用户名: 密码: 验证码:
不锈钢加工中切削力分析预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属切削是制造领域的基础工艺。随着工件材料性能的不断提升以及零件在特殊环境(高温,高压,强辐照,强腐蚀)下服役性能的要求越来越高,对零件加工质量提出了更高的要求。本文以核主泵难加工材料为主要研究对象,综合考虑金属切削过程中材料性能、非线性大变形特性、热力耦合等因素的影响,对金属切削过程的直角切削和斜角切削等几个基本问题进行了研究,实现了304不锈钢加工过程中切削力的预测。其主要研究工作和成果如下:
     首先分析了主剪切区的模型化方法,提出了不等分剪切区模型。在剪切区,用Johnson-Cook方程表示材料的本构关系。假设切屑形成主要是由剪切滑移作用的结果,切削刃钝圆半径的影响被忽略。根据Oxley实验结果,把剪切区应变率分布表示为幂律分布曲线。基于塑性力学和热力学原理,建立了切屑通过剪切区的速度、应变、应力和温度的控制方程。在刀屑面上,引入了依赖切屑速度的摩擦经验公式。通过数值方法对强耦合条件下的热力控制方程组进行同时求解,在计算流动应力时考虑了加工硬化和热软化的影响。最后预测了各种不同加工条件下的切削力,讨论了不同切削参数对切削力的影响。同时也分析了剪切区的应变率,速度,应变,温度和应力变化规律。
     通过定义等效平面角来确定等效平面的方位,并应用等效平面法把直角切削理论延伸到斜角切削的建模。用坐标变化法研究斜角切削中的几何关系,分析了斜角切削中的速度变化过程。与直角切削类似,建立了切屑通过剪切区的速度、应变、应力和温度的控制方程。推导了斜角切削中切屑受力的关系,通过切屑的受力平衡,得到切屑流角和切削力表达式。对斜角切削的控制方程进行数值求解,可以得到不同切削参数和刃倾角对切削力的影响规律。
     分析了立铣刀的切削刃离散过程,定义局部切削角度和未变形切屑厚度来确定离散刃的切削参数。把每个离散刃看做一系列的斜角切削单元,对每个微元斜角切削单元,由材料本构方程、剪切区热力控制方程、剪切角公式和平均摩擦角公式等预测出流动应力,然后计算出微元切削力。根据斜角切削和铣削之间的力变换关系,把微元切削力转化为微元铣削力。对微元铣削力进行数值积分求和,得到铣削力的大小。根据本文提出方法,分析了刀具参数和切削参数对铣削力的影响规律。分析结果表明可以通过选择合适的刀具参数和铣削参数得到一个理想的铣削力分布(满足连续性,平稳性,和最小性条件),从而减小刀具变形误差和提高加工精度。这对基于切削力的工艺参数优化和刀具路线规划奠定了基础。
     讨论了传统斜角切削模型的局限性,提出了一个改进的斜角切削模型,它考虑了主偏角影响和非自由切削作用。运用坐标变换法分析了车削中离散切削刃的几何关系,推导了局部切削角度和局部切削参数的数学表达式。把每个离散切削刃看作一个改进斜角切削过程,考虑了切屑单元之间的相互作用。根据每个离散切屑单元的局部受力平衡和整个切屑的全局受力平衡,得到全局切屑流角和车削力的表达关系式。通过数值方法,对车削过程进行求解。应用提出模型对三种情况下的车削力进行预测分析,特别是刀尖圆弧半径和主偏角等非自由因素对车削力的影响。研究了车削中的切屑流出方向,分析了刀具参数和切削参数对局部和全局切屑流角的影响。结果表明可以通过选择合适的刃倾角、主偏角、刀尖圆弧半径和切削深度来控制切屑流出方向,使其往工件轴向外面偏,避免刮伤已加工表面。最后对车削过程的局部几何参数和物理参数进行分析,各种影响包括刀具角度和切削参数被看做是一个耦合作用。这些局部信息对于优化切削参数和切削刃的形状具有重要意义。
     在Matlab平台上开发基于本文提出方法软件包,并通过一系列的直角切削实验来识别材料常数和摩擦常数。将预测结果与304不锈钢切削力实验进行对比,验证本文提出模型的有效性,初步建立了核主泵常见加工工序(铣削和车削)的切削力数学模型。为了进一步考察本文提出方法的广泛性,也与其它金属材料的实验结果进行了比较,如42CrMo4钢与316L不锈钢的文献结果,45钢铣削实验。本文提出的模型也可用于其它切削加工方法的建模,如钻削和镗削。
Metal cutting is the most traditional material processing technology in mechanicalmanufacturing industry. As the material property improvment and some special serviceenvironment demand (high termperature, high pressure, irradiation, corrosion), themanchining quality need be more strictly controled. This dissertation focuses on cutting forceprediction for the difficult-cut-materials (304stainless steel) of nuclear reactor coolant pump,some principle problems about orthogonal cutting and oblique cutting are researched. Thematerial property, nolinear large deformation and thermomechanical coupling of cuttingprocesss are also considered together. These work and achievements are shown below:
     First of all, the modeling process of the primary shear zone is discussed. A new modelbased on unequally divided shear zone is presented. The material constitutive relationship inthe primary shear zone is represented using Johnson-Cook equation. The chip formation issupposed to occur mainly by shearing within a primary shear zone, and the tool edge radiuseffects can be neglected under the assumption of a sharp cutting edge. A piecewise power lawdistribution assumption of the shear strain rate is adopted according to Oxley’s experimentalresualts. Based on plastic mechanics and thermodynamics, the governing equations of thevelocity, strain, stress and temperature of chip flow through the primary shear zone areestablished. At the tool/chip interface, a chip speed-dependent friction law is introduced.While calculating the flow stress numerically, the thermomechanical equations under thestrong coupling condition are solved simultaneously, so the coupling effect of workinghardening and thermal softening on flow stress are considered. Finally, the cutting forces fordifferent machining conditions were predicted, the effect of cutting parameters and toolgeometry were investigated. Besides, the distributions of strain rate, velocity, strain, stressand temperature for the proposed model are also simulated.
