用户名: 密码: 验证码:
膜吸收法烟气脱硫及对流传质强化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微孔中空纤维膜接触器用于烟气脱硫引起广泛关注。本文采用实验室模拟烟气,对疏水性中空纤维膜接触器用于烟气脱硫的工艺进行了实验研究并建立了脱硫率计算模型;对对流传质的物理机制进行研究,从场协同的角度对螺旋管强化管内传质进行了定量计算,对实际烟气中可能存在的颗粒物的沉积情况进行了模拟研究。
     以Na2SO3溶液为吸收剂,模拟烟气走膜管内侧,进行脱硫实验研究。结果表明当Na2SO3溶液浓度大于5%,液相阻力可以忽略;脱硫率随气速的增大而减小,而随膜组件长度、膜传质系数的增大而增大。该工艺脱硫率高且稳定。忽略液相传质阻力,用传质速率与物料衡算法及传质经验式,建立脱硫率计算模型,与实验值误差小于9.5%。
     用自制螺旋状膜管组装膜吸收器,进行脱硫实验研究。结果表明相对于传统的直管膜,螺旋管可以较大程度地促进SO2的传递,提高脱硫率。随着管内流速的增加,强化传质效果明显,气体停留时间和吸收液流速对脱硫率影响不大。
     从微分方程出发,归纳了对流传质的局部、2D和3D的场协同方程。从对流传质的机理着手,对平板边界层低速率传质以及吹喷和抽吸三种边界条件的速度场和浓度场进行模拟研究。提出cosβ>0,即速度和浓度梯度矢量的夹角β<90°,扩散消弱宏观强制对流传质,cosβ<0,即β>90°,扩散强化宏观强制对流传质。抽吸时,边界层内β为锐角,边界层底层cosβ最大,浓度梯度也最大,所以传质速率高。吹喷时,由于边界层底层区域β>90°,上部区域β<90°,溶质出现了返混,致使传质速率低,边界层厚度增大。补充了经典传递理论对三种边界条件传质速率差异的解释。证实了对流传质速率不仅决定于流速、物质的浓度差以及流体物性,还依赖于浓度场和速度场的协同。
     采用计算流体力学方法,对层流直管和螺旋管内传质进行模拟研究。发现直管内大部分区域径向比轴向浓度梯度高2个数量级。为了强化传质,应降低浓度梯度矢量和速度矢量的夹角,在径向产生一定的流动。而螺旋管内的二次流横穿浓度等值线,即部分流体沿着浓度梯度方向(或其反方向)流动,极大地提高了两场的协同。二次流随着Re的增大而增强,传质增强效果也越显著,正是二次流显著提高了速度场和浓度场的协同。所研究的螺旋结构中,在Re=1000~2400时,最大平均二次流速度达到主流速度的6.8%-6.5%,Sh增大了4.99-6.43倍。场协同原理可以很好地解释螺旋管对流传质强化的机理。
     采用计算流体力学方法,对直径为0.05μm-3μm的烟尘颗粒在中空纤维直管和螺旋管内的沉积特性进行模拟。直管内0.1μm和1μm的颗粒的沉积率都小于1%,而螺旋管内的沉积率在90%左右。螺旋管内沉积率随着颗粒直径和气速的增大而增大,惯性离心力是颗粒在螺旋管中沉积的主要因素。建议采用螺旋型除尘器对粉尘颗粒进行收集。
Removing acidic gas by using microporous hollow fiber membrane contactor (HFMC) has attracted extensive attention. Using the hydrophobic hollow fiber membrane contactor, the experiment study of flue gas desulfurization has been carried on and the desulphurization rate calculation model has been established. The physical mechanism of convective mass transfer has been studied, the quantitative calculation of helical tube strengthening mass transfer has been carried out from the viewpoint of field synergy, the particle deposition was simulated which is possible presence in the actual flue gas.
     An experimental research of flue gas desulfurization (FGD) by HFMC was carried out and corresponding model of calculating desulfurization rate was developed. The results show that the desulfurization rate are high and stable, the mass-transfer resistance of the liquid phase can be neglected when the concentration of Na2SO3absorbent is more than5%, the desulfurization rate will be increasing with the rising of the module length, the membrane's mass coefficient and it will be reducing with the rising of the gas velocity. The calculated data of desulfurization rate in HFMC from the model which had been developed by using of the mass transfer rate, material balance method and empirical correlative equation are in good agreement with the experimental date; the errors between them are within9.5%.
