用户名: 密码: 验证码:
基于天然纤维素物质的含钛无机纳米功能材料的制备及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
世界经济的快速发展给社会带来了巨大的物质财富。但是,人们在享受经济发展及科技进步的同时,也不可避免的面临着环境污染及能源枯竭问题。能源短缺及能源的过度使用造成的环境问题正威胁着人类的生存与发展,成为人类面临的两大难题。纳米材料的迅猛发展极大的促进了科学技术的进步,有望在环境污染治理及新能源开发方面提供新的技术力量。二氧化钛纳米材料由于具有化学性质稳定、催化性能高、无毒无污染、价廉易得等诸多优点而成为半导体领域研究的热点。在纳米二氧化钛材料的合成及制备方法中,生物模板法由于具有制备方法简单、得到的纳米材料具有形貌及尺寸可控等优点而引起了人们的广泛兴趣。其中,天然纤维素材料来源广泛、无毒无污染、可降解且具有复杂的多层分级结构,是设计及合成各种功能纳米材料的理想模板。
     本文以天然纤维素材料(定量滤纸)作为模板及构筑复合纳米材料的支架,通过表面溶胶-凝胶法在纤维素表面沉积二氧化钛超薄膜,之后通过惰性氛围碳化或是空气中煅烧的方法,制备得到了二氧化钛/碳纳米纤维复合材料或是二氧化钛纳米管材料。这些材料可作为金属纳米颗粒沉积的载体,来制备具有特定功能的复合纳米材料,主要结论如下:
     (1)二氧化钛包裹的碳纳米纤维材料。以实验室常用的滤纸为模板,以钛酸四丁酯为前体物,通过表面溶胶-凝胶法,把二氧化钛超薄膜沉积到滤纸纤维素的表面。之后将二氧化钛超薄膜沉积的滤纸复合材料置于管式炉中,氮气氛围中碳化,纤维素转变为无定形碳纤维,同时,二氧化钛凝胶层超薄膜转变为锐钛矿型二氧化钛。SEM及TEM观察发现,该材料在微观上复制了滤纸纤维素材料复杂的多层分级结构及形貌特征,二氧化钛超薄膜(-12nm)均匀的包裹在碳纳米纤维上,且由颗粒尺寸均一的二氧化钛纳米颗粒组成。由于二氧化钛薄膜的包裹,纤维素纤维在碳化的过程中避免了高温烧结与聚集,因此具有较大的比表面积(404m2/g)。光催化实验结果表明,该材料在紫外光及太阳光的照射下,对水体中的染料具有良好的降解效果。我们对光催化降解染料的机理也做了一些研究,结果表明,在光照的作用下,二氧化钛包裹的碳纳米纤维材料会产生·OH自由基及·O2-,从而对染料具有极强的降解效果。光催化循环利用实验表明,经过3次循环之后,样品在180min内,仍然可以降解81%的亚甲基蓝染料。
     (2)银纳米颗粒负载的二氧化钛包裹的碳纳米纤维材料。以钛酸四丁酯为前体物,通过表面溶胶-凝胶法在滤纸纤维素表面沉积二氧化钛超薄膜,通过氮气氛围中碳化的方法,将滤纸纤维素转变为碳纳米纤维,得到二氧化钛包裹的碳纳米纤维材料。将该材料浸泡在硝酸银溶液中,通过光照还原的方法,将Ag+转变为银纳米颗粒,得到银纳米颗粒负载的二氧化钛包裹的碳纳米纤维材料。通过SEM和TEM观察可以看到,该材料复制了滤纸纤维素的多层分级结构和形貌特征,二氧化钛超薄膜均匀的包裹在碳纳米纤维上,上面负载的银纳米颗粒分布均匀,颗粒尺寸均一且粒径较小,平均直径仅有5nm。因为多孔碳纳米纤维的存在,银纳米颗粒在二氧化钛包裹的碳纤维材料中的负载量也相对较高,可达9.5wt.%左右。抗菌实验结果表明,该材料对革兰氏阴性菌(大肠杆菌)及革兰氏阳性菌(金黄色葡萄球菌)均具有良好的抗菌效果,抗菌率分别为99.7%和72.1%。
     (3)氮化钛纳米管材料。首先以钛酸四丁酯为前体物,通过溶胶-凝胶法,将二氧化钛凝胶层沉积到滤纸纤维素表面,在空气中煅烧除掉滤纸,得到锐钛矿型二氧化钛纳米管材料;然后将二氧化钛纳米管材料和镁粉以2.5:1的比例置于反应釜中,通入氮气,1200℃发生高温镁热还原反应,生成氮化钛纳米管材料。通过SEM和TEM观察可以发现,氮化钛纳米管材料在复制了滤纸纤维素的微观形貌和结构特征,氮化钛纳米管的管壁均匀,平均厚度为46nm。氮气吸附-脱附曲线表明,氮化钛纳米管材料具有相对较大的比表面积,为31.4m2/g。我们对氮化钛纳米管材料的电化学性质做了测试,结果表明,氮化钛纳米管材料具有典型双层超级电容器的特性,当放电电流为0.16A/g时,比电容可达74.2F/g。
     (4)铂纳米颗粒负载的二氧化钛纳米管材料。以钛酸四丁酯为前体物,通过表面溶胶-凝胶法,在滤纸纤维素的表面沉积二氧化钛超薄膜,然后在空气中高温煅烧除掉滤纸模板,得到锐钛矿型二氧化钛纳米管材料。将二氧化钛纳米管材料浸渍在不同浓度的水合六氯铂酸溶液中,通过光照还原的方法,产生铂纳米颗粒,得到了铂纳米颗粒负载的二氧化钛纳米管材料。SEM和TEM观察发现,该材料在微观上复制了滤纸纤维素的多层分级结构和形貌特征,铂纳米颗粒分布均匀,大小尺寸在2-4nm之间。光催化产氢实验结果表明,当铂纳米颗粒的负载量为1wt.%左右时,其光催化产氢的活性最高,平均产氢速率为164.4μmol/h。我们对铂纳米颗粒负载的二氧化钛纳米管材料光催化产氢的性能做了循环利用,发现在5次循环利用之后,样品仍具有较高的光催化产氢性能。对其光催化产氢的机理研究表明,在二氧化钛纳米管材料中负载铂纳米颗粒之后,光照产生的·OH自由基显著增多。
The rapid progress in global economy has not only brought us fabulous wealth but also environmental problems.Energy exhaustion and environment pollution has become global problems faced today.Thus,providing abundant, clean, and secure renewable energy sources is one of the key technological challenges facing mankind. Nanomaterial possesses unique physical and chemical properties and an exponential growth of research activities has been seen in nanoscience and nanotechnology in the past decades. As one of the most promising photocatalysts, titania has attracted much attention due to its chemical stability, high phocatalytic activity, nontoxicity and low cost. Amongst various preparation methods, biotemplate synthesis is one of the most attractive production methods for its effectiveness and easy control of nanostructure and morphology. Particularly, natural cellulose substance is an ideal biotemplate due to its unique structures and properties.
     Herein, titania thin film was first deposited on natural cellulose substance (filter paper) by the surface sol-gel method using titanium(Ⅳ)n-butoxide as precursor. Subsequently, the titania/filter paper nanocomposite was carbonized in nitrogen or calcined in air to obtain titania coated carbon nanofibrous material or titania nanotubular material.Metal nanoparticles such as Ag or Pt nanoparticles can be deposited on the titania coated carbon nanofibrous material or titania nanotubular material to obtain composite material with tailored properties.
     (1)Titania coated carbon nanofibrous material. Ultrathin titania films were firstly deposited by the surface sol-gel process to coat each nanofiber in the filter paper, and successive calcination treatment under nitrogen atmosphere yielded the titania-carbon composite possessing the hierarchical morphologies and structures of the initial paper. The ultrathin titania coating hindered the coalescence effect of the carbon species that formed during the carbonization process of cellulose, and the original cellulose nanofibers were converted into porous carbon nanofibers (diameters from tens to hundreds of nanometers, with3-6nm pores) that coated with uniform anatase titania thin films (thickness-12nm, composed of anatase nanocrystals with sizes of~4.5 nm). This titania-coated nanofibrous carbon material possesses specific surface area of404m2/g, which is two orders of magnitude higher than the titania/cellulose hybrid prepared by atomic layer deposition of titania on the cellulose fibers of filter paper. The photocatalytic activity of the titania-carbon composite was evaluated by the improved photodegradation efficiency of different dyes in aqueous solutions under high-pressure fluorescent mercury lamp irradiation, as well as the effective photoreduction performance of silver cations to silver nanoparticles with ultraviolet irradiation. Experimental results showed that·OH radicals were detected under UV irradiation.
     (2) Titania-carbon composite material deposited with silver nanoparticles.Titania ultrathin film was first deposited on natural cellulose substance by means of a surface sol-gel method using titanium (Ⅳ) n-butoxide as precursor. Subsequently, the titania/filter paper composite material was carbonized in nitrogen atmosphere to obtanin titania coated carbon nanofibrous material. Sliver nanoparticles were then deposited on the titania-carbon composite to achieve titania-carbon nanofibrous material by photoreduction method. ICP-MS analysis showed that the content of deposited silver nanoparticles is as high as (9.5±0.1) wt.%, and TEM observation revealed that the deposited silver nanoparticles are uniform with small sizes (-5nm). The antibacterial activity of the hierarchical nanofibrous titania-carbon composite material deposited with silver nanoparticles was tested against both Gram-positive and Gram-negative bacteria and the material exhibited high inactivation of bacteria due to the synergistic effect of porous carbon nanofibres, anatase titania ultrathin film coating and high loading content of silver nanoparticles with small sizes.
     (3) Hierarchical nanotubular titanium nitride material. Titania film was first deposited on natural cellulose substance by sol-gel method and titania replicas of filter paper was obtained after removal of filter paper by calcination in air at600℃for5h.Subsequently, magnesiothermic reduction of the prepared titania replicas of filter paper mentioned above was carried out in a homemade stainless steel autoclave. The titania replicas of filter paper and magnesium granules were separately spread evenly within two different steel boats and placed in the autoclave.The molar ratio of magnesium granules and titania replicas of filter paper was2.5:1. After filled with nitrogen gas, the autoclave was sealed into a vertical tube furnace and heated to1200℃for3h and allowed to cool to room temperature in the flowing N2atmosphere to avoid oxidation. The raw product was then collected and treated with2.0M HC1aqueous solution for6h to selectively dissolve the by-product magnesia. Electron micrographs of the material showed that the hierarchical nanotubular material replicated the hierarchical structure of the original filter paper and the wall of the nanotube was uniform with thickness of ca.46nm. The hierarchical titanium nitride material possessed high specific surface of31.4m2/g. Electrochemical measurements of the hierarchical nanotubular titanium nitride shows that the specific capacitance of the material was74.2F/g at current density of0.16A/g, which can be a used as potential electrode material.
     (4) Hierarchical nanotubular titania material deposited with platinum nanoparticles. Titania ultrathin film was first deposited on natural cellulose substance by means of a surface sol-gel method using titanium (Ⅳ) n-butoxide as precursor and titania nanotubular material was obtained after removal of filter paper. Different mass ratio of platinum nanoparticles were subsequently deposited on the nanotubular titania material by photoreduction method. Electron micrograph of the material showed that platinum nanoparticles distributed on the nanotubular titania material uniformly with particle size of2-4nm. Photocatalytic hydrogen production catalyzed by the titania nanotubular material was conducted and results revealed that the highest photocatalytic activity was obtained when the mass ratio of the deposited platinum nanoparticles was1wt.%. Study on the mechanism of the photocatalytic hydrogen production showed that more·OH radicals were produced by deposition of platinum nanoparticles compared with bulk titania.