     Using the equivalent plane approach, orthogonal cutting theory based on unequaldivision shear zone is extended and applied to oblique cutting. The equivalent plane angle is defined to determine the orientation of the equivalent plane. The geometrical parametersassociated to oblique cutting are analyzed using the coordinate transformation approach.Similarly, the governing equations of the shear velocity, shear strain, shear stress andtemperature distribution in the primary shear zone are established. The forces applied on chipare analysed, the calculated expression of cutting forces and chip flow angle are deduced onthe basis of chip force equilibrium. The cutting force prediction process of oblique machiningis implemented using a program, the influence of cutting parameters and inclination anglewere investigated.
     The helical flutes are decomposed into a set of differential oblique cutting edges. Thecutting parameters of discrete edges are characterized by local cutting angle and theundeformed chip thickness. To every engaged tooth element, the flow stress is obtained fromthe material constitutive equation, the thermomechanical governing equations within theprimary shear zone, the shear angle formula, the mean friction expression at the tool-chipinterface and so on, then differential cutting forces are computed by the flow stress. Cuttingforces were predicted using oblique cutting transformation into end milling. The value of themilling force is calculated through the numerical integration. Using the proposed method, theeffect of tool and cutting parameters on milling force are analysed. The results show that it’spossible to get an ideal milling force distribution (To meet the continuity, stability, andminimum conditions) by choosing the appropriate machining parameter, which can reducetool deflection error and improve the maching precision. This work is the foundation ofmachining parameter optimization and toolpath planning based on cutting force.
     This dissertation discusses the limitations of the traditional oblique cutting model andproposes a more general oblique cutting model. The improved model considers the impact ofmain cutting edge angle and non-free cutting. Based on the coordinate transformations, weanalyse the geometry relationships of discrete cutting edges and deduce the mathematicalexpressions of the local cutting angles and cutting parameters. Every discrete cutting elementcan be considered as an improved oblique cutting process, which takes into account theinteraction between the chip elements. The relationship of the global chip flow angle and the turning force can be derived based on force equilibrium of each local chip element and theglobal chip. The proposed model has been applied to predict and analyse the turning force inthe three distinct cases, especially in the case of non-free factors of the corner radius and maincutting edge angle. The chip flow in turning may scratch the machined surface, under thecircumstances, the surface will have a poor quality. We investigated the influence of the tooland cutting parameters on the local and global chip flow angle. The results helpmanufacturing engineers to choose the cutting angle, nose radius and cutting depth to controlchip flow direction towards the outside of the workpiece axis. Finally, the tool and cuttingparameter effect on the local geometric and physical parameters along the cutting edge areconsidered as coupled. These local information is important to the optimization of cuttingparameters and the cutting edge geometry.
     The proposed method in this dissertation has been implemented in Matlab7.0. Based on aset of orthogonal cutting tests, the material and friction coefficients are indentified. Predictedresults were compared with experiment results of cutting forces for304stainless steel andfound in reasonable agreement. So this model can be used to analyse the cutting process of thenuclear reactor coolant pump. This model is also validated by the experimental results ofother materials, such as literature results of42CrMo4steel and316L stainless steel, millingexperimental results of45steel. It should be noted that although this work is limited tomilling and turning, the present method also be applied to other machining operations such asdrilling and boring.
引文
[1] Novak C J, Peckner D, Bernstein I M. Handbook of Stainless Steels[M]. New York:McGraw-Hill,1977, pp.4-1–4-7.8.
    [2] Tetal K. Machining of Stainless Steels Handbook[M],9th ed. ASM International,1989, p.681.
    [3] Modern metal cutting: a practical handbook[M]. Sweden: Sandvik-Coromant Co. Inc.,1997.
    [4] Jiang L, Roos A, Liu P. The influence of austenite grain size and its distribution on chipdeformation and tool life during machining of AISI304L[J]. Metallurgical andMaterials Transactions,1997,28(A):2415–2422.
    [5] O’Sullivan D, Cotterell M. Machinability of austenitic stainless steel SS303[J]. Journal ofMaterial Processing Technology,2002,124:153–9.
    [6] Ihsan Korkut, Mustafa Kasap, Ibrahim Ciftci, et al. Determination of optimum cuttingparameters during machining of AISI304austenitic stainless steel[J]. InternationalJournal of Machining Tools and Manufacture,2003,43(3),269-282.
    [7] Chien W T, Chou C Y. The predictive model for machinability of304stainless steel[J].Journal of Material Processing Technology,2002,124:153–9.
    [8]韩荣第,于启勋.难加工材料切削加工[M].北京:机械工业出版社.1996.
    [9]李企芳.难加工材料的加工技术[M].北京:北京科学技术技术出版,1992
    [10]古列维契著.周家宝译.难加工材料切削用量手册[M].上海:上海科学技术出版社,1990.
    [11]胡创国,张定华,汪文虎.难加工材料切削机理研究的新进展[J].力学进展,2004,34(3):373-378.
    [12] Grzesek W. Advanced Machining Processes of Metallic Materials[M]. London: Elsvier,2008.
    [13] Trent E M, Wright P K. Metal Cutting[M]. Boston: Butterworth-Heinemann,2000.