     FGD character was studied with membrane contactor assembled with self-made helical membrane tube. The experiment research results show that helical structure can promote SO2mass transfer greatly compared with straight tube membrane. Strengthen mass transfer effect is obvious with the increase of gas velocity in tube, gas residence time and absorption liquid velocity has a little influence on desulfurization rate.
     From the convective mass transfer differential equation, local,2D and3D field synergy equation have been summed up.The plate boundary layer convective mass transfer under three kinds different boundary conditions were studied by numerical simulation method and put forward that the diffusion strengthen macroscopic forced convective mass transfer when the concentration field and velocity field angle β>90°, whereas the diffusion weaken macroscopic forced convective mass transfer when β<90°.The results of the study show that the angle β<90°, concentration gradient and cos β reach maximum at the same time in lower boundary layer for suction boundary, so mass transfer rate is high. But for injection boundary, due to some regional β>90°, and some regional β<90°, result in the diffusion and the convective mass transfer mutually reinforcing in the lower and offset each other in the upper of the boundary, so the mass transfer efficiency is low, the boundary layer thickness increases. It is the difference of the velocity field and concentration gradient field that led to the mass transfer rate differences in three boundary conditions. Additional explanation of mass transfer rate differences was given under three kinds of boundary conditions in the classical transfer theory.The results validated that the convective mass transfer Sherwood number depends not only on the Reynolds number and the Schmidt number but also on the synergy of concentration field and velocity field.
     Using numerical simulations, laminar convective mass transfer in in the straight tube and helical tube have been studied. the results show that concentration gradient in radial is larger than that in axial2magnitude orders when Sc is1.2. In order to strengthen the mass transfer, the angle of velocity and concentration gradient should be decreased, in an another words, fluid flow along radial should be generated. The secondary flow crosses the equi-concentration line, namely, some fluid flow along the direction of concentration gradient (or its reverse direction), greatly improves the synergy of the two fields in helical tube. The secondary flow is more intense with the increase of Re, the effect of mass transfer is more significant. The secondary flows promote the synergy of concentration and velocity fields, which is the reason of enhancement the mass transfer for helical tube. The maximum of area-average secondary velocity reaches6.8%-6.5%of bulk velocity, and Sh increases4.99~6.43folds when Re=1000~2400for helical structure in the paper. It is shown that the field synergy principle explains well the mechanism of mass transfer enhancement in the helical tube.