引文
[1]C. Wan-Ho, H. Hyun-Jun, L. Seung-Hyun and K. Hak-Sung, In situ monitoring of a flash light sintering process using silver nano-ink for producing flexible electronics, Nanotechnology,2013,24,035202.
    [2]T. Leshuk, R. Parviz, P. Everett, H. Krishnakumar, R. A. Varin and F. Gu, Photocatalytic Activity of Hydrogenated TiO2, ACS Appl. Mater. Interfaces,2013,5, 1892-1895.
    [3]O. Metin, X. Sun and S. Sun, Monodisperse gold-palladium alloy nanoparticles and their composition-controlled catalysis in formic acid dehydrogenation under mild conditions, Nanoscale,2013,5,910-912.
    [4]W. Sun, Y. Guo, X. Ju, Y. Zhang, X. Wang and Z. Sun, Direct electrochemistry of hemoglobin on graphene and titanium dioxide nanorods composite modified electrode and its electrocatalysis, Biosens. Bioelectron.,2013,42,207-213.
    [5]Y.-C. Lin, W.-C. Chou, A. S. Susha, S. V. Kershaw and A. L. Rogach, Photoluminescence and time-resolved carrier dynamics in thiol-capped CdTe nanocrystals under high pressure, Nanoscale,2013,5,3400-3405.
    [6]X. Zhang and J. Huang, Functional surface modification of natural cellulose substances for colorimetric detection and adsorption of Hg2+ in aqueous media, Chem. Commun.,2010,46,6042-6044.
    [7]J. Choi, S. Lee, J. Ha, T. Song and U. Paik, Sol-gel nanoglues for an organic binder-free TiO2 nanofiber anode for lithium ion batteries, Nanoscale,2013,5, 3230-3234.
    [8]F. Dang, Y. Oaki, T. Kokubu, E. Hosono, H. Zhou and H. Imai, Formation of Nanostructured MnO/Co/Solid-Electrolyte Interphase Ternary Composites as a Durable Anode Material for Lithium-Ion Batteries, Chem.--Asian J.,2013,8, 760-764.
    [9]L. Zeng, C. Zheng, C. Deng, X. Ding and M. Wei, MoO2-Ordered Mesoporous Carbon Nanocomposite as an Anode Material for Lithium-Ion Batteries, ACS Appl. Mater, Interfaces,2013,5,2182-2187.
    [10]Y. Hwa, W.-S. Kim, B.-C. Yu, S.-H. Hong and H.-J. Sohn, Enhancement of the Cyclability of a Si Anode through Co3O4 Coating by the Sol-Gel Method, J. Phys. Chem. C,2013,117,7013-7017.
    [11]L. Korala, Z. Wang, Y. Liu, S. Maldonado and S. L. Brock, Uniform Thin Films of CdSe and CdSe(ZnS) Core(Shell) Quantum Dots by Sol-Gel Assembly:Enabling Photoelectrochemical Characterization and Electronic Applications, ACS Nano,2013, 7,1215-1223.
    [12]C. Gomez-Polo, J. Soto-Armananzas, J. Olivera, J. I. Perez-Landazabal, S. Larumbe, M. A. Miranda, C. A. de la Cruz, I. Mendizabal, S. A. Korili and A. Gil, Multifunctional Sensor Based on a Hybrid Ferromagnetic/Sol-Gel TiO2 Coating Nanostructure, Ind. Eng. Chem. Res.,2013,52,3787-3793.
    [13]R. Yuge, J. Miyawaki, T. Ichihashi, S. Kuroshima, T. Yoshitake, T. Ohkawa, Y. Aoki, S.Iijima and M. Yudasaka, Highly Efficient Field Emission from Carbon Nanotube-Nanohorn Hybrids Prepared by Chemical Vapor Deposition, ACS Nano, 2010,4,7337-7343.
    [14]M. Niu, F. Huang, L. Cui, P. Huang, Y. Yu and Y. Wang, Hydrothermal Synthesis, Structural Characteristics, and Enhanced Photocatalysis of SnO2/a-Fe2O3 Semiconductor Nanoheterostructures, ACS Nano,2010,4,681-688.
    [15]Y. Xu, K. Sheng, C. Li and G. Shi, Self-Assembled Graphene Hydrogel via a One-Step Hydrothermal Process, ACS Nano,2010,4,4324-4330.
    [16]P. Chen, T.-Y. Xiao, H.-H. Li, J.-J. Yang, Z. Wang, H.-B. Yao and S.-H. Yu, Nitrogen-Doped Graphene/ZnSe Nanocomposites:Hydrothermal Synthesis and Their Enhanced Electrochemical and Photocatalytic Activities, ACS Nano,2011,6, 712-719.
    [17]Y. Li, G. W. Meng, L. D. Zhang and F. Phillipp, Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties, Appl. Phys. Lett.,2000,76, 2011-2013.
    [18]H. Masuda and K. Fukuda, Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina, Science,1995,268, 1466-1468.
    [19]Y. W. Wang, C. H. Liang, G. Z. Wang, T. Gao, S. X. Wang, J. C. Fan and L. D. Zhang, Preparation and characterization of ordered semiconductor CdO nanowire arrays, J. Mat. Sci. Lett.,2001,20,1687-1689.
    [20]J. S. Lee, G. H. Gu, H. Kim, K. S. Jeong, J. Bae and J. S. Suh, Growth of Carbon "Nanotubes on Anodic Aluminum Oxide Templates:Fabrication of a Tube-in-Tube and Linearly Joined Tube, Chem. Mater.,2001,13,2387-2391.
    [21]L. Yuan, S. Meng, Y. Zhou and Z. Yue, Controlled synthesis of anatase TiO2 nanotube and nanowire arrays via AAO template-based hydrolysis, J. Mater. Chem. A, 2013,1,2552-2557.
    [22]J. Zhang, L. D. Zhang, X. F. Wang, C. H. Liang, X. S. Peng and Y. W. Wang, Fabrication and photoluminescence of ordered GaN nanowire arrays,J. Chem. Phys., 2001,115,5714-5717.
    [23]P. Forrer, F. Schlottig, H. Siegenthaler and M. Textor, Electrochemical preparation and surface properties of gold nanowire arrays formed by the template technique, J. Appl. Electrochem.,2000,30,533-541.
    [24]B. A. Hernandez, K.-S. Chang, E. R. Fisher and P. K. DorhoutGSlol Template Synthesis and Characterization of BaTiO3 and PbTiO3 Nanotubes, Chem. Mater.,2002,14,480-482.
    [25]B. B. Lakshmi, P. K. Dorhout and C. R. Martin, SolGel Template Synthesis of Semiconductor Nanostructures, Chem. Mater.,1997,9,857-862.
    [26]B. B. Lakshmi, C. J. Patrissi and C. R. Martin, SoGel Template Synthesis of Semiconductor Oxide Micro-and Nanostructures, Chem. Mater.,1997,9,2544-2550.
    [27]Y. C. Sui, B. Z. Cui, R. Guardian, D. R. Acosta, L. Martinez and R. Perez, Growth of carbon nanotubes and nanofibres in porous anodic alumina film, Carbon, 2002,40,1011-1016.
    [28]J. P. Tu, L. P. Zhu, K. Hou and S. Y. Guo, Synthesis and frictional properties of array film of amorphous carbon nanofibers on anodic aluminum oxide, Carbon,2003, 41,1257-1263.
    [29]M. Steinhart, J. H. Wendorff, A. Greiner, R. B. Wehrspohn, K. Nielsch, J. Schilling, J. Choi and U. Gosele, Polymer Nanotubes by Wetting of Ordered Porous Templates, Science,2002,296,1997.
    [30]L. Dauginet-De Pra, E. Ferain, R. Legras and S. Demoustier-Champagne, Fabrication of a new generation of track-etched templates and their use for the synthesis of metallic and organic nanostructures, Nucl. Instrum. Methods Phys. Res., Sect.5,2002,196,81-88.
    [31]Z. Liang, A. S. Susha, A. Yu and F. Caruso, Nanotubes Prepared by Layer-by-Layer Coating of Porous Membrane Templates, Adv. Mater.,2003,15, 1849-1853.
    [32]J. K. N. Mbindyo, T. E. Mallouk, J. B. Mattzela, I. Kratochvilova, B. Razavi, T. N. Jackson and T. S. Mayer, Template Synthesis of Metal Nanowires Containing Monolayer Molecular Junctions, J. Am. Chem. Soc.,2002,124,4020-4026.
    [33]V. Badri and A. M. Hermann, Metal hydride batteries:Pd nanotube incorporation into the negative electrode, Int. J. Hydrogen Energy,2000,25,249-253.
    [34]S. Bhattacharrya, S. K. Saha and D. Chakravorty, Nanowire formation in a polymeric film, Appl. Phys. Lett.,2000,76,3896-3898.
    [35]S. T. Selvan, S. S. Aldeyab, S. M. J. Zaidi, D. Arivuoli, K. Ariga, T. Mori and A. Vinu, Morphological Control of Porous SiC Templated by As-Synthesized Form of Mesoporous Silica, J. Nanosci. Nanotechnol,2011,11,6823-6829.
    [36]H. Yang, Q. Shi, B. Tian, Q. Lu, F. Gao, S. Xie, J. Fan, C. Yu, B. Tu and D. Zhao, One-Step Nanocasting Synthesis of Highly Ordered Single Crystalline Indium Oxide Nanowire Arrays from Mesostructured Frameworks, J. Am. Chem. Soc.,2003, 725,4724-4725.
    [37]H. J. Shin, C. H. Ko and R. Ryoo, Synthesis of platinum networks with nanoscopic periodicity using mesoporous silica as template, J. Mater. Chem.,2001, 11,260-261.
    [38]K. B. Lee, S. M. Lee and J. Cheon, Size-Controlled Synthesis of Pd Nanowires Using a Mesoporous Silica Template via Chemical Vapor Infiltration, Adv. Mater., 2001,73,517-520.
    [39]P. M. Ajayan, O. Stephan, P. Redlich and C. Colliex, Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures, Nature, 1995,375,564-567.
    [40]B. C. Satishkumar, A. Govindaraj, E. M. Vogl, L. Basumallick and C. N. R. Rao, Oxide nanotubes prepared using carbon nanotubes as templates, J. Mater. Res.,1997, 12,604-606.
    [41]C. N. R. Rao, B. C. Satishkumar and A. Govindaraj, Zirconia nanotubes, Chem. Commun.,1997,0,1581-1582.
    [42]W. Xie, G. Mobus and S. Zhang, Molten salt synthesis of silicon carbide nanorods using carbon nanotubes as templates, J. Mater. Chem.,2011,21, 18325-18330.
    [43]W. Han, S. Fan, Q. Li and Y. Hu, Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube-Confined Reaction, Science,1997,277,1287-1289.
    [44]B. C. Satishkumar, A. Govindaraj, M. Nath and C. N. R. Rao, Synthesis of metal oxide nanorods using carbon nanotubes as templates, J. Mater. Chem.,2000,10, 2115-2119.
    [45]J. Sloan, D. M. Wright, S. Bailey, G. Brown, A. P. E. York, K. S. Coleman, M. L. H. Green, J. L. Hutchison and H.-G. Woo, Capillarity and silver nanowire formation observed in single walled carbon nanotubes, Chem. Commun.,1999,0,699-700.