    [14] Kline W A, DeVor I R E, Shareef A. The prediction of surface accuracy in end milling[J].Journal of Engineering for Industry,1982:272-278.
    [15] Sutherland J W, Devor R E. An improved method for cutting force and surface errorprediction in flexible end milling systems[J]. Journal of Engineering for Industry,1986:269-279.
    [16] Budak E, Altintas Y. Peripheral milling conditions for improved dismensional arruracy[J].International Journal of Machine Tool Design and Research,1994,34:907-918.
    [17] Feng H Y, Meng C H. A flexible ball-end milling system model for cutting force andmachining error prediction[J]. Journal of Manufacturing Science and Engineering,1996,118(4):461-479.
    [18] Lim E M, Feng H, Menq C, Lin Z. Prediction of dimensional error for sculptured surfaceproceduction using the ball-end milling process. partⅠ:chip geometry analysis andcutting force prediction[J]. International Journal of Machine Tools and Manufacturing,1995,35:1149-1169.
    [19] Kim G M, Kim B H, Chu C N. Estimation of cutter deflection and form error in ball-endmilling processes[J]. International Journal of machining tools and manufacture,2003,43(9),917-924.
    [20]李初晔,王焱,孟月梅.外圆车削过程中的零件变形分析[J],航空制造技术,2009,20:83-88.
    [21] Altintas Y, Montgomery D, Budak E. Dynamic peripheral milling of flexible structures[J].Journal of Engineering for Industry,1992,114:137-145.
    [22] Budak E, Montgomery D. Modeling and avoidance of static form errors in peripheralmilling of plates[J]. International journal of machine tools and manufacturing,1995,35:459-476.
    [23] Ratchev S, Liu S, Huang W, et al. Milling error predition and compensation in machinigof low-rigidity parts[J]. International Journal of Machine Tools and Manufacturing,2004,44:1629-1641.
    [24]万敏,张卫红.铣削过程中误差预测与补偿技术研究进展[J].航空学报,2008,5(29):1340-1349.
    [25] Ikua B W, Tanaka H, Obata F, Sakamoto S. Prediction of cutting forces and machiningerror in ball end milling of curved surfaces-Ⅰ t heoretical analysis[J]. Precisionengineering,2001(25),266-273.
    [26] Yazar Z, Koch K F, Merrick T, Altan T. Feed rate optimizaition based on cutting forcecalculations in3-axis milling of dies and molds with sculpture surfaces[J]. InternationalJournal of Machining Tools and Manufacture,1994,34(3),365-377.
    [27]石磊,张英杰,李宗斌,张毅.切削力基本恒定约束下球头铣刀加工自由曲面切削参数的优化[J].中国机械工程,2008,19(4):2733-2781.
    [28]张晓辉.基于切削过程物理模型的参数优化及其数据库实现[博士学位论文].上海:上海交通大学,2009.
    [29]潘永智,艾兴,唐志涛,赵军.基于切削力预测模型的刀具几何参数和切削参数优化[J].中国机械工程,2008,19(4):428-431.
    [30] Tounsi N, Elbestawi M A. Optimized feed scheduling in three axes machining[J].International Journal of Machine Tools and Manufacture,2003,43(3),269-282.
    [31] Desai K A, Rao P V M. Effect of direction of paramerization on cutting forces andsurface error in machining curved geometryies[J]. International Journal of MachineTools and Manufacture,2008,48:249-259.
    [32]吴宝海,罗明,张莹,等.自由曲面五轴加工刀具轨迹规划技术的研究进展[J].机械工程学报,2008,44(10):9-18.
    [33] Lopez de Lacalle L N, Lamikiz A, Sanchez J A, Salgado M A. Toolpath selection basedon the minimum deflection cutting forces in the programming of complex surfacesmilling[J]. International Journal of Machine Tools and Manufacture,2004,44(11),1511-1526.
    [34] Feng H Y, N Su. Integrated tool path and feed rate optimization for the finishingmachining of3D plane surfaces[J]. International Journal of Machine Tools andManufacture,2000,40(11),1557-1572.
    [35]张大卫,袁大春,杨志永.基于填充曲线刀具路径的数控铣削过程物理仿真[J].中国机械工程,2001,12(4):379-382.
    [36] Bouzakis K D, Aichouh P, Efstathiou K. Determination of the chip geometry, cuttingforce and roughness in free form surfaces finishing milling with ball end tools[J].International Journal of machine tools and manufacturing,2003,43:499-514.
    [37]丁汉,毕庆贞,朱利民,等.五轴数控加工的刀具路径规划与动力学仿真[J].中国科学(E辑),2010,55(25):2510-2519.
    [38] Komanduri, R., Hou, Z.B.,2000. Thermal modeling of the metal cutting process. Part I.temperature rise distribution due to shear plane heat source[J]. International Journal ofMechanical Sciences,42:1715–1752.
    [39] Lazoglu I, Altintas Y. Prediction of tool and chip temperature in continuous andinterrupted machining[J]. International Journal of Machine Tools and Manufacture,2002,42(9):1011-1022
    [40] Chung-Shin Chang. Prediction of the cutting temperatures of stainless steel withchamfered main cutting edge tools[J]. Journal of Materials Processing Technology,2007,190:332–341
    [41] Abukhshim N A, Mativenga P T,.SheikhHeat M A. Generation and TemperaturePrediction in Metal Cutting: a review and implications for high speed machining[J].International Journal of Machine Tools and Manufacture,2006,46:782–800
    [42]张士军刘战强刘继刚.用解析法计算高速切削单涂层刀具瞬态温度分布[J].机械工程学报,2010,46(1):187-198
    [43]成刚虎,彭炎午,姚国兰.刀具磨损的切削力监测[J].西北工业大学学报,1994,12(3):482-487.