     The deposition performance of the particles in straight and helical hollow fibre membrane tube were simulated by calculation fluid dynamic with the particles diameter0.05μm~3μm. The result shows that the deposition rate is low in straight tube and is high in helical tube. The deposition rate is below1%for0.μm and1μm particles in straight tube when the gas velocity is10m/s, but the deposition rate is about90%in helical tube under the same operation conditions. The deposition rate increase with the diameter increasing of particles and enlarging of De number in helical tube. Inertial centrifugal force is the main factors of effecting particles deposition in helical tube. Using spiral type precipitator collect the fine dust is proposed.
引文
[1]BP集团.BP世界能源统计(2001-2011)
    [2]钟秦.燃煤烟气脱硫脱硝技术及工程实例[M].第二版.北京:化学工业出版社,2007
    [3]国家环境保护总局. 跨世纪的中国环境保护[J].环境保护,1998(8):3-5
    [4]中华人民共和国环境保护部.《中国环境状况公报》(2000-2010)
    [5]孙荣庆. 我国SO2污染现状与控制对策[J].能源与环境,2003,25(7):25-26
    [6]SMITH A R. Air and rain:the beginnings of a chemical climatology [M]. London: Longmans, Green, and Co,1872
    [7]田贺忠,陆永祺,郝吉明,等.我国酸雨和二氧化硫污染控制历程及进展[J].中国电力,2001,34(3)51-56
    [8]ZHANG F Z, ZHANG J Y. Chemical Composition of Precipitation in a Forest Area of Chongqing, Southwest China [J]. Water Air and Soil Pollution,1996,90:407-412
    [9]张新民,柴发合,王淑兰,等.中国酸雨研究现状[J].环境科学研究,2010,23(5):527-532
    [10]达建文.硫磺回收生产技术及市场分析[J]. 中国化工信息,2009(6):23-28
    [11]全国人民代表大会常务委员会.《中华人民共和国大气污染防治法》(1987,1995,2000)
    [12]中华人民共和国环境保护部.《火电厂大气污染物排放标准》,2012
    [13]Steen B. Membrane contactors to replace conventional scrubbers [D]. Danmark:Danish academy of technical sciences,1994
    [14]黄金凤.膜吸收法烟气脱硫的研究[D].南京:南京理工大学,2004
    [15]Paul H M, Flue gas treatment with membrane gas absorption[J]. Membrane Technology,1998,102:7-10
    [16]关毅鹏,李晓明,张召才,等.海水脱硫应用现状与研究进展[J].中国电力,2012,45(2): 40-44
    [17]Zhang Q, Cussler E L. Microporous hollow fiber for gas absorption Ⅰ:Mass transfer in the liquid[J]. Journal of Membrane Science,1985,23:321-333
    [18]Zhang Q, Cussler E L. Microporous hollow fiber for gas absorption Ⅱ:Mass transfer across the membrane[J]. Journal of Membrane Science,1985,23:334-345
    [19]Bhave R R, Sirkar K K. Gas permeation and separation by aqueous membranes immobilized across the whole thickness or in a thin section of hydrophobic microporous celgard firms[J]. Journal of Membrane Science,1986,27:41-46
    [20]杨如惠.中空纤维膜溶剂吸收烟气脱硫研究[D].南京:南京理工大学,2004
    [21]王保国,蒋维钧.中空纤维膜的研究现状与发展[J].化工进展,19994,2:39~43
    [22]袁力,王志,王世昌.膜吸收技术及其在脱除酸性气体中的应用研究[J]. 膜科学与技术,2002,22(4):55-59
    [23]陈翠仙,余立新,戴猷元.新膜及膜过程的研究现状及发展动向[J].水处理技术,1996,22(6):307-313
    [24]Simons R, Khanarian G. Water dissociation in bipolar membranes:Expriments and theory[J]. Journal of Membrane Biology,1978,38:11-20
    [25]Mani K N. Electrodialysis water splitting technology[J]. Journal Membrane of Science, 1991,58:117-138
    [26]徐铜文,汪志武,刘宁.双极膜的理论及应用展望[J].水处理技术,1998,24(1):20-25
    [27]KangJen Liu, K Nagasubramanian, F P Chlanda. Membrane electrodialysis process for recovery of sulfur dioxide from power plant stack gases[J]. Journal of Membrane Science,1978,3(1):71-83
    [28]KangJen Liu, F P Chlanda, K Nagasubramanian. Application of bipolar membrane technology:A novel process for control of sulfur dioxide from flue gases [J]. Journal of Membrane Science,1978,3(1):57-70
    [29]邢鹏.脱硫废液电渗析法再生用膜的研究[D].南京:南京理工大学,2004
    [30]Majumdar S, Aism K G, Sirkar K K. A new liquid membrane technique for gas separation[J]. AIChE Journal,1988,34(7):1135-1145
    [31]Hikita H, Asai S, Tsuji T. Absorption of sulfur dioxide into aqueous sodium hydroxide and sodium sulfite solutions[J]. AIChE Journal,1977,23(4):538-544
    [32]Roberts D L, Friedlander S K. Sulfur dioxide transport through aqueous solutions:Part Ⅰ-Theory[J]. AIChE Journal,1980,26(4):593-602
