用户名: 密码: 验证码:
基于主动红外热成像的倒装焊缺陷检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芯片互连是微电子封装的关键技术之一,而倒装焊采用凸焊点实现芯片与基底之间的机械和电气连接,因封装尺寸小、信号传输速度快等优点已逐渐成为微电子封装的主流工艺。随着倒装芯片凸点密度的提高及其间距的进一步减小,芯片的功率密度将迅速增加,芯片的散热和内部热应力失配问题更加严重,易于发生键合失效。由于凸点或焊球隐藏于芯片和基底之间,其热性能分析及缺陷检测变得更加困难。为此,本文将主动红外无损检测技术应用于微电子封装领域,结合有限元仿真对焊球热性能及缺陷检测进行了研究和分析,主要研究内容如下:
     利用解析和数值仿真方法分析了倒装芯片内部焊球的导热性能。建立了倒装焊结构的热传导数学模型,并给出了解析求解过程。将常见焊球缺陷引入倒装芯片的热传导模型,建立了倒装焊结构的纵向热阻网络;采用有限元法仿真分析了外部热激励作用下的倒装焊内部热传导状况,对比分析了缺陷焊球与参考焊球对应的温度变化。通过计算获得了存在裂纹或空洞的缺陷焊球与正常焊球各自的热阻阻值,并进一步研究了焊球热阻与缺陷尺寸之间的关系。倒装焊内部热传导分析及焊球热性能表征为主动红外缺陷检测提供了参考依据和评估指标。
     研究了主动红外热成像检测原理、方法及系统组成,并根据倒装芯片特点和检测要求,提出了一种基于主动红外热成像的倒装焊缺陷检测方法,设计并构建了实验检测平台。采用光纤耦合半导体激光器对芯片或基底表面进行非接触式加热,通过红外热像仪获得芯片表面温度分布及随时间的变化,通过热图像信号处理提取特征量,对焊球缺陷进行诊断与辨识。主动红外热成像检测系统构建及方法研究为开展倒装焊缺陷检测提供了实验平台和热图像解析的理论基础。
     利用主动红外检测实验平台,对不同尺寸焊球的缺陷检测展开实验研究。采用双面测量法对焊球直径为500μm的自制样片S1进行了缺陷检测实验,通过热图像的空间自适应滤波、边缘检测及图像分割等方法,消除了热图像噪声及焊球间隙对缺陷辨识的影响,并使用焊球的热斑面积及其温度直方图对焊球缺陷进行定量分析;采用双面测量法对焊球直径为300μm的自制样片S2进行了缺陷检测实验,通过移动平均滤波去除热图像序列中的随机噪声,构建了加热源能量分布图,并采用自参考对比法,使用焊球热斑边缘点与UBM区中心点的温差累积值对焊球状况进行判别,消除了加热不均匀性对缺陷辨识的影响,实现了焊球缺陷的有效检测;采用单面测量法对焊球直径为135μm的选购样片FA10进行了缺陷检测实验。通过自适应中值滤波及移动平均滤波算法对热图像序列进行空间和时间域上的平滑和去噪,并对热图像中各点的温度序列值按指数形式进行曲线拟合。为了减小发射率差异及加热不均匀性的影响,采用脉冲相位法,通过傅里叶变换将时域温度信息转换为频域相位信息,使用低频段的相位图进行缺陷辨识,从而实现了缺失焊球的有效检测。
     本文采用主动红外检测方法实现了缺失焊球的有效检测,并将其检测范围扩展应用于BGA、CSP等表面安装器件的焊球缺陷检测,为高密度微电子封装的可靠性评估提高了一种快速、有效的方法。
Chip interconnection is one of the key technologies for microelectronic packaging. Theflip chip, which uses solder bumps to realize interconnection between chips and substrates,becomes the mainstream technics in microelectronic packaging because of its decreasedpackage size, larger speed of signal propagation and so on. With the development of soldebumps towards higher density and finer pitch, the chip power density will increasedramatically, and the heat dissipation will become a significant problem, the thermalmismatch in the package is also getting serious, which results in solder defects and bondingfailures. Defects inspection and characterization of the thermal perfermence for the solderbumps are more difficult as the bumps are hidden in flip chip package. The active infraredthermography technology was applied to defects inspection in microelctronic packaging inthis thesis, and the finite element method was also adopted to investigate the heat conductionin the flip chip.