    [46]W. Shenton, T. Douglas, M. Young, G. Stubbs and S. Mann, Inorganic-Organic Nanotube Composites from Template Mineralization of Tobacco Mosaic Virus, Adv. Mater.,1999,11,253-256.
    [47]V. Valtchev, M. Smaihi, A.-C. Faust and L. Vidal, Biomineral-Silica-Induced Zeolitization of Equisetum Arvense, Angew. Chem., Int. Ed.,2003,42,2782-2785.
    [48]G. Cook, P. L. Timms and C. Goltner-Spickermann, Exact Replication of Biological Structures by Chemical Vapor Deposition of Silica, Angew. Chem., Int. Ed., 2003,42,557-559.
    [49]Y. J. Wang, Y. Tang, X. D. Wang, A. G. Dong, W. Shan and Z. Gao, Fabrication of hierarchically structured zeolites through layer-by-layer assembly of zeolite nanocrystals on diatom templates, Chem. Lett.,2001,1118-1119.
    [50]Z. Bao, M. R. Weatherspoon, S. Shian, Y. Cai, P. D. Graham, S. M. Allan, G. Ahmad, M. B. Dickerson, B. C. Church, Z. Kang, H. W, Abernathy Iii, C. J. Summers, M. Liu and K. H. Sandhage, Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas, Nature,2007,446,172-175.
    [51]A. Dong, Y. Wang, Y. Tang, N. Ren, Y. Zhang, Y. Yue and Z. Gao, Zeolitic Tissue Through Wood Cell Templating, Adv. Mater.,2002,14,926-929.
    [52]S. A. Davis, S. L. Burkett, N. H. Mendelson and S. Mann, Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases, Nature,1997, 385,420-423.
    [53]D. Yang, L. Qi and J. Ma, Eggshell Membrane Templating of Hierarchically Ordered Macroporous Networks Composed of TiO2 Tubes, Adv. Mater.,2002,14, 1543-1546.
    [54]B. Zhang, S. A. Davis and S. Mann, Starch Gel Templating of Spongelike Macroporous Silicalite Monoliths and Mesoporous Films, Chem. Mater.,2002,14, 1369-1375.
    [55]W. Ogasawara, W. Shenton, S. A. Davis and S. Mann, Template Mineralization of Ordered Macroporous ChitiSilica Composites Using a Cuttlebone-Derived Organic Matrix, Chem. Mater.,2000,12,2835-2837.
    [56]J. G. Huang and T. Kunitake, Nano-precision replication of natural cellulosic substances by metal oxides, J. Am. Chem. Soc.,2003,125,11834-11835.
    [57]Y. Wang, Z. Liu, B. Han, Z. Sun, J. Du, J. Zhang, T. Jiang, W. Wu and Z. Miao, Replication of biological organizations through a supercritical fluid route, Chem. Commun.,2005,0,2948-2950.
    [58]M. Wu, J. Long, A. Huang, Y. Luo, S. Feng and R. Xu, Microemulsion-Mediated Hydrothermal Synthesis and Characterization of Nanosize Rutile and Anatase Particles, Langmuir,1999,15,8822-8825.
    [59]W. J. Kim and S. M. Yang, Helical Mesostructured Tubules from Taylor Vortex-Assisted Surfactant Templates, Adv. Mater.,2001,13,1191-1195.
    [60]S. Kwan, F. Kim, J. Akana and P. Yang, Synthesis and assembly of BaWO nanorods, Chem. Commun.,2001,0,447-448.
    [61]L. Manna, E. C. Scher and A. P. Alivisatos, Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals, J. Am. Chem. Soc.,2000,122,12700-12706.
    [62]Y. Liu, J. Cao, J. Zeng, C. Li, Y. Qian and S. Zhang, A Complex-Based Soft Template Route to PbSe Nanowires, Eur. J. Inorg. Chem.,2003,2003,644-647.
    [63]V. F. Puntes, K. M. Krishnan and A. P. Alivisatos, Colloidal Nanocrystal Shape and Size Control:The Case of Cobalt, Science,2001,291,2115-2117.
    [64]J. Zhang, B. Han, J. Liu, X. Zhang, J. He, Z. Liu, T. Jiang and G. Yang, Recovery of Silver Nanoparticles Synthesized in AOT/C12E4 Mixed Reverse Micelles by Antisolvent CO2, Chem.--Eur. J.,2002,8,3879-3883.
    [65]J. Jang, J. H. Oh and G. D. Stucky, Fabrication of Ultrafine Conducting Polymer and Graphite Nanoparticles, Angew. Chem., Int. Ed.,2002,41,4016-4019.
    [66]Z. Kang, E. Wang, M. Jiang, S. Lian, Y. Li and C. Hu, Convenient Controllable Synthesis of Inorganic ID Nanocrystals and 3D High-Ordered Microtubes, Eur. J. Inorg. Chem.,2003,2003,370-376.
    [67]K. Koh, K. Ohno, Y. Tsujii and T. Fukuda, Precision Synthesis of Organic/Inorganic Hybrid Nanocapsules with a Silanol-Functionalized Micelle Template, Angew. Chem., Int. Ed.,2003,42,4194-4197.
    [68]R. A. Caruso, J. H. Schattka and A. Greiner, Titanium Dioxide Tubes from Sol-Gel Coating of Electrospun Polymer Fibers, Adv. Mater.,2001,13,1577-1579.
    [69]T. Thurn-Albrecht, J. Schotter, G. A. Kastle, N. Emley, T. Shibauchi, L Krusin-Elbaum, K. Guarini, C. T. Black, M. T. Tuominen and T. P. Russell, Ultrahigh-Density Nanowire Arrays Grown in Self-Assembled Diblock Copolymer Templates, Science,2000,290,2126-2129.
    [70]D. Klemm, B. Heublein, H.-P. Fink and A. Bohn, Cellulose:Fascinating Biopolymer and Sustainable Raw Material, Angew. Chem., Int. Ed.,2005,44, 3358-3393.
    [71]J. Zhao, Y. Gu and J. Huang, Flame synthesis of hierarchical nanotubular rutile titania derived from natural cellulose substance, Chem. Commun.,2011,47, 10551-10553.
    [72]E. Ghadiri, N. Taghavinia, S. M. Zakeeruddin, M. Gratzel and J.-E. Moser, Enhanced Electron Collection Efficiency in Dye-Sensitized Solar Cells Based on Nanostructured TiO2 Hollow Fibers, Nano Lett,2010,10,1632-1638.
    [73]M. Kemell, V. Pore, M. Ritala, M. Leskela and M. Linden, Atomic Layer Deposition in Nanometer-Level Replication of Cellulosic Substances and Preparation of Photocatalytic TiO2/Cellulose Composites, J. Am. Chem. Soc.,2005,127, 14178-14179.
    [74]D. Zhang and L. Qi, Synthesis of mesoporous titania networks consisting of anatase nanowires by templating of bacterial cellulose membranes, Chem. Commun., 2005,0,2735-2737.
    [75]X. Li, T. Fan, H. Zhou, S.-K. Chow, W. Zhang, D. Zhang, Q. Guo and H. Ogawa, Enhanced Light-Harvesting and Photocatalytic Properties in Morph-TiO2 from Green-Leaf Biotemplates, Adv. Func. Mater.,2009,19,45-56.
    [76]N. S. Venkataramanan, K. Matsui, H. Kawanami and Y. Ikushima, Green synthesis of titania nanowire composites on natural cellulose fibers, Green Chem., 2007,9,18-19.
    [77]S. Miao, Z. Miao, Z. Liu, B. Han, H. Zhang and J. Zhang, Synthesis of mesoporous TiO2 films in ionic liquid dissolving cellulose, Microporous Mesoporous Mater.,2006,95,26-30.
    [78]Y. Shin and G. J. Exarhos, Template synthesis of porous titania using cellulose nanocrystals, Mater. Lett,2007,61,2594-2597.
    [79]H. Huang, X. Liu and J. Huang, Tubular structured hierarchical mesoporous titania material derived from natural cellulosic substances and application as photocatalyst for degradation of methylene blue, Mater. Res. Bull.,2011,46, 1814-1818.
    [80]J. Huang, N. Matsunaga, K. Shimanoe, N. Yamazoe and T. Kunitake, Nanotubular SnO2 Templated by Cellulose Fibers:Synthesis and Gas Sensing, Chem. Mater.,2005,17,3513-3518.
    [81]H. Imai, Y. Iwaya, K. Shimizu and H. Hirashima, Preparation of Hollow Fibers of Tin Oxide with and without Antimony Doping, Chem. Lett.,2000,29,906-907.
    [82]Y. Aoki, J. Huang and T. Kunitake, Electro-conductive nanotubular sheet of indium tin oxide as fabricated from the cellulose template, J. Mater. Chem.,2006,16, 292-297.
    [83]T. T. Emons, J. Li and L. F. Nazar, Synthesis and Characterization of Mesoporous Indium Tin Oxide Possessing an Electronically Conductive Framework, J. Am. Chem. Soc.,2002,124,8516-8517.
    [84]Y. Zhang and J. Huang, Hierarchical nanofibrous silicon as replica of natural cellulose substance, J. Mater. Chem.,2011,21,7161-7165.
    [85]Y. Zhang, X. Liu and J. Huang, Hierarchical Mesoporous Silica Nanotubes Derived from Natural Cellulose Substance, ACS Appl. Mater. Interfaces,2011,3, 3272-3275.
    [86]D. Mrinal and B. Durga, A novel and simple method to grow beaded nanochains of ZnO with superior photocatalytic activity, Nanotechnology,2009,20,475602.
    [87]J. Li, F.-1. Kwong and D. H. L. Ng, Synthesis of a Biomorphic Molybdenum Trioxide Templated from Paper, J. Am. Ceram. Soc.,2008,91,1350-1353.
    [88]J. Cai and L. Zhang, Rapid Dissolution of Cellulose in LiOH/Urea and NaOH/Urea Aqueous Solutions, Macromol. Biosci.,2005,5,539-548.
    [89]H. Qi, Q. Yang, L. Zhang, T. Liebert and T. Heinze, The dissolution of cellulose in NaOH-based aqueous system by two-step process, Cellulose,2011,18,237-245.
    [90]L. Zhang, D. Ruan and S. Gao, Dissolution and regeneration of cellulose in NaOH/thiourea aqueous solution, J. Polym. Sci. Part B: Polym. Phys.,2002,40, 1521-1529.
    [91]A. Lue, L. Zhang and D. Ruan, Inclusion Complex Formation of Cellulose in NaOH-Thiourea Aqueous System at Low Temperature, Macromol. Chem. Phys., 2007,208,2359-2366.
    [92]Y. Gu and J. Huang, Fabrication of natural cellulose substance derived hierarchical polymeric materials, J. Mater. Chem.,2009,19,3764-3770.
    [93]Y. Gu, T. Niu and J. Huang, Functional polymeric hybrid nanotubular materials derived from natural cellulose substances, J. Mater. Chem.,2010,20,10217-10223.
    [94]Y. Shin, X. S. Li, C. Wang, J. R. Coleman and G. J. Exarhos, Synthesis of Hierarchical Titanium Carbide from Titania-Coated Cellulose Paper, Adv. Mater., 2004,16,1212-1215.
    [95]D. K. Hwang, J. H. Moon, Y. G. Shul, K. T. Jung, D. H. Kim and D. W. Lee, Scratch Resistant and Transparent UV-Protective Coating on Polycarbonate,J. Sol-Gel Sci. Technol.,2003,26,783-787.