    [33]Roberts D L, Friedlander S K. Sulfur dioxide transport through aqueous solutions:Part Ⅱ-Experimental results and comparison with theory [J]. AIChE Journal,1980,26(4): 602-610
    [34]Sengupta A, Raghuraman B, Sirkar K K. Liquid membranes for flue gas desulfurization [J]. Journal of Membrane Science,1990,51(1-2):105-126
    [35]Karoor S, Sirkar K K, Gas absorption studies in microporous hollow fiber membrane modules[J]. Industrial & Engineering Chemistry Research,1993,32:674-684
    [36]Zhang Q, Cussler E L. Hollow fiber gas membranes[J]. AIChE Journal,1985,31(9): 1548-1553
    [37]Kreulen H, Smolders C A, Versteeg G F, et al. Microporous hollow fiber membrane modules as gas-liquid contactors. Part 1 Physical mass transfer processes[J]. Journal of Membrane Science,1993,78:197-216
    [38]Kreulen H, Smolders C A, Versteeg G F, et al. Microporous hollow fiber membrane modules as gas-liquid contactors. Part 2 Mass transfer with chemical reaction[J]. Journal of Membrane Science,1993,78:217-233
    [39]Nii S, Takeuchi H. Removal of CO2 and/or SO2 form gas streams by a membrane absorption method[J]. Gas Separation Purification,1994,18(2):107-114
    [40]Alan Gabelmana, Sun-Tak Hwangb, Hollow fiber membrane contactors[J]. Journal of Membrane Science,1999,159:61-106
    [41]熊丹柳,邓修,戴干策.液膜法烟气脱硫实验Ⅰ-含浸液膜渗透器特性[J].华东理工大学学报,1997,23(2):156-161
    [42]熊丹柳,邓修,戴干策.液膜法烟气脱硫实验Ⅱ-促进传质机理与数学模型[J].华东理工大学学报,1998,24(04
    [43]杨凤林, 孙雪雁. 一种膜吸收法海水脱除烟气中二氧化硫的工艺方法[P].中国,200710011077.9,2007
    [44]孙雪雁,杨凤林.膜吸收法海水脱硫研究[J].膜科学与技术,2008,28(1):66-71
    [45]SUN Xue-yan, MENG Fan-gang, YANG Feng-lin. Application of seawater to enhance SO2 removal from simulated flue gas through hollow fiber membrane contactor [J]. Journal of Membrane Science,2008,312(1-2):6-14
    [46]陈颖,关毅鹏,郭春刚,等.海水烟气脱硫膜吸收单元及工艺研究[J].膜科学与技术,2011,31(5):58-62
    [47]韩永嘉,王树立,李辉,等.聚丙烯中空纤维膜吸收法烟气脱硫实验研究[J].环境科学与技术,2011,34(1):155-158
    [48]Iversen S B, Bhatia V K, Johansen D, Jonsson G. Characterization of microporous membrane contractors [J]. Journal of Membrane Science,1997,130:205-217
    [49]金美芳,曹义鸣,邢丹敏,等.膜吸收法脱除二氧化硫[J].膜科学与技术,1999,19(3): 44-46
    [50]郭占虎,史季芬,徐静年,等.中空纤维膜组件分离酸性气体[J].化工冶金,2000,21(3):268-273
    [51]张慧峰,张卫东,张泽廷,等.中空纤维膜吸收法脱除SO2的实验研究[J].环境科学与技术,2003,26(5):8-10
    [52]崔振东,侯纯扬,陈颖,等.膜吸收法浓海水烟气脱硫试验研究[J].膜科学与 技术,2011,31(1):84-88
    [53]陈颖,关毅鹏,刘国昌,等.膜吸收法海水烟气脱硫装置及其工艺[P].中国,201010572971.5,2010
    [54]陈颖,张召才,郭春刚,等.一种新型高效单级或多级罐式气液接触膜吸收单元[P].中国,201020641558.5,2010
    [55]陈颖,郭春刚,张召才,等. 一种新型低气阻箱式气液接触膜吸收单元[P].中国,201020641559.x,2011
    [56]Sujatha K, Sirkar K K. Gas absorption studies in microporous hollow fiber membrane modules[J]. Industrial & Engineering Chemistry Research,1993,32:674-684
    [57]Asim K G, Sudipto M, Sirkar K K. Gas separation modes in a hollow fiber contained liquid membrane permeator[J]. Industrial & Engineering Chemistry Research,1992, 31:593-604
    [58]Majumdar S, Sengupta A, ChaJS, et al. Simultaneous SO2/NO separation from flue gas in a contained liquid membrane permeator [J]. Industrial & Engineering Chemistry Research,1994,33:667-675
    [59]Cooney D O, Jackson C C. Gas absorption in a hollow fiber device[J]. Chemical Engineering Communication,1989,179:153-163
    [60]Wang K L, Cussler E L. Baffled membrane modules made with hollow fiber fabric[J]. Journal of Membrane Science,1993,85:265-278
    [61]Li K, Kong J F, Wang D L, et al. Tailor-made asymmetric PVDF hollow fibers for soluble gas removal [J]. AIChE Journal,1999,45(6):1211-1219