     The thermal performance of the solder bumps was investigated using the analytical andnumerical methods. We constructed a mathematical model for heat transfer in the flip chipstructure and provided the solving procedure. A lumped thermal resistance network wasderived from the one dimension heat transfer model to which common defects wereintroduced. The heat conduction in the flip chip was analysed using numerical simulation.The thermal performance of the solder bumps was characterized by using the thermalresistances. The thermal resistances of the reference bump and defective bump werecalculated respectively and the relationship between the thermal resistance and the defectssize was also studied. The analysis of heat conduction in flip chip and the thermalcharacterization of the solder bump provide a criterion for package reliability evaluation anddefects inspection.
     We have studied the principle and methods for the active infrared thermography. Anovel approach for defects inspection of the solder bumps based on the active infraredthermography technology was proposed and the experimental setup was constructed, inwhich surface of the die or substrate is heated by the fiber coupled diode laser, and thetemperature distribution on the top surface of the die is monitored by the thermal imager.Then the soder defects are distinguished by some characterisctic quantities derived from thethermography processing, which makes the experiments of defects inspection feasible, andoffers a guideline for thermography interpretation.
     Experiments have been carried out to inspect the missing solder bumps of different diameter and pitch. The test vehicle S1with the solder bumps of500μ m in diameter wasdetected in transmission way. Techniques of the adaptive filtering, the edge detection and theimage segmentation were adopted to decrease the noise in thermograms and to eliminate theinfluence of emissivity differnence between the UBM layer and gaps. The hotspot area overevery solder bump and the temperature histogram are used to characterize the defectsquantificationally. The test vehicle S2with the solder bumps of300μ m in diameter was alsodetected in transmission way. The moving average filter was used to remove the randomnoise. The source distribution image was created to indicate the spatial nonuniformity ofexcitation. IR self reference method was proposed that temperature value of every edge pointis substract from that of the central point at each time, and the temperature differnence wasaccumulated all time. The defective solders are differentiated by the summation of thetemperature differnence. The specimen FA10with the solder bumps of135μ m in diameterwas inspected in reflection way. The spacial and temporal filtering techniques were adoptedto improve the signal to noise ratio. The recorded thermograms were input into an adaptivemedian filter, and the temperature evolution of each pixel was extracted and smoothed by themoving average operation. Then the temperature-time curve was fitted with an exponentialfunction. To eliminate emissivity variations and heating non-uniformity, we converted thefitted temperature values in time domain to the phase information in frequency domain usingfast Fourier transform. The defective solder bumps were indentified in the phase map at lowfrequency.
     The results demonstrate that the active infrared thermography technology is effectivefor identification of the missing bumps, and can also be used for inspection of solder balls inCSP and BGA packages,which provides a fast and effective method for reliabilityevaluation in high density packaging.
引文
[1]朱高峰,全球化时代的中国制造[M],北京,社会科学文献出版社,2003
    [2]李珂,我国IC产业制造业快速增长设计业挑战严峻[J],中国电子报,2008,第3版
    [3]雷源忠,雒建斌,丁汉,钟掘.先进电子制造中的重要科学问题,中国科学基金,2002,16(4):204-209
    [4] Tummala R R. Impottance, status and challenges in microelectronics system-levelpackaging[C]. Proceedings of the ISEPT,1996:6-11
    [5]毕克允等.微电子封装技术[M],合肥,中国科学技术大学出版社,2003
    [6]况延香,刘玲.微组装与芯片互连技术[C].全国第二届SMT学术研讨会论文集.1993:126-133
    [7] Kovae C. Plastic package fabrication, In Electronic Materials Handbook, ASMIntemational, Materials Park, OH,1998(1):471-473
    [8] Sugimoto M, Yoshida T, Sumi Y, Hasegawa H, Wada K. Experimental Results for100μm Pitch TAB Technology[C], Proceedings Elec. Man. Tec. Symp., Neuilly surSeine, France,1988:53-56.