    [96]J.-W. Kim, J.-W. Shim, J.-H. Bae, S.-H. Han, H.-K. Kim, I.-S. Chang, H.-H. Kang and K.-D. Suh, Titanium dioxide/poly(methyl methacrylate) composite microspheres prepared by in situ suspension polymerization and their ability to protect against UV rays, Colloid Polym. Sci.,2002,280,584-588.
    [97]B. Mahltig, H. Bottcher, K. Rauch, U. Dieckmann, R. Nitsche and T. Fritz, Optimized UV protecting coatings by combination of organic and inorganic UV absorbers, Thin Solid Films,2005,485,108-114.
    [98]X. Feng, J. Zhai and L. Jiang, The Fabrication and Switchable Superhydrophobicity of TiO2 Nanorod Films, Angew. Chem., Int. Ed.,2005,44, 5115-5118.
    [99]A. Bozzi, T. Yuranova and J. Kiwi, Self-cleaning of wool-polyamide and polyester textiles by TiO2-rutile modification under daylight irradiation at ambient temperature,J. Photochem. Photobiol., A,2005,172,27-34.
    [100]A. Nakajima, K. Hashimoto, T. Watanabe, K. Takai, G. Yamauchi and A. Fujishima, Transparent Superhydrophobic Thin Films with Self-Cleaning Properties, Langmuir,2000,16,7044-7047.
    [101]X.-T. Zhang, O. Sato, M.Taguchi, Y. Einaga, T. Murakami and A. Fujishima, Self-Cleaning Particle Coating with Antireflection Properties, Chem. Mater.,2005,17, 696-700.
    [102]H. Miyazaki, T. Hyodo, Y. Shimizu and M. Egashira, Hydrogen-sensing properties of anodically oxidized TiO2 film sensors:Effects of preparation and pretreatment conditions, Sens. Actuators, B,2005,108,467-472.
    [103]A. M. Ruiz, A. Cornet and J. R. Morante, Performances of La-TiO2 nanoparticles as gas sensing material, Sens. Actuators, B,2005,111-112,7-12.
    [104]A. M. Ruiz, A. Cornet, K. Shimanoe, J. R. Morante and N. Yamazoe, Transition metals (Co, Cu) as additives on hydrothermally treated Tio2 for gas sensing, Sens. Actuators, B,2005,109,7-12.
    [105]Q. Dong, H. Su, D. Zhang, Z. Liu and Y. Lai, Synthesis of hierarchical mesoporous titania with interwoven networks by eggshell membrane directed sol-gel technique, Microporous Mesoporous Mater.,2007,98,344-351.
    [106]S. R. Hall, V. M. Swinerd, F. N. Newby, A. M. Collins and S. Mann, Fabrication of Porous Titania (Brookite) Microparticles with Complex Morphology by Sol-Gel Replication of Pollen Grains, Chem. Mater.,2006,18,598-600.
    [107]A. B. Zimmerman, A. M. Nelson and E. G. Gillan, Titania and Silica Materials Derived from Chemically Dehydrated Porous Botanical Templates, Chem. Mater., 2012,24,4301-4310.
    [108]M. Canle Lopez, M. I. Fernandez, S. Rodriguez, J. A. Santaballa, S. Steenken and E. Vulliet, Mechanisms of Direct and TiO2-Photocatalysed UV Degradation of Phenylurea Herbicides, ChemPhysChem,2005,6,2064-2074.
    [109]M. Canle L, J. A. Santaballa and E. Vulliet, On the mechanism of TiO2-photocatalyzed degradation of aniline derivatives, J. Photochem. Photobiol, A, 2005,175,192-200.
    [110]L. Li, W. Zhu, L. Chen, P. Zhang and Z. Chen, Photocatalytic ozonation of dibutyl phthalate over TiO2 film, J. Photochem. Photobiol, A,2005,175,172-177.
    [111]S. Mohanty, N. N. Rao, P. Khare and S. N. Kaul, A coupled photocatalytic-biological process for degradation of 1-amino-8-naphthol-3, 6-disulfonic acid (H-acid), Water Res.,2005,39,5064-5070.
    [112]H. Hidaka, T. Koike, T. Kurihara and N. Serpone, Dynamics and mechanistic features in the photocatalyzed oxidation of disulfonated anionic surfactants on the surface of UV-irradiated titania nanoparticles, New J. Chem.,2004,28,1100-1106.
    [113]A. Fujishima, T. N. Rao and D. A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C,2000,1,1-21.
    [114]A. Mills and S. Le Hunte, An overview of semiconductor photocatalysis, J. Photochem. Photobiol, A,1997,108,1-35.
    [115]D. Beydoun, R. Amal, G. Low and S. McEvoy, Role of Nanoparticles in Photocatalysis, J. Nanopart. Res.,1999,1,439-458.
    [116]M. Anpo, T. Shima, S. Kodama and Y. Kubokawa, Photocatalytic hydrogenation of propyne with water on small-particle titania:size quantization effects and reaction intermediates, J. Phys. Chem. C,1987,91,4305-4310.
    [117]C.-C. Wang, Z. Zhang and J. Y. Ying, Photocatalytic decomposition of halogenated organics over nanocrystalline titania, Nanostruct. Mater.,1997,9, 583-586.
    [118]S. Y. Chae, M. K. Park, S. K. Lee, T. Y. Kim, S. K. Kim and W. I. Lee, Preparation of Size-Controlled TiO2 Nanoparticles and Derivation of Optically Transparent Photocatalytic Films, Chem. Mater.,2003,15,3326-3331.
    [119]J. Joo, S. G. Kwon, T. Yu, M. Cho, J. Lee, J. Yoon and T. Hyeon, Large-Scale Synthesis of TiO2 Nanorods via Nonhydrolytic SolGel Ester Elimination Reaction and Their Application to Photocatalytic Inactivation of E. coli, J. Phys. Chem. B, 2005,109,15297-15302.
    [120]J.-M. Wu, T.-W. Zhang, Y.-W. Zeng, S. Hayakawa, K. Tsuru and A. Osaka, Large-Scale Preparation of Ordered Titania Nanorods with Enhanced Photocatalytic Activity, Langmuir,2005,21,6995-7002.
    [121]J. C. Yu, L. Zhang and J. Yu, Rapid synthesis of mesoporous TiO2 with high photocatalytic activity by ultrasound-induced agglomeration, New J. Chem.,2002,26, 416-420.
    [122]E. Beyers, P. Cool and E. F. Vansant, Anatase Formation during the Synthesis of Mesoporous Titania and Its Photocatalytic Effect, J. Phys. Chem. B,2005,109, 10081-10086.
    [123]T. Peng, D. Zhao, K. Dai, W. Shi and K. Hirao, Synthesis of Titanium Dioxide Nanoparticles with Mesoporous Anatase Wall and High Photocatalytic Activity, J. Phys. Chem. B,2005,109,4947-4952.
    [124]X. B. Chen, Y. B. Lou, S. Dayal, X. F. Qiu, R. Krolicki, C. Burda, C. F. Zhao and J. Becker, Doped semiconductor nanomaterials, J. Nanosci. Nanotechnol.,2005, 5,1408-1420.
    [125]Y. Bessekhouad, D. Robert, J. V. Weber and N. Chaoui, Effect of alkaline-doped TiO2 on photocatalytic efficiency, J. Photochem. Photobiol. A,2004, 167,49-57.
    [126]Y. Cao, W. Yang, W. Zhang, G. Liu and P. Yue, Improved photocatalytic activity of Sn4+ doped TiO2 nanoparticulate films prepared by plasma-enhanced chemical vapor deposition, New J. Chem.,2004,28,218-222.
    [127]S. Peng, Y. Li, F. Jiang, G. Lu and S. Li, Effect of Be2+ doping TiO2 on its photocatalytic activity, Chem. Phys. Lett,2004,398,235-239.
    [128]W. Choi, A. Termin and M. R. Hoffmann, The Role of Metal Ion Dopants in Quantum-Sized TiO2:Correlation between Photoreactivity and Charge Carrier Recombination Dynamics,J.Phys. Chem. B,1994,98,13669-13679.
    [129]W. Choi, A. Termin and M. R. Hoffmann, Einflusse von Dotierungs-Metall-Ionen auf die photokatalytische Reaktivitat von TiO2-Quantenteilchen, Angew. Chem.,1994,106,1148-1149.
    [130]X.-q. Chen, J.-y. Yang and J.-s. Zhang, Preparation and photocatalytic properties of Fe-doped TiO2 nanoparticles, J. Cent. South UniV. Technol,2004,11, 161-165.
    [131]S. Kim, S.-J. Hwang and W. Choi, Visible Light Active Platinum-Ion-Doped TiO2 Photocatalyst, J. Phys. Chem. B,2005,109,24260-24267.
    [132]S. Rengaraj and X. Z. Li, Enhanced photocatalytic activity of TiO2 by doping with Ag for degradation of 2,4,6-trichlorophenol in aqueous suspension, J. Mol. Catal. A,2006,243,60-67.
    [133]H. Wei, Y. Wu, N. Lun and F. Zhao, Preparation and photocatalysis of TiO2 nanoparticles co-doped with nitrogen and lanthanum, J. Mater. Sci.,2004,39, 1305-1308.
    [134]S. T. Martin, C. L. Morrison and M. R. Hoffmann, Photochemical Mechanism of Size-Quantized Vanadium-Doped TiO2 Particles, J. Phys. Chem. B,1994,98, 13695-13704.
    [135]J.-M. Herrmann, J. Disdier and P. Pichat, Effect of chromium doping on the electrical and catalytic properties of powder titania under UV and visible illumination, Chem. Phys. Lett.,1984,108,618-622.
    [136]C. Burda, Y. Lou, X. Chen, A. C. S. Samia, J. Stout and J. L. Gole, Enhanced Nitrogen Doping in TiO2 Nanoparticles, Nano Lett.,2003,3,1049-1051.
    [137]X. Chen, Y. B. Lou, A. C. S. Samia, C. Burda and J. L. Gole, Formation of Oxynitride as the Photocatalytic Enhancing Site in Nitrogen-Doped Titania Nano catalysts:Comparison to a Commercial Nanopowder, Adv. Funct. Mater.,2005, 15,41-49.
    [138]O. Diwald, T. L. Thompson, T. Zubkov, S. D. Walck and J. T. Yates, Photochemical Activity of Nitrogen-Doped Rutile TiO2(110) in Visible Light, J. Phys. Chem. B,2004,108,6004-6008.
    [139]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides, Science,2001,293,269-271.
    [140]T. Ohno, T. Mitsui and M. Matsumura, Photocatalytic Activity of S-doped TiO2 Photocatalyst under Visible Light, Chem. Lett.,2003,32,364-365.
    [141]T. Umebayashi, T. Yamaki, S. Tanaka and K. Asai, Visible Light-Induced Degradation of Methylene Blue on S-doped TiO2, Chem. Lett.,2003,32,330-331.
    [142]T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui and M. Matsumura, Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light, Appl. Catal. A,2004,265,115-121.
    [143]Y. Choi, T. Umebayashi and M. Yoshikawa, Fabrication and characterization of C-doped anatase TiO2 photocatalysts, J. Mater. Sci.,2004,39,1837-1839.
    [144]H. Irie, Y. Watanabe and K. Hashimoto, Carbon-doped Anatase TiO2 Powders as a Visible-light Sensitive Photocatalyst, Chem. Lett.,2003,32,772-773.
    [145]S. N. Subbarao, Y. H. Yun, R. Kershaw, K. Dwight and A. Wold, Comparison of the photoelectric properties of the system TiO2with the system TiO2-xFx, Mater. Res. Bull,1978,13,1461-1467.