    [44]张家梁,李蓓智,庞静珠.刀具磨损过程中的切削力特征研究[J].制造技术与机床,2010,5:111-114.
    [45] Parro J, Hanninen H, Kauppinen V. Tool wear and machinability of X5CrMnN1818stainless steels[J]. Journal of Materials Processing Technology,2001,119:14–20.
    [46] Agrawal S, Chakrabarti A K, Chattopadhyay A B. A study of the machining of castaustenitic stainless steels with carbide tools[J]. Journal of Material ProcessingTechnology,1995,52:610–620.
    [47]路冬.航空整体结构件加工变形预测及装夹布局优化[博士学位论文].济南:山东大学,2007.
    [48] NEE A Y C, WHYBREW K, SENTHIL K A. Advanced fixture design for FMS[M].London: Springer-Verlag,1995.
    [49]融亦鸣,张发平,卢继平.现代计算机辅助夹具设计[M].北京:北京理工大学出版社,2010.
    [50]董辉跃,柯映林.铣削加工中薄壁件装夹方案优选的有限元模拟[J].浙江大学学报,2004,38(1):17-21.
    [51]秦国华,吴竹溪,张卫红.薄壁件的装夹变形机理分析与控制技术[J].机械工程学报,2007,43(4):211-223.
    [52] Stori J A, Wright P K, King C. Integration of process simulation in machining parameteroptimization[J]. Journal of Manufacturing Science and Engineering,1999,121:134-143.
    [53] Ivester, R W, Kennedy, M, Davies, M, ea al. Assessment of machining models: progressreport[J]. Machining science and technology,2000,4:511–538.
    [54]李峥,刘强.中低速数控铣削参数优化技术研究及应用[J].航空制造技术,2011,5:64-73.
    [55] van Luttervelt C A, Childs T H C. Present situations and future trends in modelling ofmachining operations[J]. Process Report of the CIRP working Group Modelling ofMachining Operations, CIRP Annals,1998,47(2):587-626.
    [56] Merchant M G, Dornfeld D A, Wright P K. Manufacturing-its evolution and future[J].Transactions of NAMRI/SME,2005,33:211-218.
    [57] van Luttervelt C A. Typology of models and simulation methods for machiningoperations[J]. Machining Sience and Technology,2001,119:655-662
    [58]张臣.数控铣削加工物理仿真关键技术研究[博士学位论文].南京:南京航空航天大学,2006.
    [59] Byrne G, Dornfeld D, Denkena B. Advancing cutting technology[J]. Annals of the CIRP,2003,52(2):483-507.
    [60]国家自然科学基金委员会工程与材料科学部.机械工程科学发展战略报告[M].北京,科学出版社,2010.
    [61] Merchant M E. Mechanics of the metal cutting process, Ⅰ. orthogonal cutting[J].Journal of Applied Physics,1945,16:318-324.
    [62] Molinari A, Moufki A. The Merchant’s model of orthogonal cutting revisited: A newinsight into the modeling of chip formation[J]. International Journal of MechanicalSciences,2008,50:124–131.
    [63] Lee E H, Shaffer B W. The Theory of plasticity applied to the problem machining[J].Journal of Application Mechanics,1951,18:405-413.
    [64] Oxley P L B. Mechanics of Machining[M]. Chichester: Ellis Horwood,1989.
    [65] Arsecularatne J A, Mathew P. The Oxley modeling approach, its application and futurederections[J]. Machining Science and technology,2000,4(3):363-397.
    [66] Adibi-Sedeh A H, Madhavan V, Bahr B. Extension of Oxley’s analysis of machining touse different material models[J]. Journal of manufacturing science and engineering,2003,125,656-666.
    [67] Lalwani D I, Mehta N K, Jain P K. Extension of Oxley’s predictive machining theory forJohnson and Cook flow stress model[J]. Journal of materials processing technology,2009,209:5305-5312.
    [68] Dudzinski D, Molinari A. A modelling of cutting for viscoplastice materials[J].International Journal of Mechanical Sciences.1997,39(4):369-389.
    [69] Ozlu E, Budak E, Molinari A. Thermomechanical modeling of orthogonal cuttingincluding the effect of stick-slide regions on the rake face[C], Proceedings of the10thCIRP International Workshop on Modeling of Machining Operations, Calabria, Italy,2007.
    [70]段春争.正交切削高强度钢绝热剪切行为的微观机理研究[博士学位论文].大连:大连理工大学,2005.
    [71]李伟,陈文斌,刘宁,等.基于不同刀具前角金属直角切削的数值模拟[J].中国机械工程,2007,17:295-298.
    [72]付秀丽,艾兴,刘战强,等.高速切削加工航空铝合金7050-T7451剪切角模型研究[J].中国机械工程,2007,18(2):220-224.
    [73] Merchant M E. Basic Mechanics of the metal cutting process[J]. Journal of AppliedMechanics,1944, pp: A-168-175.
    [74] Shaw M C, Cook N H, Simth P A. The mechanics of three-dimensinal cuttingoperations[J]. Transactions of the ASME,1952,74:1055-1064.
    [75] Lin G C I, Oxley P L B. Mechanics of oblique machining: predicting chip geometry andcutting forces from work material properties and cutting conditions[J]. Proceedings ofthe Institution of Mechanical Engineers,1972,186:813-820.
    [76] Lin G C I, Mathew P, Oxley P L B, Watson A R. Mathew P. Predicting cutting forces foroblique machining conditions[J]. Proceedings of the Institution of Mechanical Engineers,1982,196:141-148.