    [9] Chung T, Carey D, Gardner B. Development of large high I/O flip chip technology[C].Proceedings of NEPCON West,1994:1527-36.
    [10] Aschenbrenner R. Flip chip Assembly for consumer electronics[C], Proceedings ofInternational Symposium on Electronic Packaging,1999.
    [11] Greathouse S. Minimal size packaging solution: a comparison[J], MicroelectronicsInternational,1996(40)
    [12] Pedder D J. Flip chip solder bonding for microelectronic applications[J], HybridCircuits,1988(15):4-7.
    [13] Burdett P A, Lodge K J, Pedder D J. Techniques for the inspection of flip chip solderbonded devices[J], Hybrid Circuits,1989(19):44-48.
    [14] Totta P A, et al. SLT device metallurgy and its monolithic extension[J], IBM Journal ofReasearch and Development,1969,13(3):226-238
    [15] Yamada T, Otsutani K, Sahara K, Otsuka K. Low stress design of flip chip technologyfor Si on Si multichip modula[C], IEPS,1985:.551-557.
    [16] Goldmann L S. Self-alignment capability of controlled-collapse chip joining[C],Proeeedings22nd Eleetronie Components Conference,1972:332.
    [17] Tsukada Y. Surface Lamilar circuit and flip chip attach packaging[C], ECTC,1992
    [18] Nishimori T, Yanagihara H, Murayama K, Kama Y, Nakamura. Characteristics andpotential application of polyimide-core-bump to flip chip[J], IEEE Trans on CPMT,1996,19(1):18-23.
    [19] Ahmed S, Tummala R, Potts H. Packaging technology for IBMs latest mainframecomputers[C], ECTC,1991:682-688.
    [20] http://www.itrs.net/Links/2007ITRS/Home2007.htm
    [21] Tan C W, Chan Y C, Leung B, Liu H D. Effects of soft beam energy on themicrostructure of Pb37Sn, Au20Sn, and Sn3.5Ag0.5Cu solder joints in lensed-SM-fiber to laser-diode-affixing application[J], Opt Lasers Eng.2008,46:75-82.
    [22] Guo F. Composite lead-free electronic solders[J], Mater Sci: Mater Electron,2007(18):129-45.
    [23] Jeannotte D A. Solder as a structural member for chip joining[C], ElectronicComponents Conference Proceedings,1969:334.
    [24] Fan X J, Zhou J, Zhang G Q. Multi-physics modeling in virtual prototyping ofelectronic packages combined thermal, thermo-mechanical and vapor pressuremodeling [J], Microelectronics Reliability.2004,44:1967-1976.
    [25] Han L, Zhong J. Effect of tightening torque on transducer dynamics and bond strengthin wire bonding[J], Sensors and Actuators A.2008,141:695-702
    [26] ITRS2008Update Overview. http://www.itrs.net/Links/2008ITRS/Home2008.htm
    [27]王立成,丁汉,熊有伦.倒装焊芯片封装中的非接触检测技术[J],机械与电子,2004,5:45-49.
    [28] Martin P L. Electronic Failure Analysis Handbook. McGraw-Hill;1999.
    [29] Michael D. Early, accurate, high speed automated optical inspection comes of age [Z].Teradyne, Inc
    [30]薛晓洁,叶声华,孙长库.栅状阵列器件激光视觉检测系统及共面性评价方法[J].机械工程学报,2001,37(5):78-80.
    [31] Yen H N, Tsai D M, Feng S K. Full-field3-D flip-chip solder bumps measurementusing DLP-based phase shifting technique[J], IEEE transactions on advancedpackaging,2008,31(4):830-840
    [32]龙绪明. BGA/CSP焊接和光学检查[J].电子工业专用设备.2003(8):68-71.