    [146]A. Fujishima and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature,1972,238,37-38.
    [147]H. Kato, K. Asakura and A. Kudo, Highly Efficient Water Splitting into H2 and 02 over Lanthanum-Doped NaTaO3 Photocatalysts with High Crystallinity and Surface Nanostructure, J. Am. Chem. Soc.,2003,125,3082-3089.
    [148]K. Maeda and K. Domen, New Non-Oxide Photocatalysts Designed for Overall Water Splitting under Visible Light,J. Phys. Chem. C,2007,111,7851-7861.
    [149]A. L. Linsebigler, G. Lu and J. T. Yates, Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results, Chem. Rev.,1995,95,735-758.
    [150]D. Philip Colombo Jr, K. A. Roussel, J. Saeh, D. E. Skinner, J. J. Cavaleri and R. M. Bowman, Femtosecond study of the intensity dependence of electron-hole dynamics in TiO2 nanoclusters, Chem. Phys. Lett.,1995,232,207-214.
    [151]K. Yamaguti and S. Sato, Photolysis of water over metallized powdered titanium dioxide, J. Chem. Soc., Faraday Trans.1,1985,81,1237-1246.
    [152]M. Anpo and M. Takeuchi, The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation, J. Catal.,2003, 216,505-516.
    [153]J. S. Jang, S. H. Choi, H. G. Kim and J. S. Lee, Location and State of Pt in Platinized CdS/TiO2 Photocatalysts for Hydrogen Production from Water under Visible Light, J. Phys. Chem. C,2008,112,17200-17205.
    [154]B. Sun, A. V. Vorontsov and P. G. Smirniotis, Role of Platinum Deposited on TiO2 in Phenol Photocatalytic Oxidation, Langmuir,2003,19,3151-3156.
    [155]J.-J. Zou, C.-J. Liu, K.-L. Yu, D.-G. Cheng, Y.-P. Zhang, F. He, H.-Y. Du and L. Cui, Highly efficient Pt/TiO2 photocatalyst prepared by plasma-enhanced impregnation method, Chem. Phys. Lett.,2004,400,520-523.
    [156]X. Fu, J. Long, X. Wang, D. Y. C. Leung, Z. Ding, L. Wu, Z. Zhang, Z. Li and X. Fu, Photocatalytic reforming of biomass:A systematic study of hydrogen evolution from glucose solution, Int. J. Hydrogen Energy,2008,33,6484-6491.
    [157]T. Sreethawong and S. Yoshikawa, Enhanced photocatalytic hydrogen evolution over Pt supported on mesoporous prepared by single-step sol-gel process with surfactant template, Int. J. Hydrogen Energy,2006,31,786-796.
    [158]X.-J. Zheng, L.-F. Wei, Z.-H. Zhang, Q.-J. Jiang, Y.-J. Wei, B. Xie and M.-B. Wei, Research on photocatalytic H2 production from acetic acid solution by Pt/TiO2 nanoparticles under UV irradiation, Int. J. Hydrogen Energy,2009,34,9033-9041.
    [159]H. Yoshida, K. Hirao, J.-i. Nishimoto, K. Shimura, S. Kato, H. Itoh and T. Hattori, Hydrogen Production from Methane and Water on Platinum Loaded Titanium Oxide Photocatalysts, J. Phys. Chem. C,2008,112,5542-5551.
    [160]O. Carp, C. L. Huisman and A. Reller, Photoinduced reactivity of titanium dioxide, Prog. Solid State Chem.,2004,32,33-177.
    [161]J. S. Jang, S. M. Ji, S. W. Bae, H. C. Son and J. S. Lee, Optimization of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from Na2S/Na2SO3 aqueous electrolyte solution under visible light, J. Photochem. Photobiol., A,2007,188,112-119.
    [162]K. Sayama, R. Abe, H. Arakawa and H. Sugihara, Decomposition of water into H2 and 02 by a two-step photoexcitation reaction over a Pt-TiO2 photocatalyst in NaNO2 and Na2CO3 aqueous solution, Catal. Commun.,2006,7,96-99.
    [163]J.-J. Zou, H. He, L. Cui and H.-Y. Du, Highly efficient photocatalyst for hydrogen generation prepared by a cold plasma method, Int. J. Hydrogen Energy, 2007,32,1762-1770.
    [164]Y. Xie, K. Ding, Z. Liu, R. Tao, Z. Sun, H. Zhang and G. An, In Situ Controllable Loading of Ultrafine Noble Metal Particles on Titania, J. Am. Chem. Soc.,2009,131,6648-6649.
    [165]Y. Mizukoshi, Y. Makise, T. Shuto, J. Hu, A. Tominaga, S. Shironita and S. Tanabe, Immobilization of noble metal nanoparticles on the surface of TiO2 by the sonochemical method:Photocatalytic production of hydrogen from an aqueous solution of ethanol, Ultrason. Sonochem.,2007,14,387-392.
    [166]B. Ohtani, K. Iwai, S.-i. Nishimoto and S. Sato, Role of Platinum Deposits on Titanium(IV) Oxide Particles:Structural and Kinetic Analyses of Photocatalytic Reaction in Aqueous Alcohol and Amino Acid Solutions, J. Phys. Chem. B,1997, 101,3349-3359.
    [167]M. Kitano, K. Tsujimaru and M. Anpo, Decomposition of water in the separate evolution of hydrogen and oxygen using visible light-responsive TiO2 thin film photocatalysts:Effect of the work function of the substrates on the yield of the reaction,Appl. Catal, A,2006,314,179-183.
    [168]M. Matsuoka, M. Kitano, M. Takeuchi, K. Tsujimaru, M. Anpo and J. M. Thomas, Photocatalysis for new energy production:Recent advances in photocatalytic water splitting reactions for hydrogen production, Catal. Today,2007,122,51-61.
    [169]W. Y. Teoh, L. Madler, D. Beydoun, S. E. Pratsinis and R. Amal, Direct (one-step) synthesis of and nanoparticles for photocatalytic mineralisation of sucrose, Chem. Eng. Sci.,2005,60,5852-5861.
    [170]W. Y. Teoh, L. Madler and R. Amal, Inter-relationship between Pt oxidation states on TiO2 and the photocatalytic mineralisation of organic matters, J. Catal., 2007,257,271-280.
    [171]W. Y. Teoh, L. Madler, D. Beydoun, S. E. Pratsinis and R. Amal, Direct (one-step) synthesis of and nanoparticles for photocatalytic mineralisation of sucrose, Chemical Engineering Science,2005,60,5852-5861.
    [1]S. Mann, Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry, Oxford Univ. Press, New York,2001.
    [2]C. Sanchez, H. Arribart and M. M. Giraud Guille, Biomimetism and bioinspiration as tools for the design of innovative materials and systems, Nature Mater.,2005,4, 277-288.
    [3]S. A. Davis, S. L. Burkett, N. H. Mendelson and S. Mann, Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases, Nature,1997,385, 420-423.
    [4]V. Valtchev, M. Smaihi, A.-C. Faust and L. Vidal, Biomineral-Silica-Induced Zeolitization of Equisetum Arvense, Angew. Chem. Int. Ed.,2003,42,2782-2785.
    [5]G. Cook, P. L. Timms and C. Goltner-Spickermann, Exact Replication of Biological Structures by Chemical Vapor Deposition of Silica, Angew. Chem. Int. Ed., 2003,42,557-559.
    [6]D. Yang, L. Qi and J. Ma, Eggshell Membrane Templating of Hierarchically Ordered Macroporous Networks Composed of TiO2 Tubes, Adv. Mater.,2002,14, 1543-1546.
    [7]Z. Bao, M. R. Weatherspoon, S. Shian, Y. Cai, P. D. Graham, S. M. Allan, G. Ahmad, M. B. Dickerson, B. C. Church, Z. Kang, H. W. Abernathy Iii, C. J. Summers, M. Liu and K. H. Sandhage, Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas, Nature,2007,446,172-175.
    [8]K.-H.Jeong, J. Kim and L. P. Lee, Biologically Inspired Artificial Compound Eyes, Science,2006,312,557-561.
    [9]M. Kemell, V. Pore, M. Ritala, M. Leskela and M. Linden, Atomic Layer Deposition in Nanometer-Level Replication of Cellulosic Substances and Preparation of Photocatalytic TiO2/Cellulose Composites, J. Am. Chem. Soc.,2005,127, 14178-14179.
    [10]R. A. Caruso and M. Antonietti, S-Qel Nanocoating:An Approach to the Preparation of Structured Materials, Chem. Mater.,2001,13,3272-3282.
    [11]J. Huang and T. Kunitake, Nano-Precision Replication of Natural Cellulosic Substances by Metal Oxides, J. Am. Chem. Soc.,2003,125,11834-11835.
    [12]J. Huang, N. Matsunaga, K. Shimanoe, N. Yamazoe and T. Kunitake, Nanotubular SnO2 Templated by Cellulose Fibers:Synthesis and Gas Sensing, Chem. Mater.,2005,17,3513-3518.
    [13]Y. Aoki, J. Huang and T. Kunitake, Electro-conductive nanotubular sheet of indium tin oxide as fabricated from the cellulose template, J. Mater. Chem.,2006,16, 292-297.
    [14]M. R. Weatherspoon, M. B. Dickerson, G. Wang, Y. Cai, S. Shian, S. C. Jones, S. R. Marder and K. H. Sandhage, Thin, Conformal, and Continuous SnO2 Coatings on Three-Dimensional Biosilica Templates through Hydroxy-Group Amplification and Layer-By-Layer Alkoxide Deposition, Angew. Chem. Int. Ed.,2007,46,5724-5727.
    [15]Y. Li, T. Sasaki, Y. Shimizu and N. Koshizaki, Hexagonal-Close-Packed, Hierarchical Amorphous TiO2 Nanocolumn Arrays:Transferability, Enhanced Photocatalytic Activity, and Superamphiphilicity without UV Irradiation, J. Am. Chem. Soc.,2008,130,14755-14762.
    [16]Y. Li, T. Sasaki, Y. Shimizu and N. Koshizaki, A Hierarchically Ordered TiO2 Hemispherical Particle Array with Hexagonal-Non-Close-Packed Tops:Synthesis and Stable Superhydrophilicity Without UV Irradiation, Small,2008,4,2286-2291.
    [17]W. Zhao, W. Ma, C. Chen, J. Zhao and Z. Shuai, Efficient Degradation of Toxic Organic Pollutants with Ni2O3/TiO2-xBx under Visible Irradiation, J. Am. Chem. Soc.,2004,126,4782-4783.
    [18]S. U. M. Khan, M. Al-Shahry and W. B. Ingler, Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2, Science,2002,297,2243-2245.
    [19]S. Sakthivel and H. Kisch, Daylight Photocatalysis by Carbon-Modified Titanium Dioxide, Angew. Chem. Int. Ed.,2003,42,4908-4911.
    [20]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides, Science,2001,293,269-271.
    [21]C. Burda, Y. Lou, X. Chen, A. C. S. Samia, J. Stout and J. L. Gole, Enhanced Nitrogen Doping in TiO2 Nanoparticles, Nano Lett.,2003,3,1049-1051.
    [22]S. Livraghi, A. Votta, M. C. Paganini and E. Giamello, The nature of paramagnetic species in nitrogen doped TiO2 active in visible light photocatalysis, Chem. Commun.,2005,0,498-500.
    [23]L. Lin, W. Lin, Y. Zhu, B. Zhao and Y. Xie, Phosphor-doped Titania —a Novel Photocatalyst Active in Visible Light, Chem. Lett.,2005,34,284-285.