    [77] Usui E, Hirota A, Masuko M. Analytical predictions of three dimensional cutting processPart1: basic cutting model and energe approach[J]. Journal of Engineering for Industry,1978,100:222-228.
    [78] Morcos W A. A slip line field solution of the free oblique continuous cutting problem inconditions of light friction at chip-tool interface[J]. Journal of Engineering for Industry,1980,102:310-314.
    [79] Armarego E J A, Whitfield R C. Computer based modelingof popular machiningoperations for force and power predictions[J]. Annals of the CIRP,1985,34:65-69.
    [80] Shamoto E, Altintas Y. Prediction of shear angle in cutting with maximum shear stressand minimum energe principles[J]. Journal of Manufacturing Science and Engineering,1999,121:399-407.
    [81] Moufki A, Dudzinski D, Molinari A, Rausch M. Thermoviscoplastic modelling ofoblique cutting forces and chip flow prediction[J]. International Journal of MechanicalSciences,2000,42:1205-1232.
    [82] Moufki A, Devillez A, Dudzinski D, Molinari A.Thermomechanical modelling ofoblique cutting and experimental validation[J]. International Journal of Machine Toolsand Manufacturing,2004,44:971-989.
    [83] Budak E, Ozlu E. Development of a thermomechanical cutting process model formachining process simulations[J]. CIRP-Manufacturing Technology,2008,57(1):97-100.
    [84]张维纪,李加种,钱肇琬等.斜角切削流屑角的研究[J].浙江大学学报,1987.
    [85]顾立志,卢碧红,马金东.斜角切削剪切角的计算与测定[J].机械科学与技术,1996,15(3):423-426.
    [86]白万金,吴红兵,董辉跃.斜角切削过程的三维热—弹塑性有限元分析[J].计算机集成制造系统,2009,15(5):1010-1015.
    [87] Smith S, Tlusty J. An overview of modeling and simulation of the milling process[J].Journal of Engineering for Industry,1991,113(2):169-175.
    [88] Martelloti M E. Analysis of the milling process[J]. Transactions of the ASME,1941,63:677-700.
    [89] Koenigsberger F, Sabberwal A. An investigation into the cutting force pulsations duringmilling operations[J]. International Journal of Machine Tool Design and Research,1961,1:15-31.
    [90] Kline W A, DeVor R E. The effect of runout on cutting geometry and forces in endmilling[J]. International Journal of Machine Tool Design and Research,1983,23:123-140.
    [91] Sutherland J W, Devor R E. An improved method for cutting force and surface errorprediction in flexible end milling systems[J]. Journal of engineering for industry,1986:269-279.
    [92] Yang M Y, Park H D. The prediction of cutting forces in ball-end milling[J]. InternationalJournal of Machine Tools and Manufacture,1991,31:45-54.
    [93] Feng H Y, Menq C H. The prediction of cutting forces in the ball-end millingprocess-Ⅰ.model formulation and model building procedure[J]. International Journal ofMachine Tools&Manufacture,1994,34:697-710.
    [94] Yucesan G, Altintas Y. Improved modelling of cutting force coefficients in peripheralmilling[J]. International Journal of Machine Tools&Manufacture,1994,34:473-487.
    [95] Budak E, Altintas Y, Armarego E J A. Prediction of milling force coefficient fromorthogonal cutting data[J]. Journal of Manufacturing Science and Engineering,1996,118:216-224.
    [96] Lee P, Altinas Y. Prediction of ball-end milling forces from orthogonal cutting data[J].International Journal of Machine Tools and Manufacture,1996,36:1059-1072.
    [97] Altintas Y, Lee P. Mechanics and dynamics of ball end milling[J]. Journal ofManufacturing Science and Engineering,1998,120:684-692.
    [98] Engin S, Altinas Y. Mechanics and of general milling cutters. part Ⅰ: helical end mills[J].International Journal of Machine Tools and Manufacture,2001,41:2195-2212.
    [99] Yun W S, Cho D W. Accurate3-D cutting force prediction using cutting conditionindependent coefficients in end milling [J]. International Journal of Machine Tools andManufacture,2001,41:463-478.
    [100] Yoon M C, Kim Y G. Cutting dynamic force modeling of endmilling operation [J].Journal of materials Processing Technology,2004,155:1383-1389.
    [101] Omar O E E K, EI-Wardany T, Ng E, et al. An improved cutting force and surfacetopography prediction model in end milling[J]. Journal of Materials ProcessingTechnology,2009,209:2532-2544.
    [102] Xu L, Schueller J K, Tlusty J. A simplified solution for the depth of cut in muti-pathball end milling[J]. Machining Science and Technology,1998,2(1):57-75.
    [103] Kim G M, Cho P J, Chu C N. Cutting force predition of sculptured surface ball-endmilling using Z-map[J]. International Journal of Machine Tools and Manufacture,2000,40:277-291.
    [104] Lazoglu I. Sculpture surface machining:a generalized model of ball-end mill forcesystem[J]. International Journal of Machine Tools and Manufacture,2003,43:453-462.
    [105] Lamikiz A, Lopez de lacalle L N, Sanchez J A, et al. Cutting force estimation inSculpture surface milling[J]. International Journal of Machine Tools and Manufacture,2004,44:1511-1526.
    [106] Becze C E, Elbestawi M A. A chip formation based analytic force model for obliquecutting[J]. International Journal of Machine Tools and Manufacture,2002,42:529-538.
    [107] Imed Z, Victor S. A force-temperature model including a constitutive law for dry highspeed milling of aluminium alloys [J]. Journal of Materials Processing Technology,2009,209:2532-2544.
    [108] Li H Z, Zhang W B, Li X P. Modelling of cutting forces in helical end millingusing a predictive machining theory[J]. International Journal of Mechanical Sciences,2001,43:1711–1730.