    [33]颜旭男,蔡笃铭,谢坤翰.应用准确白光相位技术检测BGA共面性[C].中国工业工程学会年会论文集(台湾),2001
    [34] Schick A, Kedziora M. Inspection and process evaluation for flip chip bumping andCSP by scanning3D confocal microscopy [C], IEEE:8th Internatioanl Symposium onAdvanced Packaging Materials.2002(7):116-119.
    [35] Sassov A, Luypaert F. X ray digital microlaminography for BGA and flip chipinspection [C]. X ray Microscopy: Proceedings of the Sixth International Conference.2000:239-244
    [36] Kovacs R. X-Ray Inspection of Microwire Bonds. In:Proceedings of the28thInternational Spring Seminar on Electronics Technology: Meeting the Challenges ofElectronics Technology. Austria (Wiener Neustadt): Institute of Electrical andElectronics Engineers Computer Society,2005:448-451.
    [37] Ditali A, Ma M, Johnston M, et al. X-ray inspection-induced latent damage in DRAM.In: Proceeding of the44th IEEE International Reliability Physics SymposiumProceedings. USA (Piscataway): IEEE,2006:266-269.
    [38] Roth H, He Z, Paul T Inspection of Miniaturised Interconnections in IC Packages withNanofocus X-Ray Tubes and NanoCT. In: Proceeding of the10th ElectronicsPackaging Technology Conference. USA (Piscataway): IEEE,2008:644-649.
    [39] Pacheco M, Wang Z Y, Skoglund L, et al. Advanced Fault Isolation and FailureAnalysis Techniques for Future Package Technologies[J]. Intel Technology Journal,2005,9(4):337-352.
    [40]王亚非,袁敬闳.声显微成像[J].压电与声光,1996,18(4,8):240-243
    [41] Hoh H J, Zhang H S, Xue M. Characterization of Flip Chip Bump Failure Mode byusing High Frequency230MHz MP and CP4Transducer. In: Proceeding of the10thElectronics Packaging Technology Conference, USA (Piscataway): IEEE,2008:601-607.
    [42] Martin E, Larato C, Ment A C, et al. Detection of Delaminations in Sub-WavelengthThick Multi-Layered Packages from the Local Temporal Coherence of UltrasonicSignals. NDT&E International,2008,41:280-291
    [43] Brand S, Raum K. Signal Analysis in Scanning Acoustic Microscopy for Non-Destructive Assessment of Connective Defects in Flip-Chip BGA Devices. IEEEUltrasonics Symposium,2007:817-820
    [44] Yang J, Ume C, Zhang L. Defect detection of flip chip solder bumps with waveletanalysis of laser ultrasound signals[J], IEEE Transactions on advanced packaging,,2010,33(1):19-29.
    [45] Liu S, Ume C. Defects pattern recognition for flip chip solder joint quality inspectionwith laser u itrasound and interferometer [J]. IEEE: Electronic Components andTechnology Conference.2002,(4):1491-1496.
    [46] Zhang L Z. Development of microelectronic solder joint inspection system: Modalanalysis, finite element modeling and ultrasound signal processing. Ph.D Dissertation.Georgia Institute of Technology,2006
    [47] Liu S, Ume C. Digital signal processing in a novel flip chip solder joint defectsinspection system[J], ASME J. Electron. Packag.,2003,125:39-43.
    [48] Traub A C. Parts inspection by laser beam heat injection[J], NDT International,1988,21(2):63-69.
    [49] Chai TC, Brian S. Wong, Bai WM, A Novel Defect Detection Technique Using ActiveTransient Thermography for High Density Package and Interconnections, ElectronicComponents and Technology Conference,2003:920-925.
    [50] Lu J C, Trigg A, Wu J H, ChaiT C, Detecting underfill delamination and cracks in flipchip on board assemblies using infrared microscopy[J], International Journal ofMicroelectronics and Electronic Packaging,1998,21(3):231-235.
    [51] Carslaw H S, Jaeger J C. Conduction of Heat in Solids, Oxford Univ. Press, London1959
    [52] Incropera; P David; DeWitt; L Theodore; Bergman; Adrienne S. Lavine. Fundamentalsof Heat and Mass Transfer [M]. Wiley,2006,6th-edition.