    [24]W. Ho, J. C. Yu and S. Lee, Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity, J. Solid State Chem.,2006,179, 1171-1176.
    [25]T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui and M. Matsumura, Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light,Appl. Catal. A,2004,265,115-121.
    [26]W. Ho, J. C. Yu and S. Lee, Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity, Chem. Commun.,2006,0,1115-1117.
    [27]X. Hong, Z. Wang, W. Cai, F. Lu, J. Zhang, Y. Yang, N. Ma and Y. Liu, Visible-Light-Activated Nanoparticle Photocatalyst of Iodine-Doped Titanium Dioxide, Chem. Mater.,2005,17,1548-1552.
    [28]S. Rengaraj and X. Z. Li, Enhanced photocatalytic activity of TiO2 by doping with Ag for degradation of 2,4,6-trichlorophenol in aqueous suspension, J. Mol. Catal. A:Chem.,2006,243,60-67.
    [29]S. Kim, S.-J. Hwang and W. Choi, Visible Light Active Platinum-Ion-Doped TiO2 Photocatalyst, J. Phys. Chem. B,2005,109,24260-24267.
    [30]V. Subramanian, E. E. Wolf and P. V. Kamat, Catalysis with TiO2/Gold Nanocomposites. Effect of Metal Particle Size on the Fermi Level Equilibration, J. Am. Chem. Soc.,2004,126,4943-4950.
    [31]S.-w. Lee and W. M. Sigmund, Formation of anatase TiO2 nanoparticles on carbon nanotubes, Chem. Commun.,2003,0,780-781.
    [32]S. Shanmugam, A. Gabashvili, D. S. Jacob, J. C. Yu and A. Gedanken, Synthesis and Characterization of TiO2@C (?)ll Composite Nanoparticles and Evaluation of Their Photocatalytic Activities, Chem. Mater.,2006,18,2275-2282.
    [33]C. Moreno-Castilla, F. J. Maldonado-Hodar, F. Carrasco-Marin and E. Rodriguez-Castellon, Surface Characteristics of Titania/Carbon Composite Aerogels, Langmuir,2002,18,2295-2299.
    [34]Q. Yu, P. Wu, P. Xu, L. Li, T. Liu and L. Zhao, Synthesis of cellulose/titanium dioxide hybrids in supercritical carbon dioxide, Green Chem.,2008,10,1061-1067.
    [35]J. Jang, X. L. Li and J. H. Oh, Facile fabrication of polymer and carbon nanocapsules using polypyrrole core/shell nanomaterials, Chem. Commun.,2004,0, 794-795.
    [36]J. Jang and J. H. Oh, A facile synthesis of polypyrrole nanotubes using a template-mediated vapor deposition polymerization and the conversion to carbon nanotubes, Chem. Commun.,2004,0,882-883.
    [37]Y. Mao and S. S. Wong, Size-and Shape-Dependent Transformation of Nanosized Titanate into Analogous Anatase Titania Nanostructures, J. Am. Chem. Soc.,2006,128,8217-8226.
    [38]T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, Formation of Titanium Oxide Nanotube, Langmuir,1998,14,3160-3163.
    [39]S.-Z. Chu, K. Wada, S. Inoue and S.-i. Todoroki, Synthesis and Characterization of Titania Nanostructures on Glass by Al Anodization and SolGel Process, Chem. Mater.,2002,14,266-272.
    [40]L. Wang, T. Sasaki, Y. Ebina, K. Kurashima and M. Watanabe, Fabrication of Controllable Ultrathin Hollow Shells by Layer-by-Layer Assembly of Exfoliated Titania Nanosheets on Polymer Templates, Chem. Mater.,2002,14,4827-4832.
    [41]B. Wielage, T. Lampke, G. Marx, K. Nestler and D. Starke, Thermogravimetric and differential scanning calorimetric analysis of natural fibres and polypropylene, Thermochim. Acta,1999,337,169-177.
    [42]J. Molto, R. Font, J. A. Conesa and I. Martin-Gullon, Thermogravimetric analysis during the decomposition of cotton fabrics in an inert and air environment, J. Anal. Appl. Pyrolysis,2006,76,124-131.
    [43]K. Yu, J. Zhao, Y. Tian, M. Jiang, X. Ding, Y. Liu, Y. Zhu and Z. Wang, Preparation of nanosized titanium dioxide from titanium n-butoxide modified with tartaric acid and its influence on the phase transformation, Mater. Lett.,2005,59, 3563-3566.
    [44]X. Sun and Y. Li, Colloidal Carbon Spheres and Their Core/Shell Structures with Noble-Metal Nanoparticles, Angew. Chem. Int. Ed.,2004,43,597-601.
    [45]G.-X. Zhu, X.-W. Wei, C.-J. Xia and Y. Ye, Solution route to single crystalline dendritic cobalt nanostructures coated with carbon shells, Carbon,2007,45, 1160-1166.
    [46]G. Jia, M. Yang, Y. Song, H. You and H. Zhang, General and Facile Method To Prepare Uniform Y2O3:Eu Hollow Microspheres, Cryst. Growth Des.,2008,9, 301-307.
    [47]A. Yanhui, X. Jingjing, F. Degang, B. Long and Y. Chunwei, Deposition of anatase titania onto carbon encapsulated magnetite nanoparticles, Nanotechnology, 2008,19,405604.
    [48]X. Jiang, T. Herricks and Y. Xia, Monodispersed Spherical Colloids of Titania: Synthesis, Characterization, and Crystallization, Adv. Mater.,2003,15,1205-1209.
    [49]J. Yao and H. Wang, Preparation of Crystalline Mesoporous Titania Using Furfuryl Alcohol as Polymerizable Solvent, Ind, Eng. Chem. Res.,2007,46, 6264-6268.
    [50]M. Kruk, M. Jaroniec and A. Sayari, Adsorption Study of Surface and Structural Properties of MCM-41 Materials of Different Pore Sizes, J. Phys. Chem. B,1997,101, 583-589.
    [51]P.Nowicki, R. Pietrzak and H. Wachowska, Influence of the Precursor Metamorphism Degree on Preparation of Nitrogen-enriched Activated Carbons by Ammoxidation and Chemical Activation of Coals, Energy & Fuels,2009,23, 2205-2212.
    [52]K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida and T. Watanabe, A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide, J. Am. Chem. Soc.,2008,130, 1676-1680.
    [53]X. Li, T. Fan, H. Zhou, S.-K. Chow, W. Zhang, D. Zhang, Q. Guo and H. Ogawa, Enhanced Light-Harvesting and Photocatalytic Properties in Morph-TiO2 from Green-Leaf Biotemplates,Adv. Funnct. Mater.,2009,19,45-56.
    [54]K. Madhusudan Reddy, C. V. Gopal Reddy and S. V. Manorama, Preparation, Characterization, and Spectral Studies on Nanocrystalline Anatase TiO2, J. Solid State Chem.,2001,158,180-186.
    [55]M. Kemell, V. Pore, J. Tupala, M. Ritala and M. Leskela, Atomic Layer Deposition of Nanostructured TiO2 Photocatalysts via Template Approach, Chem. Mater.,2007,19,1816-1820.
    [56]T. Tsumura, N. Kojitani, I. Izumi, N. Iwashita, M. Toyoda and M. Inagaki, Carbon coating of anatase-type TiO2 and photoactivity, J. Mater. Chem.,2002,12, 1391-1396.
    [57]M. Inagaki, F. Kojin, B. Tryba and M. Toyoda, Carbon-coated anatase:the role of the carbon layer for photocatalytic performance, Carbon,2005,43,1652-1659.
    [58]L. Lin, W. Lin, Y. X. Zhu, B. Y. Zhao, Y. C. Xie, Y. He and Y. F. Zhu, Uniform carbon-covered titania and its photocatalytic property, J. Mol. Catal. A:Chem.,2005, 236,46-53.
    [59]W. Ma, Y. Huang, J. Li, M. Cheng, W. Song and J. Zhao, An efficient approach for the photodegradation of organic pollutants by immobilized iron ions at neutral pHs, Chem. Commun.,2003,0,1582-1583.
    [60]C. Hu, Y. Lan, J. Qu, X. Hu and A. Wang, Ag/AgBr/TiO2 Visible Light Photocatalyst for Destruction of Azodyes and Bacteria, J. Phys. Chem. B,2006,110, 4066-4072.
    [61]L.-S. Zhang, K.-H. Wong, H.-Y. Yip, C. Hu, J. C. Yu, C.-Y. Chan and P.-K. Wong, Effective Photocatalytic Disinfection of E. coli K-12 Using AgBr-Ag-Bi2WO6 Nanojunction System Irradiated by Visible Light:The Role of Diffusing Hydroxyl Radicals, Environ. Sci. Technol.,2010,44,1392-1398.
    [62]W. Zhao, C. Chen, W. Ma, J. Zhao, D. Wang, H. Hidaka and N. Serpone, Efficient Photoinduced Conversion of an Azo Dye on Hexachloroplatinate(IV)-Modified TiO2 Surfaces under Visible Light Irradiation-A Photosensitization Pathway, Chem. Eur. J.,2003,9,3292-3299.
    [63]C. Anderson and A. J. Bard, Improved Photocatalytic Activity and Characterization of Mixed TiO2/SiO2 and TiO2/A12O3 Materials, J. Phys. Chem. B, 1997,101,2611-2616.
    [64]T. P. Ang, C. S. Toh and Y.-F. Han, Synthesis, Characterization, and Activity of Visible-Light-Driven Nitrogen-Doped TiO2-SiO2 Mixed Oxide Photocatalysts,J. Phys. Chem. C,2009,113,10560-10567.
    [65]J. Huang, I. Ichinose, T. Kunitake and A. Nakao, Preparation of Nanoporous Titania Films by Surface-Soel Process Accompanied by Low-Temperature Oxygen Plasma Treatment, Langmuir,2002,18,9048-9053.
    [1]T. Matsunaga, R. Tomoda, T. Nakajima and H. Wake, Photoelectrochemical sterilization of microbial cells by semiconductor powders, FEMS Microbiol.Lett., 1985,29,211-214.
    [2]M. Cho, H. Chung, W. Choi and J. Yoon, Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection, ater Res., 2004,38,1069-1077.
    [3]H. Oveisi, S. Rahighi, X. Jiang, Y. Nemoto, A. Beitollahi, S. Wakatsuki and Y. Yamauchi, Unusual Antibacterial Property of Mesoporous Titania Films:Drastic Improvement by Controlling Surface Area and Crystallinity, Chem. Asian J.,2010,5, 1978-1983.
    [4]J.-w.Seo, H. Chung, M.-y. Kim, J. Lee, I.-h. Choi and J. Cheon, Development of Water-Soluble Single-Crystalline TiO2 Nanoparticles for Photocatalytic Cancer-Cell Treatment, Small,2007,3,850-853.
    [5]J. Thiel, L. Pakstis, S. Buzby, M. Raffi, C. Ni, D. J. Pochan and S. I. Shah, Antibacterial Properties of Silver-Doped Titania, Small,2007,3,799-803.
    [6]J. C. Yu, W. Ho, J. Yu, H. Yip, P. K. Wong and J. Zhao, Efficient Visible-Light-Induced Photocatalytic Disinfection on Sulfur-Doped Nanocrystalline Titania, Environ. Sci. Technol.,2005,39,1175-1179.