    [62]Li K, Kong J F, Wang D L, et al. Use of asymmetric hollow fiber modules for elimination of H2S from gas streams via a membrane absorption method[J]. Chemical Engineering Science,1998,53(6):1111-1119
    [63]Seiichi Mochizuki, Andrew L Z. Theoretical analysis of pore size distribution effects on membrane transport[J]. Journal of Membrane Science,1993,82:211-227
    [64]Li K, Kong J F, Tan X Y. Design of hollow fiber membrane modules for soluble gas removal [J]. Chemical Engineering Science,2000,55:5579-5588
    [65]柯斯乐.扩散流体系统中的传质[M].北京:化学工业出版社,2002
    [66]Wickramasinghe S R, Semmens Michael J, Cussler EL. Mass transfer in various hollow fiber geometries[J]. Journal of Membrane Science,1992,69, (3):235-250
    [67]Prasad R, Sirkar K K. Dispersion-free solvent extraction with microporous hollow-fiber modules[J]. AIChE Journal,1988,34(2):177-188
    [68]Ming-Chien Yang, E. L. Cussler. Designing hollow-fiber contactors [J]. AIChE Journal,1986,32(11):1910-1916
    [69]Dahuron L, Cussler E L. Protein extractions with hollow fibers[J]. AIChE Journal, 1988,34:130-136
    [70]Matson S L, Lopez J, Quinn J A. Separation of gases with synthetic membranes [J]. Chemical Engineering Science,1983,38(4):503-524
    [71]Mulder M.膜技术基本原理[李琳译][J].第2版,北京:清华大学出版社,1999
    [72]贾绍义,柴诚敬.化工传质与分离过程[M].北京:化学工业出版社,2001
    [73]Rahimi M, Madaeni S S, Abolhasani M, et al. CFD and experimental studies of fouling of a microfiltration membrane[J]. Chemical Engineering and Processing,2009,48: 1405-1413
    [74]Yen H M, Chen H Y, Chen K T. Membrane ultrafiltration in a tubular module with a steel rod inserted concentrically for improved performance [J]. Journal of Membrane Science,2000,168:121-133
    [75]Ahmad A L, Mariadas A, Lau, K.K. Flux enhancement by introducing turbulence effect for microfiltration of Saccharomyces cerevisiae [J]. Separation Science and Technology,2005,40 (6) 1213-1225
    [76]Gupta B B, Howell JA, WuD, et al. A helical baffle for cross flow micro filtration [J]. Journal of Membrane Science,1995,99:31-42
    [77]Liu Y, He G, Liu X, et al. CFD simulations of turbulent flow in baffle-filled membrane tubes[J]. Separation Purification Technology,2009,67:14-20
    [78]N. Ghaffour, R. Jassim, T. Khir. Flux enhancement by using helical baffles in ultrafiltration of suspended Solids[J]. Desalination,2004,167:201-207
    [79]Saber Ahmed, M. Taif Seraji, Jonaid Jahedi, et al. CFD simulation of turbulence promoters in a tubular membrane channel [J]. Desalination 2011,276:191-198
    [80]Cao Z, Wiley D E, Fane A G. CFD simulation of net-type turbulence promoters in narrow channel [J]. Journal of Membrane Science,2001,185:157-163
    [81]张冰强,闵敬春.膜通道内不同扰流元件强化传质效果[J].清华大学学报(自然科学版),2010,50(7):1114-1117,1124
    [82]Nishimura T, Bian Y N, Matsumoto Y, et al. Fluid flow and mass transfer characteristics in a sinusoidal wavy walled tube at moderate Reynolds numbers for steady flow [J]. Heat and Mass Transfer,2003,39:239-248
    [83]Nishimura T, Matsune S. Vortices and wall shear stresses in asymmetric and symmetric channels with sinusoidal wavy walls for pulsatile flow at low Reynolds numbers[J]. International Journal of Heat and Fluid Flow,1998,19:583-593
    [84]Nishimura T, Bian Y N, Kunitsugu K. Mass transfer enhancement in a wavy walled tube by imposed fluid oscillation[J]. American Institute of Chemical Engineers,2004, 50 (4):762-770