    [53]田裕鹏.红外检测与诊断技术[M],北京,化学工业出版社,2006.
    [54] Fedasyuk D, Levus E, Petrov D. Flip-chip structure transient thermal model[J],Microelectron. Reliab.,2001(41):1965-1970.
    [55] Fedasyuk D, Levus E, Mykhalchuk M, Petrov D. Modelling and analysis of providingthermal performance of flip chip structure[C],5thTherminic Workshop, Rome,1999:142-146.
    [56] Gurrum S, Suman S, Joshi Y, Fedorov A. Thermal Issues in Next-Generation IntegratedCircuits[J], IEEE T. Device Mat. Re.2004,4(4):709-714.
    [57] Kandasamy R, Mujumdar A S. Thermal analysis of a flip chip ceramic ball grid array(CBGA) package, Microelectron. Reliab.2008,48:261-273.
    [58] Joiner B, Montes de Oca T. Thermal performance of flip chip ball grid array packages,In:18th IEEE SEMI-THERM Symposium, San Jose (CA),2003:50-56.
    [59] Chen K M, Houng K H, Chiang K N. Thermal resistance analysis and validation of flipchip PBGA packages, Microelectron. Reliab.2006,46:440-448.
    [60] Poppe A, Zhang Y, Farkas G, Wong H, Wilson J, Szabo P. Thermal characterization ofmulti-die packages, Electronics Packaging Technology Conference, Singapore,2006:500-505.
    [61] Bash C E, Blanco R L. Improving Heat Transfer from a Flip-Chip Package, Hewlett-Packard Journal, August1997
    [62] Jiang L, Kolluri S, Rubin B, et al. Thermal modeling of on-chip interconnects and3Dpackaging using EM tools, Electrical Performance of Electronic Packaging, Singapore,2008:279-282.
    [63] Sham M L, Kim J K, Park J H. Thermal performance of flip chip packages: Numericalstudy of thermo-mechanical interactions[J], Comp. Mater. Sci.2008,43:469-80.
    [64] Krishnamoorthi S, Zhu W, Wang C, Tan H B, Sun A. Thermal Evaluation of Two DieStacked FBGA Packages, Electronics Packaging Technology Conference, Singapore,2007:278-284.
    [65] Joo Goh T, Seetharamu K, Quadir G, Zainal Z, Jeevan Ganeshmoorthy K. Thermalinvestigation of microelectronics chip with non-uniform power distribution:temperature prediction and thermal placement design optimization[J], Microelectron.Int,2004:29-43.
    [66] Lu X N, Shi T L, Xia Q, Liao G L. Thermal conduction analysis and characterizationof solder bumps in flip chip package[J], Applied Thermal Engineering,2012(36):181-187.
    [67] Liu L, Yi S, Ongc L S, Chian K S. Finite element analysis for microwave cure ofunderfill in flip chip packaging, Thin Solid Films,2004:436-445.
    [68] Hsiao H Y, Liang S W, Ku M F, Chen C, Yao D J. Direct measurement of hot-spottemperature in flip-chip solder joints under current stressing using infraredmicroscopy[J], J. Appl. Phys.2008,104(033708)1-6.
    [69] Osiander R, Spicer J W M, Murphy J C, Analysis Methods for Full-Field Time-Resolved Infrared Radiometry, in Thermosense XVIII: An International Conference onThermal Sensing and Imaging Diagnostic Applications, Proc. SPIE,1996(2766):218-227.
    [70] Murphy J C, Aamodt L C, Maclachian Spicer J W. Principles of PhotothermalDetection in Solids, Principles&Perspectives of Photothermal&PhotoacousticPhenomena, edited by A.Mandelis, pp.41-94, Elsevier Science Publishing, New York,1992.