    [109] Fontaine M, Devillez A, Moufki A, Dudzinski D. Predictive force model for ball-endmilling and experimental validation with a Wavelike Form Machining Test[J].International Journal of Machine Tools and Manufacture,2006,46:367-380.
    [110] Said M B, Sai K. An investigation of cutting forces in machining with worn ball-endmill[J]. Journal of Materials Processing Technology,2009,209:3198-3217.
    [111] Becze C E, Llayton P, Chen L, et al. High-speed five-axis milling of hardened toolsteel[J]. International Journal of Machine Tools and Manufacture,2000,40:869-885.
    [112] Zhu R, Kapoor S G, Devor R E. Mehanistic modeling of the ball end milling process formulti-axis machining of free-form surfaces[J]. Journal of Manufacturing Science andEngineering,2001,123:369-379.
    [113] Fussell B K, Jerard R B, Hemmett, J G. Modeling of cutting geometry and forces for5-axis sculptured surface machining[J]. Computer-Aided Design,2003,35:333-346.
    [114]王素玉,艾兴,赵军,等.高速立铣3Cr2Mo模具钢切削力建模及预测[J].山东大学学报,2006,36(1):1-5.
    [115]万敏,张卫红.薄壁件周铣切削力建模与表面误差预测方法研究[J].航空学报,2005,26(5):598-603.
    [116]成群林,柯映林,董辉跃.航空铝合金铣削加工中切削力的数值模拟研究[J].航空学报,2006,27(4):724-727.
    [117]韩雄,刘强. PH13-8Mo插铣铣削力建模与分析[J].航空制造技术,2010,5:72-80.
    [118] Parakkal G, Zhu R, Kappor S G, DeVor R E. Modeling of turning process cutting forcesfor grooved tools[J]. International Journal of Machine Tools Manufacture,2002,42:179–191.
    [119] Colwell L V. Predicting the angle of chip flow for single-point cutting tools[J].Transactions of the ASME,1954,76,199–204.
    [120] Okushima K, Minato K. On the behaviour of chip in steel cutting[J], Bulletin Japanesesociety mechanical engineering,2(1959),58-64.
    [121] Hu R S, Mathew P,. Oxley P L B, Young H T. Allowing for end cutting edge effects inpredicting forces in bar turning with oblique machining conditions[J], Proceedings of theInstitution of Mechanical Engineers,1986,200(C2),89–99.
    [122] Young H T, Mathew P, Oxley P L B. Allowing for nose radius effects in predicting thechip flow direction and cutting forces in bar turning[J], Proceedings of the Institution ofMechanical Engineers,1987,201(C3),213–226.
    [123] Wang J, Mathew P. Development of a general tool model for turning operations basedon a variable flow stress theory[J]. International Journal of Machine Tools Manufacture,1995,35:71–90.
    [124] Wang J. Development of a chip flow model for turning operations[J]. InternationalJournal of Machine Tools Manufacture,2001,41:1265–1274.
    [125] Arsecularatne J A, Mathew P, P.L.B. Oxley. Prediction of chip flow direction andcutting forces in oblique machining with nose radius tools[J]. Proceedings of theInstitution of Mechanical Engineers,1995,209:305–315.
    [126] Arsecularatne J A, Fowle R F, Mathew P. Nose radius oblique tool: cutting force andbuilt-up edge prediction[J]. International Journal of Machine Tools Manufacture,1996,36:585–595.
    [127] Arsecularatne J A, Fowle R F, Mathew P. Prediction of chip flow direction, cuttingforces and surface roughness in finish turning[J]. Journal of Manufacturing Science andEngineering,1998,120:1–12.
    [128] Endres W J, Waldorf D J. The importance of considering size effect along the cuttingedge in predicting the effective lead angle for turning[J]. Transactions of NAMRI/SME,1994,22:65–72.
    [129] Redetzky M, Balaji A K, Jawahir I S. Predictive modeling of cutting forces and chipflow angle in machining with nose radius tools[C]. The second CIRP internationalworkshop on modeling of machining operations, Nantes, France,1999, January, pp.160–180.
    [130] Armarego E J A, Samaranayake P. Performance prediction models for turning withrounded corner plane faced lathe tools. I. Theoretical development[J]. MachiningScience and Technology,1999,3:143–172.
    [131] Seethaler T J, Yeelowley. An upper-bound cutting model for oblique cutting tools with anose radius[J]. International Journal of Machine Tool Design Research,1997,37(2):119-134.
    [132] Adibi-Sedeh A H, Madhavan V, Bahr B. Upper bound analysis of oblique cutting withnose radius tools[J]. International Journal of Machine Tools Manufacture,2002,42:1081-1094.
    [133] Adibi-Sedeh A H, Madhavan V, Bahr B. Upper bound analysis of oblique cutting:Improved method of calculating the friction area[J]. International Journal of MachineTools Manufacture,2003,43:485-492.
    [134]师汉民.金属切削理论与应用新探[M].武汉:华中科技大学出版社,2003.
    [135] Molinari A, Moufki A. A new thermomechanical model of cutting applied to turningoperations.part I. theory[J]. International Journal of Machine Tools Manufacture,2005,45:166-80.
    [136] Moufki A, Molinari A. A new thermomechanical model of cutting applied to turningoperations. part II. parametric study[J]. International Journal of Machine ToolsManufacture,2005,45:181-193.
    [137] Fang N. An improved model for oblique cutting and its application to chip-controlresearch[J]. Journal of Materials Processing Technology,1998,79:79-85.
    [138] Ehmann K F, Kapoor S G, deVor R E, ea al. Machining process modeling: a review[J].Journal of Manufacturing Science and Engineering,1997,119:655-662.