    [7]J. Joo, S. G. Kwon, T. Yu, M. Cho, J. Lee, J. Yoon and T. Hyeon, Large-Scale Synthesis of TiO2 Nanorods via Nonhydrolytic SoiGel Ester Elimination Reaction and Their Application to Photocatalytic Inactivation of E. coli, J. Phys. Chem. B, 2005,109,15297-15302.
    [8]K. Kowal, K. Wysocka-Krol, M. Kopaczynska, E. Dworniczek, R. Franiczek, M. Wawrzyrnska, M. Vargova, M. Zahoran, E. Rakovsky, P. Kus, G. Plesch, A. Plecenik, F. Laffir, S. A. M. Tofail and H. Podbielska, In situ photoexcitation of silver-doped titania nanopowders for activity against bacteria and yeasts, J. Colloid Interface Sci., 2011,362,50-57.
    [9]A. Wang, Y. Cui, Y. Yang and J. Li, Capsules with Silver Nanoparticle Enrichment Subdomains and Their Antimicrobial Properties, Chem. Asian J.,2010,5, 1780-1787.
    [10]D. Li, Y. Cui, K. Wang, Q. He, X. Yan and J. Li, Thermosensitive Nanostructures Comprising Gold Nanoparticles Grafted with Block Copolymers, Adv. Funct. Mater.,2007,17,3134-3140.
    [11]C. Marambio-Jones and E. V. Hoek, A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment, J. Nanopart. Res.,2010,12,1531-1551.
    [12]M. Jose Ruben, E. Jose Luis, C. Alejandra, H. Katherine, B. K. Juan, R. Jose Tapia and Y. Miguel Jose, The bactericidal effect of silver nanoparticles, Nanotechnology,2005,16,2346.
    [13]H. Zhang and G. Chen, Potent Antibacterial Activities of Ag/TiO2 Nanocomposite Powders Synthesized by a One-Pot Sol-Gel Method, Environ. Sci. Technol,2009,43,2905-2910.
    [14]S. Zhang, R. Fu, D. Wu, W. Xu, Q. Ye and Z. Chen, Preparation and characterization of antibacterial silver-dispersed activated carbon aerogels, Carbon, 2004,42,3209-3216.
    [15]K. Y. Yoon, J. H. Byeon, C. W. Park and J. Hwang, Antimicrobial Effect of Silver Particles on Bacterial Contamination of Activated Carbon Fibers, Environ. Sci. Technol,2008,42,1251-1255.
    [16]O. Akhavan, M. Abdolahad, Y. Abdi and S. Mohajerzadeh, Silver nanoparticles within vertically aligned multi-wall carbon nanotubes with open tips for antibacterial purposes, J. Mater. Chem.,2011,21,387-393.
    [17]D. T. Schoen, A. P. Schoen, L. Hu, H. S. Kim, S. C. Heilshorn and Y. Cui, High Speed Water Sterilization Using One-Dimensional Nanostructures, Nano Lett.,2010, 10,3628-3632.
    [18]X. Liu, Y. Gu and J. Huang, Hierarchical, Titania-Coated, Carbon Nanofibrous Material Derived from a Natural Cellulosic Substance, Chem. Eur. J.,2010,16, 7730-7740.
    [19]K. Xie, L. Sun, C. Wang, Y. Lai, M. Wang, H. Chen and C. Lin, Photoelectrocatalytic properties of Ag nanoparticles loaded TiO2 nanotube arrays prepared by pulse current deposition, Electrochim. Acta,2010,55,7211-7218.
    [20]P. Prieto, V. Nistor, K. Nouneh, M. Oyama, M. Abd-Lefdil and R. Diaz, XPS study of silver, nickel and bimetallic silver-nickel nanoparticles prepared by seed-mediated growth, Appl. Surf. Sci.,2012,258,8807-8813.
    [21]I. Lopez-Salido, D. C. Lim and Y. D. Kim, Ag nanoparticles on highly ordered pyrolytic graphite (HOPG) surfaces studied using STM and XPS, Surf. Sci.,2005,588, 6-18.
    [22]M. Li, M. E. Noriega-Trevino, N. Nino-Martinez, C. Marambio-Jones, J. Wang, R. Damoiseaux, F. Ruiz and E. M. V. Hoek, Synergistic Bactericidal Activity of Ag-TiO2 Nanoparticles in Both Light and Dark Conditions, Environ. Sci. Technol., 2011,45,8989-8995.
    [23]J. H. Byeon, K. Y. Yoon, J. H. Park and J. Hwang, Characteristics of electroless copper-deposited activated carbon fibers for antibacterial action and adsorption-desorption of volatile organic compounds, Carbon,2007,45,2313-2316.
    [24]S.-J. Park and Y.-S. Jang, Preparation and characterization of activated carbon fibers supported with silver metal for antibacterial behavior, J. Colloid Interface Sci., 2003,261,238-243.
    [25]Y. Zhang, H. Peng, W. Huang, Y. Zhou, X. Zhang and D. Yan, Hyperbranched Poly(amidoamine) as the Stabilizer and Reductant To Prepare Colloid Silver Nanoparticles in Situ and Their Antibacterial Activity, J. Phys. Chem. C,2008,112, 2330-2336.
    [26]A. Melaiye, Z. Sun, K. Hindi, A. Milsted, D. Ely, D. H. Reneker, C. A. Tessier and W. J. Youngs, S(?)zole Cyclophane gem-Diol Complexes Encapsulated by Electrospun Tecophilic Nanofibers:Formation of Nanosilver Particles and Antimicrobial Activity, J. Am. Chem. Soc.,2005,127,2285-2291.
    [27]M. Guzman, J. Dille and S. Godet, Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria, Nanomed.-Nanotechnol. Biol. Med.,2012,8,37-45.
    [28]Q. Zhang, C. Sun, Y. Zhao, S. Zhou, X. Hu and P. Chen, Low Ag-Doped Titanium Dioxide Nanosheet Films with Outstanding Antimicrobial Property, Environ. Sci. Technol,2010,44,8270-8275.
    [29]H. Liu, J. Song, S. Shang, Z. Song and D. Wang, Cellulose Nanocrystal/Silver Nanoparticle Composites as Bifunctional Nanofillers within Waterborne Polyurethane, ACS Appl. Mater. Interfaces,2012,4,2413-2419.
    [30]A. Taglietti, Y. A. Diaz Fernandez, E. Amato, L. Cucca, G. Dacarro, P. Grisoli, V. Necchi, P. Pallavicini, L. Pasotti and M. Patrini, Antibacterial Activity of Glutathione-Coated Silver Nanoparticles against Gram Positive and Gram Negative Bacteria, Langmuir,2012,28,8140-8148.
    [31]J. S. Kim, E. Kuk, K. N. Yu, J.-H. Kim, S. J. Park, H. J. Lee, S. H. Kim, Y. K. Park, Y. H. Park, C.-Y. Hwang, Y.-K. Kim, Y.-S. Lee, D. H. Jeong and M.-H. Cho, Antimicrobial effects of silver nanoparticles, Nanomed.-Nanotechnol. Biol. Med., 2007,3,95-101.
    [32]E. Amato, Y. A. Diaz-Fernandez, A. Taglietti, P. Pallavicini, L. Pasotti, L. Cucca, C. Milanese, P. Grisoli, C. Dacarro, J. M. Fernandez-Hechavarria and V. Necchi, Synthesis, Characterization and Antibacterial Activity against Gram Positive and Gram Negative Bacteria of Biomimetically Coated Silver Nanoparticles, Langmuir, 2011,27,9165-9173.
    [1]A. Fischer, P. Makowski, J.-O. Muller, M. Antonietti, A. Thomas and F. Goettmann, High-Surface-Area TiO2 and TiN as Catalysts for the C-C Coupling of Alcohols and Ketones, ChemSusChem,2008,1,444-449.
    [2]S. Kaskel, K. Schlichte and T. Kratzke, Catalytic properties of high surface area titanium nitride materials, J. Mol. Catal. A:Chem.,2004,208,291-298.
    [3]C. Y. Ting, TiN as a high temperature diffusion barrier for arsenic and boron, Thin Solid Films,1984,119,11-21.
    [4]M. Wittmer, B. Studer and H. Melchior, Electrical characteristics of tin contacts to n-silicon, J. Appl. Phys.,1981,52,5722-5726.
    [5]G. Li, F. Wang, Q. Jiang, X. Gao and P. Shen, Carbon Nanotubes with Titanium Nitride as a Low-Cost Counter-Electrode Material for Dye-Sensitized Solar Cells, Angew. Chem., Int. Ed.,2010,49,3653-3656.
    [6]Q. W. Jiang, G. R. Li and X. P. Gao, Highly ordered TiN nanotube arrays as counter electrodes for dye-sensitized solar cells, Chem. Commun.,2009,6720-6722.
    [7]X. Zhou, C. Shang, L. Gu, S. Dong, X. Chen, P. Han, L. Li, J. Yao, Z. Liu, H. Xu, Y. Zhu and G. Cui, Mesoporous Coaxial Titanium Nitride-Vanadium Nitride Fibers of Core-shell Structures for High-Performance Supercapacitors, ACS Appl. Mater. Interfaces,2011,3,3058-3063.
    [8]S. Dong, X. Chen, L. Gu, X. Zhou, H. Xu, H. Wang, Z. Liu, P. Han, J. Yao, L. Wang, G. Cui and L. Chen, Facile Preparation of Mesoporous Titanium Nitride Microspheres for Electrochemical Energy Storage, ACS Appl. Mater. Interfaces,2010, 3,93-98.
    [9]L. Zhu, M. Ohashi and S. Yamanaka, Novel synthesis of TiN fine powders by nitridation with ammonium chloride, Mater. Res. Bull.,2002,37,475-483.
    [10]R. M. Fix, R. G. Gordon and D. M. Hoffman, Synthesis of thin films by atmospheric pressure chemical vapor deposition using amido and imido titanium(IV) compounds as precursors, Chem. Mater.,1990,2,235-241.
    [11]C. M. Truong, P. J. Chen, J. S. Corneille, W. S. Oh and D. W. Goodman, Low-Pressure Deposition of TiN Thin Films from a Tetrakis(dimethylamido)titanium Precursor, J. Phys. Chem.,1995,99,8831-8842.
    [12]R. A. Janes, M. Aldissi and R. B. Kaner, Controlling Surface Area of Titanium Nitride Using Metathesis Reactions, Chem. Mater.,2003,15,4431-4435.
    [13]U. A. Joshi, S. H. Chung and J. S. Lee, Low-temperature, solvent-free solid-state synthesis of single-crystalline titanium nitride nanorods with different aspect ratios, J. Solid State Chem.,2005,178,755-760.
    [14]H. Zhang, F. Li and Q. Jia, Preparation of titanium nitride ultrafine powders by sol-gel and microwave carbothermal reduction nitridation methods, Ceram. Int., 2009,35,1071-1075.
    [15]M. Drygas, C. Czosnek, R. T. Paine and J. F. Janik, Two-Stage Aerosol Synthesis of Titanium Nitride TiN and Titanium Oxynitride TiOxNy Nanopowders of Spherical Particle Morphology, Chem. Mater.,2006,18,3122-3129.
    [16]J. H. Bang and K. S. Suslick, Dual Templating Synthesis of Mesoporous Titanium Nitride Microspheres, Adv. Mater.,2009,21,3186-3190.
    [17]D. Sun, J. Lang, X. Yan, L. Hu and Q. Xue, Fabrication of TiN nanorods by electrospinning and their electrochemical properties, J. Solid State Chem.,2011,184, 1333-1338.