    [71] Milton A F, Barone F R, Kruer M R. Influence of Nonuniformity on Infrared FocalPlane Array Performance, SPIT Opt. Eng.,1985,24(5):855-65
    [72] Schulze M J, Caldwell L V, Nonuniformity correction and correctability of infraredfocal plane arrays, SPIE,1995(2470):200-211
    [73]胡晓梅.红外焦平面探测器的非均匀性与校准方法研究[J],红外与激光工程,1999,28(3):9-12.
    [74]吕中产,田裕鹏,周克印.红外无损检测中热激励研究,无损探伤,2005,29(6):44-45.
    [75] Ibarra-Castanedo C, González D, Klein M, Pilla M, Vallerand S, Maldague X. Infraredimage processing and data analysis[J], Infrared Physics&Technology,2004(46):75-83
    [76] Vozar L. Two data reduction methods for evaluation of thermal diffusivity from step-heating measurements[J], Int. J. Heat Mass Transfer,1997,40(7):1647-1655.
    [77] Bittle R, Taylor R, Step-heating technique for thermal diffusivity measurements oflarge-grained heterogeneous materials, J. Am. Ceram. Soc.,1984(67):186-190.
    [78] Osiander R, Spicer J. Time resolved infrared radiometry with step heating. A review[J],Revue Generale de Thermique,1998(37):680-692
    [79] Shepard S M, Ahmed T, Lhota J R. Experimental considerations in vibrothermography,Proc. SPIE2004(5405):332-35
    [80] Piau J M, Bendada A, Maldague X, Legoux J G. Nondestructive inspection of openmicro-cracks in thermally sprayed coatings using ultrasound excitedvibrothermography, Proc. SPIE,2007(6541)654112
    [81] Mendioroz A, Salazar A, Alonso F, Ocáriz I. Crack Characterization in metallicplates using vibrothermography,9th International Conference on Quantitative InfraredThermography.
    [82] Huth S, Breitenstein O, Huber A, Dantz D, Lambert U, Altmann F. Lock-in IR-thermography-A novel tool for material and device characterization[J], Solid StatePhenomena,2002(82-84):741-746
    [83] Bauer J, Breitenstein O, Wagner J M. Lock-in thermography: A versatile tool for failureanalysis of solar cells[J], Electronic Device Failure Analysis,2009(3):6-12
    [84] Quek S, Almond D, Nelson L, Barden T. A novel and robust thermal wave signalreconstruction technique for defect detection in lock-in thermography[J], Measurementscience and technology,2005(16):1223-33
    [85] Bai W, Wong B S. Non-destructive Evaluation of Aircraft Structure Using Lock-inThermography[C], Proceedings of SPIE,2000(3994):37-46
    [86]薛书文;雷雨;陈习权;祖小涛.脉冲红外热成像无损检测的物理检测机理[J].电子科技大学学报,2005,34(3)320-327.
    [87] Lugin S, Netzelmann U. A defect shape reconstruction algorithm for pulsedthemography, NDT&E International.2007,40(3):220-228.
    [88] Omar MA, Zhou Y. A quantitative review of three flash thermography processingroutines. Infrared Physics&Technology,2008,51(4):300-06
    [89] Maldague X, Couturier J P. Review of Pulse Phase Infrared Thermography, Proceedingof4th International Workshop on Advanced Infrared Technology and Applications(AITA), Firenze, Italy,1997,53(1):271-286.
    [90] Ibarra-Castanedo C, Maldague X. Interactive methodology for optimized defectcharacterization by quantitative pulsed phase thermography[J], Research inNondestructive Evaluation,2005,16:175-193.
    [91] Maldague X, Galmiche F, Ziadi A. Advances in pulsed phase thermography. InfraredPhysics&Technology.2002;43:175-181.
    [92] Ibarra-Castanedo C, González DA, Maldague X. Automatic algorithm for quantitativepulsed phase thermography calculations. Proceedings of WCNDT on CD; Montreal(Quebec),2004.
    [93]祝洪良,装艳丽,杨德仁.氮化硅薄膜制备和生长动力学研究进展,材料导报,2002,16(12):34-36.
    [94] Quirk Michael,Serda Julian.半导体制造技术[M].北京:电子工业出版社,2004.