    [139]胡创国,张定华,任军学,杨蕾.切削力建模方法综述[J].力学进展,2006,36(4):564-570.
    [140] Nakayama K, Arai M, Takei K. Semi-empirical equations for three components ofresultant cutting force[J]. Annals of the CIRP,1983,32:33-35.
    [141] Brown C A. A practical method for estimating machining forces from tool-chip contactarea[J]. Annals of the CIRP,1983,32:91-93.
    [142]袁哲俊.金属切削实验技术[M].上海:上海科学技术出版社,1988.
    [143] Kudo, H. Some new slip-line solutions for two dimensional steady state[J].International Journal of Mechanical Sciences,1965,7:43–55.
    [144] Dewhurst, P. On the non-uniqueness of the machining process[J]. Proceedings of theRoyal Society,1978, Ser. A360:587–610.
    [145] Fang, N. Slip line model of machining with round edge tool—Part I: new model andtheory[J]. Journal of the Mechanics and Physics of Solids,2003,51:715–742.
    [146] Kienzle O. Prediction of forces and power in machine tools for metal-cutting[C].VDI-Z,1994, Duesseldorf, pp:299-305.
    [147] Mackerle J. Finite-element analysis and simulation of machining: a bibiliography(1976-1996)[J]. Journal of Materials Processing Technology,1999,86(1-3):17-44.
    [148] Mackerle J. Finite-element analysis and simulation of machining: an addendum, Abibiliography (1996-2002)[J]. International Journal of Machine Tools and Manufacture,2003,2003(43):103-114.
    [149] Strenkowski J S, Carrol J T. A finite element model of orthogonal metal cutting[J].Journal of Engineering For Industry,1985,107:347-354.
    [150] Marusoch T D, Ortiz M. Modelling and simulation of high-speed machining[J].International Journal for Numerical Methods in Engineering,1995,38:3675-3694.
    [151] Movahhedy M, Gadala M S, Altintas Y. Simulation of the orthogonal metal cuttingprocess using an arbitrary Lagrangian-Eulerian finite-element method[J]. Journal ofMaterials Processing Technology,2000,103:267-275
    [152] zel T. The influence of friction models on finite element simulations of machining[J].International Journal of Machine Tools and Manufacture,2006,46:518–530.
    [153] Limido J, Espinosa C, Salauna M, et al. SPH method applied to high speed cuttingmodelling[J]. International Journal of Mechanical Sciences,2007,49:898-908.
    [154]宿崇,唐亮,侯俊铭,等.基于FEM与SPH耦合算法的金属切削仿真研究[J].系统仿真学报,2009,21(16):5002-5005.
    [155]邓文君,夏伟,周照耀.钝圆刀刃切削的有限元模拟[J].工具技术,2008,39(8):17-21.
    [156]罗翔,黄华.正交切削切削刃钝圆上分流点的研究[J].广东工业大学学报,1997,14(1):76-81.
    [157] Waldorf D J, DeVor, R E, Kapoor S G. A slip-line field for ploughing during orthogonalcutting[J]. Journal of Manufacturing Science and Engineering,1998,120(4):693-699.
    [158] Komanduri R, Chandrasekaran N, Raff L M. Effect of tool geometry in nanometriccutting: a molecular dynamics simulation approach[J]. Wear,1998,219:84-97.
    [159] Fang N, Fang G. Theoretical and experimental investigations of finish machining with arounded edge tool[J]. Journal of Materials Processing Technology,2007,191:331-334.
    [160] Kim K W, Lee W Y, Sin H C. A finite-element analysis of machining with the edgeconsidered[J]. Journal of Materials Processing Technology,1999,86:45-55.
    [161] Waldorf D J. A simplified model for ploughing forces in turning[J]. Journal ofManufacturing processes,2006,8(2):76-82.
    [162] Basuray P K, Misra B K, Lal G K. Transition from ploughing to cutting during machingwith blunt tools[J]. Wear,1977,43:341-349.
    [163] Luri K, Melkote S N. Finite element analysis of the influence of tool edge radius onsize effect in orthogonal micro-cutting process[J]. International Journal of MechanicalSciences,2007,49:650-660.
    [164]赵清亮,陈明君,梁迎春,等.金刚石车刀前角与切削刃钝圆半径对单晶硅加工表层质量的影响[J].机械工程学报,2002,38(12):54-59.
    [165]孙雅洲,孟庆鑫,韩丽丽等.微细铣削应力场和温度场的有限元模拟[J].现代制造工程,2008,12::66-69.
    [166] Shaw M C. Metal Cutting Principles[M]. Oxford: Oxford University Press,1984.
    [167] Astakhov V P, Osman M O M, Hayajneh M T. Re-evaluation of the basic mechanics oforthogonal metal cutting: velocity diagram, virtual work equation, and upper boundtheorem[J]. International Journal of Machine Tools and Manufacturing,2001,41:393-418.
    [168] Astakhov V P. Metal Cutting Mechanics[M]. Boca Raton: CRC Press,1998.
    [169] Leopold J. Mechanical and physical models of machining[C], in: Nantes,24-25January,Proceedings of the Second CIRP Wordshop on Modeling of Machining Operations,1999.
    [170] Tounsi N, Vincenti J, Otho A, Elbestawi M A. From the basics of orthogonal metalcutting toward the indentification of the constitutive equation[J]. International Journalof Machine Tools and Manufacturing,2002,42(2):1373-1383.
    [171] Sartkulvan P, Tan T, Soehner J. Flow stress data for finite element simulation in metalcutting: a progress report on madams[J]. Machining Science and Technology,2005,9:271-288.