    [18]D. Sun, X. Yan, J. Chen, S. Yu, L. Hu and Q. Xue, Fabrication of Zn2TiO4 and TiN nanofibers by pyrolysis of electrospun precursor fibers, CrystEngComm,2011, 13,3905-3909.
    [19]M. Zukalova, J. Prochazka, Z. Bastl, J. Duchoslav, L. Rubacek, D. Havlicek and L. Kavan, Facile Conversion of Electrospun TiO2 into Titanium Nitride/Oxynitride Fibers, Chem. Mater.,2010,22,4045-4055.
    [20]Y.-J. Wei, C.-W. Peng, T.-M. Cheng, H.-K. Lin, Y.-L. Chen, C.-Y. Lee and H.-T. Chiu, Conversion of Potassium Titanate Nanowires into Titanium Oxynitride Nanotubes, ACS Appl. Mater. Interfaces,2011,3,3804-3812.
    [21]J. Huang and Y. Gu, Self-assembly of various guest substrates in natural cellulose substances to functional nanostructured materials, Colloid Interface Sci., 2011,16,470-481.
    [22]Y. Shin, X. S. Li, C. Wang, J. R. Coleman and G. J. Exarhos, Synthesis of Hierarchical Titanium Carbide from Titania-Coated Cellulose Paper, Adv. Mater., 2004,16,1212-1215.
    [23]L. Jiang and L. Gao, Fabrication and Characterization of Carbon Nanotube-Titanium Nitride Composites with Enhanced Electrical and Electrochemical Properties, J. Am. Ceram. Soc.,2006,89,156-161.
    [24]Y. Zhang and J. Huang, Hierarchical nanofibrous silicon as replica of natural cellulose substance,J. Mater. Chem.,2011,21,7161-7165.
    [25]Y. Qiu and L. Gao, Novel Polyaniline/Titanium Nitride Nanocomposite: Controllable Structures and Electrical/Electrochemical Properties, J. Phys. Chem. B, 2005,109,19732-19740.
    [26]M. M. O. Thotiyl, T. R. Kumar and S. Sampath, Pd Supported on Titanium Nitride for Efficient Ethanol Oxidation, J. Phys. Chem. C,2010,114,17934-17941.
    [27]N. Jiang, H. J. Zhang, S. N. Bao, Y. G. Shen and Z. F. Zhou, XPS study for reactively sputtered titanium nitride thin films deposited under different substrate bias, Phys. B,2004,352,118-126.
    [28]H. Hochst, R. D. Bringans, P. Steiner and T. Wolf, Photoemission study of the electronic structure of stoichiometric and substoichiometric TiN and ZrN, Physical Review B,1982,25,7183-7191.
    [29]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides, Science,2001,293,269-271.
    [30]N. C. Saha and H. G. Tompkins, Ttitanium nitride oxidation chemistry-an X-ray photoelectron-spectroscopy study, J. Appl. Phys.,1992,72,3072-3079.
    [31]K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol and T. Siemieniewska, reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity (recommendations 1984), Pure Appl. Chem.,1985,57,603-619.
    [32]Q. Wang, Y. Li, J. Zhang, Y. Jin, D. Huang, S. Wu, Q. Cui and G. Zou, Plasma-assisted elaboration of macropore architectures in titanium nitride, J. Alloys Compd.,2010,494, L11-L14.
    [33]I.-s. Kim and P. N. Kumta, Hydrazide sol-gel synthesis of nanostructured titanium nitride:precursor chemistry and phase evolution, Journal of Materials Chemistry,2003,13,2028-2035.
    [34]C. Liu, Z. Yu, D. Neff, A. Zhamu and B. Z. Jang, Graphene-Based Supercapacitor with an Ultrahigh Energy Density, Nano Lett.,2010,10,4863-4868.
    [35]F. Fabregat-Santiago, J. Bisquert, E. Palomares, L. Otero, D. Kuang, S. M. Zakeeruddin and M. Gratzel, Correlation between Photovoltaic Performance and Impedance Spectroscopy of Dye-Sensitized Solar Cells Based on Ionic Liquids, J. Phys. Chem. C,2007,111,6550-6560.
    [36]C. Xu, H. Du, B. Li, F. Kang and Y. Zeng, Capacitive Behavior and Charge Storage Mechanism of Manganese Dioxide in Aqueous Solution Containing Bivalent Cations, J. Electrochem. Soc.,2009,156,A73-A78.
    [1]A. Fujishima and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature,1972,238,37-38.
    [2]A. L. Linsebigler, G. Lu and J. T. Yates, Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results, Chem. Rev.,1995,95,735-758.
    [3]D. Philip Colombo Jr, K. A. Roussel, J. Saeh, D. E. Skinner, J. J. Cavaleri and R. M. Bowman, Femtosecond study of the intensity dependence of electron-hole dynamics in TiO2 nanoclusters, Chem. Phys. Lett.,1995,232,207-214.
    [4]K. Yamaguti and S. Sato, Photolysis of water over metallized powdered titanium dioxide, J. Chem. Soc., Faraday Trans.1,1985,81,1237-1246.
    [5]R. Dholam, N. Patel, M. Adami and A. Miotello, Hydrogen production by photocatalytic water-splitting using Cr-or Fe-doped TiO2 composite thin films photocatalyst, Int. J. Hydrogen Energy,2009,34,5337-5346.
    [6]Y. Zhang, S. G. Ebbinghaus, A. Weidenkaff, T. Kurz, H.-A. Krug von Nidda, P. J. Klar, M. Gungerich and A. Reller, Controlled Iron-Doping of Macrotextured Nanocrystalline Titania, Chem. Mater.,2003,15,4028-4033.
    [7]J. Yu, Q. Xiang and M. Zhou, Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures, Appl. Catal, B,2009,90,595-602.
    [8]J. Yu, G. Dai, Q. Xiang and M. Jaroniec, Fabrication and enhanced visible-light photocatalytic activity of carbon self-doped TiO2 sheets with exposed{001} facets, J. Mater. Chem.,2011,21,1049-1057.
    [9]S. U. M. Khan, M. Al-Shahry and W. B. Ingler, Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2, Science,2002,297,2243-2245.
    [10]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides, Science,2001,293,269-271.
    [11]J. Fang, F. Shi, J. Bu, J. Ding, S. Xu, J. Bao, Y. Ma, Z. Jiang, W. Zhang, C. Gao and W. Huang, One-Step Synthesis of Bifunctional TiO2 Catalysts and Their Photocatalytic Activity, J. Phys. Chem. C,2010,114,7940-7948.
    [12]J.-J. Chen, J. C. S. Wu, P. C. Wu and D. P. Tsai, Plasmonic Photocatalyst for H2 Evolution in Photocatalytic Water Splitting, J. Phys. Chem. C,2010,115,210-216.
    [13]S. V. Awate, S. S. Deshpande, K. Rakesh, P, Dhanasekaran and N. M. Gupta, Role of micro-structure and interfacial properties in the higher photocatalytic activity of TiO2-supported nanogold for methanol-assisted visible-light-induced splitting of water, Phys. Chem. Chem. Phys.,2011,13,11329-11339.
    [14]H. Tada, T. Mitsui, T. Kiyonaga, T. Akita and K. Tanaka, All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system, Nat. Mater,2006, 5,782-786.
    [15]Q. Xiang, J. Yu and M. Jaroniec, Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets, Nanoscale,2011,3,3670-3678.
    [16]X. H. Yang, Z. Li, G. Liu, J. Xing, C. Sun, H. G. Yang and C. Li, Ultra-thin anatase TiO2 nanosheets dominated with{001} facets:thickness-controlled synthesis, growth mechanism and water-splitting properties, CrystEngComm,2011,13, 1378-1383.
    [17]B. Zielinska, E. Borowiak-Palen and R. J. Kalenczuk, Photocatalytic hydrogen generation over alkaline-earth titanates in the presence of electron donors, Int. J. Hydrogen Energy,2008,33,1797-1802.
    [18]G. Liu, H. G. Yang, X. Wang, L. Cheng, J. Pan, G. Q. Lu and H.-M. Cheng, Visible Light Responsive Nitrogen Doped Anatase TiO2 Sheets with Dominant{001} Facets Derived from TiN,, J. Am. Chem. Soc.,2009,131,12868-12869.
    [19]R. Baba, S. Nakabayashi, A. Fujishima and K. Honda, Investigation of the mechanism of hydrogen evolution during photocatalytic water decomposition on metal-loaded semiconductor powders, J. Phys. Chem. C,1985,89,1902-1905.
    [20]A. L. Linsebigler, G. Lu and J. T. Yates, Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results, Chem. Rev.,1995,95,735-758.
    [21]J. S. Jang, S. H. Choi, H. G. Kim and J. S. Lee, Location and State of Pt in Platinized CdS/TiO2 Photocatalysts for Hydrogen Production from Water under Visible Light, J. Phys. Chem. C,2008,112,17200-17205.
    [22]D. Y. C. Leung, X. Fu, C. Wang, M. Ni, M. K. H. Leung, X. Wang and X. Fu, Hydrogen Production over Titania-Based Photocatalysts, ChemSusChem,2010,3, 681-694.
    [23]J. Huang and T. Kunitake, Nano-Precision Replication of Natural Cellulosic Substances by Metal Oxides, J. Am. Chem. Soc.,2003,125,11834-11835.
    [24]K.-i. Ishibashi, A. Fujishima, T. Watanabe and K. Hashimoto, Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique, Electrochem. Commun.,2000,2,207-210.
    [25]H. Czili and A. Horvath, Applicability of coumarin for detecting and measuring hydroxyl radicals generated by photoexcitation of TiO2 nanoparticles, Appl. Catal, B, 2008,81,295-302.
    [26]J. Yu, L. Qi and M. Jaroniec, Hydrogen Production by Photocatalytic Water Splitting over Pt/TiO2 Nanosheets with Exposed (001) Facets, J. Phys. Chem. C,2010, 114,13118-13125.
    [27]J. Yu, G. Dai and B. Huang, Fabrication and Characterization of Visible-Light-Driven Plasmonic Photocatalyst Ag/AgCl/TiO2 Nanotube Arrays, J. Phys. Chem. C,2009,113,16394-16401.
    [28]J. Yu, H. Tao and B. Cheng, In situ Monitoring of Heterogeneous Catalytic Reactions, ChemPhysChem,2010,11,1617-1618.
    [29]T. Teranishi, M. Hosoe, T. Tanaka and M. Miyake, Size Control of Monodispersed Pt Nanoparticles and Their 2D Organization by Electrophoretic Deposition,J.Phys. Chem. B,1999,103,3818-3827.
    [30]Z. Liu, L. M. Gan, L. Hong, W. Chen and J. Y. Lee, Carbon-supported Pt nanoparticles as catalysts for proton exchange membrane fuel cells, J. Power Sources, 2005,139,73-78.
    [31]N. Bao, L. Shen, T. Takata and K. Domen, Self-Templated Synthesis of Nanoporous CdS Nanostructures for Highly Efficient Photocatalytic Hydrogen Production under Visible Light, Chem. Mater.,2007,20,110-117.
    [32]B.Chai, T. Peng, P. Zeng and J. Mao, Synthesis of floriated In2S3 decorated with TiO2 nanoparticles for efficient photocatalytic hydrogen production under visible light, J. Mater. Chem.,2011,21,14587-14593.
    [33]C. Roth, M. Goetz and H. Fuess, Synthesis and characterization of carbon-supported Pt-Ru-WOx catalysts by spectroscopic and diffraction methods, J. Appl. Electrochem.,2001,31,793-798.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700