    [95]郭江华,王水弟,张忠会,胡涛,贾松良.倒装芯片凸焊点的UBM,半导体技术,2001,26(6):60-64.
    [96] Teo P S, Huang Y W, Tung C H et al. Investigation of under bump metallizationsystems for flip chip assemblies. IEEE/CPMT Electronic Components and TechnologyConference.
    [97] Liu C Y, Tu K N, Sheng T T, et al. Electron microscopy study of interfacial reactionbetween eutectic SnPb and Cu/Ni(V)/Al thin film metallization[J]. Journal of AppliedPhysics.2000,87(2):750-754.
    [98] Li M, Zhang F, Chen W T, et al. Interfacial microstructure evolution between eutecticSnAgCu solder and Al/Ni(V)/Cu thin films[J]. Journary of Materials Research.2002,17(7):1612-1621.
    [99] Campbell, Stephen. The Science and Engineering of Microelectronic Fabrication.Oxford University Press;2nd edition.
    [100]Pratt W K. Digital Image Processing, Wiley, New York,1991.
    [101]Marinetti S, Maldague X, Prystay M, Calibration procedure for focal plane arraycameras and noise equivalent material loss for quantitative thermographic NDT[J],Mater. Eval.1997,55(3):407-412.
    [102]Heriansyah R, Abu-Bakar SAR. Defect detection in thermal image for nondestructiveevaluation of petrochemical equipments. NDT&E International.2009,42(8):729-40.
    [103]Canny J. A computattiomal approach to edge detection [M]. IEEE Trans,PattcmAmal,Machinc Intell,1986.
    [104]刘晨,张东,等.边缘检测算子研究及其在医学图像中的应用[J].计算机技术与发展,2006,8:129-130.
    [105]冯伍,张俊兰,苗秋瑾.几种典型边缘检测算子的评估[J].电子设计工程,2011,19(4):131-133.
    [106]Sham F C, Huang YH, Liu L, Chen YS, Hung YY, Lo TY. Computerized tomographytechnique for reconstruction of obstructed temperature field in infrared thermography.Infrared Physics&Technology.2010,53(1):1-9.
    [107]Susa M, Maldague X, Boras I. Improved method for absolute thermal contrastevaluation using Source Distribution Image (SDI). Infrared Physics&Technology,2010,53:197-203.
    [108]Susa M, Maldague X, Boras I. Application of the Source Distribution Image (SDI)procedure for porosity detection in honeycomb structures.10th InternationalConference on Quantitative InfraRed Thermography, Quebec,2010
    [109]Omar M, Hassan M I, Saito K, Alloo R. IR self-referencing thermography for detectionof in-depth defects, Infrared Physics&Technology,2005,46:283-289.
    [110]Sakagami T, Nishimura T, Kubo S. Development of a self-reference lock-inthermography and its application to crack monitoring. Proceedings of SPIE,Bellingham, WA,2005,5782:379-387;
    [111]Shepard SM, Lhota JR, Rubadeux BA, Wang D, Ahmed T. Reconstruction andenhancement of active thermographic image sequence[J], optical engineering.2003,42(5):1337-1342.
    [112]Rajic N. Principal component thermography for flaw contrast enhancement and flawdepth characterisation in composite structures, Compos. Struct.2002(58):521-528.
    [113]Maldague X. Theory and practice of IR technology for nondestructive testing,1st ed.,New York: Wiley-Interscience,2001.
    [114]Lu X N, Liao G L, Zha Z Y, Xia Q, Shi T L, A novel approach for flip chip solder jointinspection based on pulsed phase thermography, NDT&E Int.44(2011)484–489.
    [115]Ben Hamza A, Luque-Escamilla PL, Martinez-Aroza J, Roman-Roldan R. Removingnoise and preserving details with relaxed median filter, J. Math. Imag. Vision.1999,11(2):161-77.
    [116]Sun B, Ma Q, Zhao H, Fitting-correlation Analysis of Pulsed ThermographicSequence. Data[C], Proceedings of the2007IEEE International Conference onMechatronics and Automation,2007:630-634.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700