    [85]Nishimura T, Kojima N. Mass transfer enhancement in asymmetric sinusoidal wavy walled channel for pulsatile flow [J]. International Journal of Heat and Mass Transfer, 1995,38(10):1719-1731
    [86]Nishimur T, Oka N, Yoshinaka Y. Influence of imposed oscillatory frequency on mass transfer enhancement of grooved channels for pulsatile flow [J]. International Journal of Heat and Mass Transfer,2000,43(13):2365-2374
    [87]Lee B S, Kang I S, Lim H C. Chaotic mix ing and mass transfer enhancement by pulsatile laminar flow in an axisymmetric wavy channel [J]. International Journal of Heat and Mass Transfer,1999,42(14):2571-2581
    [88]杨卫卫,何雅玲,陶文铨,等.凤凹槽通道中脉动流动强化传质的数值研究[J].西安交通大学学报,2004,38(11):1119-1122
    [89]贾宝菊,孙发明,卞永宁,等.波壁管内的脉动流动及传质强化的数值模拟[J].化工学报,2009,60(1):6-14
    [90]张永福.管内螺旋线圈强化传热的研究及在锅炉中的应用[J].热能动力工程,1993,8(1):10-14
    [91]钱颂文,朱冬生,李庆领,等.式换热器强化传热技术[M].北京:化学工业出版社,2003
    [92]Moulin P, Manno J C, Rouch C. Mass transfer improvement by second flows:Dean vortices in coiled tubular membranes [J]. Journal of Membrane Science,1996,114: 235-244
    [93]Schanbel S, Moulin P, Nguyen Q T. Removal of volatile organic component (VOCs) from water by evaporation:Separation improvement by Dean Vortices [J]. Journal of Membrane Science,1998,142:129-141
    [94]Moulin P, Manno J C, Rouch C. Flux improvement of Dean vortices:Ultra filtration of colloidal suspensions and macromolecular solutions [J]. Journal of Membrane Science,1990,156:109-130
    [95]Mallubtotla H, Hoffmann S, Schmidt M. Flux enhancement during dean vortex tubular membrane nano filtration-Design, construction and system characterization [J]. Journal of Membrane Science,1998,141:183-195
    [96]刘舜华,骆广生.螺旋状中空纤维膜萃取传质的特性[J].化工学报,2002,53(4):355-359
    [97]刘舜华,骆广生,戴猷元.利用螺旋管技术提高中空纤维膜传质性能[J].膜科学与技术,2001,21(4):9-12
    [98]Krisnamurthy S, Bhattachaya P, Phelan P E, et al. Enhanced mass transport in nanofluids[J]. Nanoletters,2006,6(3):419-423
    [99]陈庚,江漪,张卫东,等.Ti02粒子对膜吸收过程中近膜壁面处溶质传质行为的影响[J]. 北京化工大学学报,2010,37:6-10
    [100]马宏勇,江漪,李江,等.固体粒子对板式膜吸收过程的传质强化[J].中国科学:化学,2012,42(3):347-354
    [101]刘丽英,丁忠伟,常李静,等.超声波技术强化膜分离过程的研究进展[J].化工进展,2008,27(1):32-37
    [102]Muthukumaran S, Kentish S E, Ashokkumar M, et al. Mechanisms for the ultrasonic enhancement of dairy whey ultrafiltration [J]. Journal of Membrane Science,2005,258: 106-114
    [103]Li J X, Sanderson R D, Jacobs E P. Ultrasonic cleaning of nylon microfiltration membranes fouled by Kraft paper mill effluent [J]. Journal of Membrane Science,2002, 205:247-257
    [104]Mullon C, Radovich J M, Behnam B. A semiempirical model for electroultrafiltration diafiltration[J]. Separation Science and Technology,1985,20(1):63-72
    [105]Kobayashi T, Chai X, Fujii N. Ultrasound enhanced cross-flowmembrane filtration [J]. Separation Purification Technology,1999,17:31-40
    [106]Mameri N, Oussedik S M, Khelifa A, et al. Electric field applied in the ultrafiltration process[J]. Desalination,2001,138(1-3):291
    [107]Xiong Guohua, He xiaoqin, Zhang Zhanxia. Microwave-assisted extraction or saponification combined with microwave assisted decomposition applied in pretreatment of soil or mussel samples for the determination of polychlorinated biphenyls [J]. Analytica Chimica Acta,2000,18(5):49-56
    [108]陈红辉,陈通杰.电磁场在化学镀中的影响[J]. 电镀与环保,2004,24(5):22-24
    [109]贾艳宗,马沛生,王彦飞.微波在酯化和水解反应中的应用[J].化工进展,2004,23(6):641-644
    [110]李雪梅,周围.微波辅助萃取法提取中药材中有机氯农药残留[J].化工进展,2006,25(11):1340-1344
