏振分析方法及其应用[J].地球物理学报,2005,48(4):889-895.
    [101]陈赟,张中杰,孙春岩,等.复数域偏振分析法及其在三分量地震资料中的应用[A].中国地球物理学会第十八届年会论文集[C],西安,2004.
    [102] Thomson D J. Spectrum estimation and harmonic annlysis[J]. IEEE Proc.,1982,70(9):1055-1096.
    [103]胡天跃,张广娟,赵伟,等.多分量地震波波场分解研究[J].地球物理学报,2004,47(3):504-508.
    [104] Dankbaar J W M. The wavefield generated by two vertical vibrators in phaseand counter phase[J]. Geophysical Prospecting,1983,31:873-887.
    [105] Cho W H, Spencer T W. Estimation of polarization and slowness in mixedwavefields[J]. Geophysics,1992,57(6):805-814.
    [106]陈赟,高乐,赵烽帆.一种基于频率域偏振分析提高三分量地震资料信噪比的方法[J].地球物理学进展,2007,22(1):255-261.
    [107]张金强.最小极化度滤波[J].石油物探,2002,41(3):264-268.
    [108] Samson J. C.. Description of the polarization atates of vector processes:Application to ULFmagnetic fields[J]. Geophys J R astr Soc,1973,34(4):403-419.
    [109]朱卫星,宋洪亮,曹自强,等.自适应极化滤波在微地震信号处理中的应用[J].勘探地球物理进展,2010,33(5):367-371.
    [110] Franco R D, Musacchio G. Polarization filter with singular value decomposition[J]. Geophysics,2001,66(3):932-938.
    [111] Jackson G M, Mason I M. Principal components transforms of triaxialrecordings by singular value decomposition [J]. Geophysics,1991,56:528-533.
    [112]徐涛,单波.奇异值方法在极化滤波中的应用[J].工程地球物理学报,2008,5(4):435-438.
    [113] Francois G, et al. Wave separation by an oblique polarization filter [J]. Physicsin Signal&Processing,1999,18-19(01):354-359.
    [114] Roueffa A., Chanussot J., Mars J. I.. Estimation of polarization parameters usingtime–frequency representations and its application to waves separation[J]. Signalprocessing,2006,86:3714-3731.
    [115]洪浩,单波. OPF方法在波场分离中的应用[J].工程地球物理学报,2009,6(2):171-176.
    [116] Du Z J, et al. Noise reduction for broadband, three-component seismogramsusing data-adaptive polarization filter[J]. Geophys J Int,2000,141:820~828.
    [117]刘建华,刘福田,胥颐.三分量地震资料的偏振分析[J].地球物理学进展,2006,21(1):6-10.
    [118] Roueff A, Chanussot J. Estimation of polarization parameters usingtime-frequency representations and its application to waves separation [J]. SignalProcessing,2006,86:3714-3731.
    [119] Pinnegar C R. Time-Frequency Polarization Analysis and Filtering. CSEGRECORDER,2006:36-39.
    [120] Schimmel M, Gallart J. The use of instantaneous polarization attributes forseismic signal detection and image enhancement [J]. Geophys J Int,2003,155:653-668.
    [121]李锦飞,李人厚.小波包变换空间滤波法分离信号研究[J].煤田地质与勘探,1998,26(4):56-60.
    [122]张建军,李占强.用极化分析法提取有效瑞雷波信号[J].矿业科学技术,1999,(3-4):8-13.
    [123]刘春园,徐胜峰.极化滤波在三分量噪声衰减中的应用研究[J].地球物理学进展,2009,24(5):1814-1823.
    [124]陈赟,张中杰,孙春岩,等.利用自适应偏振滤波器剔除三分量地震资料中的随机与非随机噪声[A].中国地球物理学会第十八届年会论文集[C],北海,2002.
    [125]高原,蔡燕.极化分析及其在地震勘探中的应用初探[J].江汉石油科技,1997,7(4):11-15,55.
    [126]严又生,宜明理,魏新,等.三维三分tVSP数据处理方法及效果[J].石油地球物理勘探,2005,4(1):18-24.
    [127]刘烨. VSP三分量时变偏振分析方法研究[D].长安大学,西安,2009.
    [128]崔汝国,牟风明,宋维琪,等. VSP浮动坐标系偏振滤波[J].石油地球物理勘探,2010,45(1):10-14.
    [129] Meissner R, Hegazy M A. The ratio of the PP-to the SS-reflection coefficients: apossible future method to estimate oil and gas reservoirs [J]. Geophys Prosp,1981,29:533-540.
    [130] Helbig K, Mesdag C S. The potential of shear wave observations [J]. GeophysProsp,1982,30:413-431.
    [131]董敏煜编著.多分量地震勘探[M].北京:石油工业出版社,2007.
    [132]唐晓燕,唐建侯.地震波的偏振分析与应用[J].石油地球物理勘探,1996,31(增刊2):67-73.
    [133]张中杰.多分量地震资料的各向异性处理与解释方法[M].哈尔滨:黑龙江教育出版社,2002.
    [134]黄忠贤,陈虹,吴依农.偏振分析程序POLALYS在面波研究中的应用[J].地球物理学报,1994b,37(增刊Ⅱ):383-392.
    [135]王怀军,刘福田,陈晓非.P波偏振层析成像[J].地球物理学进展,2000,15(3):7-13.
    [136]刘福田,胡戈,王怀军,等.由单台远震尸波偏振资料反演北京台站邻域的速度结构[J].中国科学(D辑),2000,30(6):642-649.
    [137]陈虹,黄忠贤.利用时频偏振分析技术研究面波传播的复杂性[J].地震学报,1998,20(2):144-149.
    [138] Bai C-Y, Kennett B L N. Automatic phase-detection and identification by fulluse of a single three-component broadband seismogram [J]. Bull Seism Soc Am,2000,90:187-198.
    [139] Bai C-Y, Kennett B L N. Phase identification and attribute analysis ofbroadband seismogram at far-regional distances [J]. Journal of Seismology,2001,5:217-231.
    [140]刘财,董世学,杨宝俊,等.极化滤波在广角地震P、S波场分离中的应用[J].物探化探计算技术,1995,17(2):15-18.
    [141] Stephen C, et al. Polarization filter by eigenimages and adaptive subtraction toattenuate surface-wave noise[J]. CSPG&CSEG Convention,2007:445-449.
    [142]王成礼,牟风明,韩文功,等. VSP波场极化特征分析[J].油气地球物理,2009,7(1):4-7.
    [143] Borum, S., Jensen K.. Additive analysis/synthesis using analytically derivedwindows[A]. Proc. of the2nd Workshop on Digital Audio Effects(DAFx99),Trondheim, Norway,1999:125–128.
    [144] Chassande-Mottin E.. Methodes de reallocation dans le plan tempsfrequencepour l’ analyse et le traitement de signaux non-stationnaires[D]. Laboratoire dePhysique, Ecole Normale Superieure deLyon,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700