    [111]Guo Z Y, Li D Y, Wang B X. A Novel concept for convective heat transfer enhancement [J]. International Journal of Heat and Mass Transfer,1998,41(14): 2221-2225
    [112]过增元.对流换热的物理机制及其控制:速度场与热流场的协同[J].科学通报,2000,45(19):2118-2122
    [113]过增元,程新广,夏再忠.最小热量传递势容耗散原理及其在导热优化中的应用[J].科学通报,2003,48(1):21-25
    [114]陈群,任建勋,过增元.流体流动场协同原理及其在减阻中的应用[J].科学通报,2008,53(4):489-492
    [115]柳雄斌,孟继安,过增元.基于耗散的换热器热阻分析[J].自然科学进展,2008,18(10):1186-1190
    [116]Guo Z Y, Tao W Q, Shah R K. The field synergy (coordination) principle and its applications in enhancing single phase convective heat transfer[J]. International Journal of Heat and Mass Transfer,2005,48 (9):1797-1807
    [117]Tao W Q, GuoZ Y, Wang B X. Field synergyprinciple for enhancing convective heat transfer-its extension and numerical verifications [J]. International Journal of Heat and Mass Transfer,2002,45(18):3849-3856
    [118]申盛,刘伟,陶文铨.多孔介质中自然对流传热的场协同分析[J].自然科学进展,2003,13(4):439-443
    [119]屈治国,何雅玲,陶文铨.平直开缝翅片传热特性的三维数值模拟及场协同原理分析[J]. 工程热物理学报,2003,24(5):825-827
    [120]何雅玲,陶文铨.强化单相对流换热的基本机制[J].机械工程学报,2009,45(3):27-38
    [121]王松平,徐艳芳,宋洪训,等.强化对流传质的物理机制及其控制[J].青岛大学学报,2003,16(1):32-36
    [122]程伟良,韩晓娟,孙宏玉.质量传递过程中的场协同作用[J].中国电机工程学报,2005,25(13):105-108
    [123]魏立峰,邱林.除湿空调器传质性能的场协同理论研究[J].制冷空调与电力机械,2007,28(3):26-29
    [124]郭平生,韩光泽,张妮,等.外场协同强化扩散传质过程的唯象分析[J].广西师范大学学报(自然科学版),2004,22(4):14-17
    [125]Chen Qun, Meng Ji-a. Field synergy analysis and optimization of the convective mass transfer in photocatalytic oxidation reactors[J]. International Journal of Heat and Mass Transfer,2008,51:863-870
    [126]陈群,任建勋,过增元.质量积耗散极值原理及其在空间站通风排污过程优化中的应用[J].科学通报,2009,54(11):1606-1612
    [127]Chen Qun, Ren Jianxun, Guo Zengyuan. Field synergy analysis and optimization of decontamination ventilation designs[J]. International Journal of Heat and Mass Transfer 2008,51:873-881
    [128]LEI Zhen, WU Yingying, LU Shiqing, et al. Mass Transfer Modeling in Pervaporation Based on Multi-fieldsSynergy Theory[J]. Chinese Journal of Chemical Engineering,2008,16, (1):79-83
    [129]江得厚,郝党强,王勤.燃煤电厂袋式除尘器发展趋势及其运行寿命的影响因素[J].中国电力,2008,41(5):85-91
    [130]姚群,陈隆枢,陈志炜,等.燃煤电厂锅炉烟气PM10排放控制技术与应用[J].电力环境保护,2007,2(1):52-54
    [131]周力行.多相湍流反应流体力学[M].北京:国防工业出版社,2002
    [132]黄社华,李炜,程良骏.任意流场中稀疏颗粒运动方程及其性质[J].应用数学和力学,21(3):265-273
    [133]刘大有.两相流体动力学[M].工程力学丛书,北京:高等教育出版社,1993
    [134]Maniero R, Canu P. A model of fine particles deposition on smooth surfaces: Ⅰ-Theoretical basis and model development[J]. Chemical Engineering Science,2006, 61:7626-7635
    [135]Crowe C T, Troutt T R, Chung J N. Numerical models for two-phase turbulent flows[J]. Annual Review in Fluid Mechanics,1996,28(1):11-43
    [136]Liu B Y H, Agarwal J K. Experimental observation of aerosol deposition in turbulent flow[J]. Aerosol Science,1974,5:145-155
    [137]Chamberlain A C, Garland J A, Wells A C. Transport of gases and particles to surfaces with widely spaced roughness elements[J]. Boundary Layer Meteorology,1984,29: 343-360
    [138]Shimada M, Okuyama K, Asai M. Deposition of submicron aerosol particles in turbulent and transitional flow[J]. AIChE Joural,1993,39:17-26
    [139]李念平,张丽薇,付峥嵘,等.气溶胶颗粒在风管系统中沉降的实验研究[J].建筑热能通风空调,2006,25(6):8-11
    [140]Kallio G A, Reeks M W. A numerical simulation of particle deposition in turbulent boundary layers [J]. International Journal of Multiphase Flow,1989,15:433-446
    [141]Chen Q, Ahmadi G. Deposition of particles in a turbulent pipe flow[J]. Journal of Aerosol Science,1997,28:789-796
    [142]张金萍,李安桂.方形通风管道中粒子沉积的拉格朗日模拟[J].暖通空调,2006,36(6):10-17
    [143]李仁年,王浩,苏吉鑫,等.旋风分离器内部流场及分离效率的数值仿真[J].兰州 理工大学学报,2007,33(2):50-53
    [144]Yoshida H, Fukui K, Yoshida K. Particle separation by Iinoya's type gas cyclone[J]. Power Technology,2001,118:16-23
    [145]赵海波,郑楚光.单区静电除尘器捕集烟尘过程的数值模拟[J].中国电机工程学报,2007,27(2):31-35
    [146]Peterson T W, Statmann F Fissan H. Particle deposition on wafers:a comparison between two modeling approaches [J]. Journal of Aerosol Science,1989,20 (6) 683-693
    [147]Tsai R, Chang Y P, Lin T Y, Combined effects of thermophoresis and electrophoresis on particle deposition onto a wafer [J]. Journal of Aerosol Science,1998,20 (7): 811-825
    [148]Opiolka S, Schmidt F, Fissan H. Combined effects of electrophoresis and thermophoresis on particle deposition onto flat surfaces [J]. Journal of Aerosol Science, 1994,35 (4):665-671
    [149]亢燕铭,荣美丽,钟珂,等.水平表面上超细气溶胶粒子的沉积[J].应用力学学报2003,20(4):14-19
    [150]Gormley P, Kennedy M. Diffusion from a stream flowing through a cylindrical tube [J]. Proceedings of the Royal Irish Academy,1949,52A:163-169
    [151]Neeraj RPakala, Abhoyjit S Bhown. Effect of particulate matter on mass transfer through microporous hollow fiber membranes [J]. Journal of Membrane Science,1996, 111:71-79
    [152]杜金丽,邓新华,孙元,等.PTFE乳液制备PTFE/YSZ微孔膜及孔隙率的研究[J].中国塑料,2010,24(12):84-88
    [153]许振良,翟晓东,陈桂娥.高孔隙率聚偏氟乙烯中空纤维超滤膜的研究[J].膜科学与技术,2000,20(4):10-13
    [154]Yasuda H, Tsai J T. Pore size of micro porous polymer membrane [J]. Journal of Applied Polymer Science,1974,18:805-819
    [155]污染源统一监测分析方法编写组.污染源统一监测分析方法一废气部分.北京:中国标准出版社,1983
    [156]王运东,骆广生,刘谦.传递过程原理[M].北京:清华大学出版社,2002
    [157]J R威尔特,CE威克斯,RE威尔逊,等.动量热量和质量传递原理[M].北京:化学工业出版社,2005
    [158]Chii-Dong Ho, Yu-Chuan Chuang, Jr-Wei Tu. Device Performance Improvement of Double-Pass Concentric Circular Mass Exchangers under Uniform Wall Fluxes[J]. Chemical Engineering and Technology,2007,30:431-442
    [159]Maryam Azhin, Tahereh Kaghazchi, Mohammad Rahmani. Analysis of facilitated transport membrane with modified boundary conditions[J]. Desalination,2010,250: 229-235
    [160]Qin Yingjie, Cabral J M S. Lumen mass transfer in hollow-fiber membrane processes with constant external resistances [J]. AIChE Journal.1997,4:1975-1988
    [161]Ugwu C U, Ogbonna J C, Tanaka H. Improvement of mass transfer characteristics and productivities of inclined tubular photobioreactors by installation of internal static mixers[J]. Applied Microbiology and Biotechnology,2002,58:600-607
    [162]Zhang W D, Chen G, Li J, et al. Intensification of Mass Transfer in Hollow Fiber Modules by Adding Solid Particles [J]. Industrial & Engineering Chemistry Research, 2009,48:8655-8662.
    [163]郝吉明,段雷,易红宏,等.燃烧源可吸入颗粒物的物理化学特征[M].北京:科学出版社,2008
    [164]Chen Q, Ahmadi G. Deposition of particles in a turbulent pipe flow[J]. Journal of Aerosol Science,1997,28:789-796
    [165]Thomas J K, Knut D, Martin H M, et al. Microscopic aspects of the deposition of nanoparticles from the gas phase[J]. Aerosol Science,2002,33:1341-1359
    [166]Sandeep K K. Laminar flow in channels with porous walls[J]. Journal of Membrane Science,2001,191:237-241
    [167]Moulin P, Veyret D, Charbit F. Dean vortices:comparison of numerical simulation of shear stress andimprovement of mass transfer in membrane processes at low permeation fluxes[J]. Journal of Membrane Science,2001,183:149-162

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700