    [172] Fang N. A new quantitative sensitivity analysis of the flow stress of18engineeringmaterials in machining[J]. Journal of Engineering Material and Technology,2005,9:192-196.
    [173] Johnson W, Mellor P B. Engineering plasticity[M]. New York: John Wiley&Sons,1983.
    [174]陈日曜.金属切削原理[M].北京:机械工业出版社,1993.
    [175]周泽华.金属切削理论[M].北京:机械工业出版社,1992.
    [176] Kececioglu D. Shear strain rate in metal cutting and its effect on shear flow stress[J].Journal of Engineering for Industry,1956,80:159-168.
    [177] Childs T H C. Material property needs in modeling metal machining[C]. Proceedings ofthe1th CIRP international workshop on modeling of machining operations, Atlanta,1998, pp.193-202.造工程,2008,12::66-69.
    [166] Shaw M C. Metal Cutting Principles[M]. Oxford: Oxford University Press,1984.
    [167] Astakhov V P, Osman M O M, Hayajneh M T. Re-evaluation of the basic mechanics oforthogonal metal cutting: velocity diagram, virtual work equation, and upper boundtheorem[J]. International Journal of Machine Tools and Manufacturing,2001,41:393-418.
    [168] Astakhov V P. Metal Cutting Mechanics[M]. Boca Raton: CRC Press,1998.
    [169] Leopold J. Mechanical and physical models of machining[C], in: Nantes,24-25January,Proceedings of the Second CIRP Wordshop on Modeling of Machining Operations,1999.
    [170] Tounsi N, Vincenti J, Otho A, Elbestawi M A. From the basics of orthogonal metalcutting toward the indentification of the constitutive equation[J]. International Journalof Machine Tools and Manufacturing,2002,42(2):1373-1383.
    [171] Sartkulvan P, Tan T, Soehner J. Flow stress data for finite element simulation in metalcutting: a progress report on madams[J]. Machining Science and Technology,2005,9:271-288.
    [172] Fang N. A new quantitative sensitivity analysis of the flow stress of18engineeringmaterials in machining[J]. Journal of Engineering Material and Technology,2005,9:192-196.
    [173] Johnson W, Mellor P B. Engineering plasticity[M]. New York: John Wiley&Sons,1983.
    [174]陈日曜.金属切削原理[M].北京:机械工业出版社,1993.
    [175]周泽华.金属切削理论[M].北京:机械工业出版社,1992.
    [176] Kececioglu D. Shear strain rate in metal cutting and its effect on shear flow stress[J].Journal of Engineering for Industry,1956,80:159-168.
    [177] Childs T H C. Material property needs in modeling metal machining[C]. Proceedings ofthe1th CIRP international workshop on modeling of machining operations, Atlanta,1998, pp.193-202.Manufacturing Science and Engineering,2006,128:119-129.
    [190] Childs T H C, Maekawa K, Obikawa T et al. Metal machining theory and applicion[M].London: Arnold,2000.
    [191]张伯霖.高速切削技术及应用[M].北京:机械工业出版社,2002.
    [192]艾兴.高速切削加工技术[M].北京:国防工业出版社,2003.
    [193] Umbrello D, Saoubi R M, Outeiro J C. The influence of Johnson-Cook materialconstants on finite element simulation of machining of AISI316L steel[J]. InternationalJournal of Machine Tools and Manufacturing,2007,47:462-470.
    [194] Chandrasekaran H, Saoubi R M, Chazal H. Modelling of material flow stress in chipformation process from orthogonal milling and split Hopkinson bar test[J]. MachiningScience and technology,2005,9:131-145.
    [195] Armarego E J A, Brown R H.The Machining of Metals[M]. Prentice-Hall,1969.
    [196] Stabler G V. Fundamental germetry of cutting tools[J]. Proceedings of the Institution ofMechanial Engineers,1951,165:14-21.
    [197] Altintas Y. Manufacturing Automation: Metal Cutting Mechanics, Machine ToolVibrations and CNC Design[M]. London: Cambridge University Press,2000.
    [198]冯志勇,张大卫,黄田.一种新的铣削力模型[J].天津大学学报,1998,31(3):314-320.
    [199]李忠群,刘强. R刀切削力系数辨识及动态切削力建模[J].农业机械学报,2008,4:2007.
    [200]刘敏,景璐璐,安庆龙,陈明.4Cr16Mo模具钢立铣加工过程中的切削力系数[J].上海交通大学学报,2009,43(1):25-28.
    [201] Liu X W, Cheng K, Webb D. Prediction of cutting force distribution and its influence ondimensional accuracy in peripheral milling[J]. International Journal of Machine Toolsand Manufacturing,2002,42:791-800.
    [202]杨叔子.机械加工工艺师手册[M].北京:机械工业出版社,2001.
    [203]田美丽,徐燕申,谢艳.1Cr18Ni9Ti不锈钢斜面铣削力的实验研究[J].机床与液压,2006,8:51-53.
    [204]李艳聪,徐燕申,张连洪.不锈钢立铣切削力试验研究及模型建立[J].制造技术与机床,2008(8):72-75.
    [205]邵军杰,安庆龙,陈明.奥氏体不锈钢平面铣削切削力和表面粗糙度试验研究[J].工具技术,2008,42(2):25-28
    [206]陈刚,陈忠富,陶俊林,等.45钢动态塑性本构参量与验证[J].爆炸与冲击,2005,25(5):451-456.
    [207]刘培德.切削力学新篇[M].大连:大连理工大学出版社,1991.
    [208] Strenkowski J S, Shih A J, Lin J C. An analytical finite element model for predictingthree-dimensional tool forces and chip flow[J]. International Journal of Machine Toolsand Manufacturing,2002,42:723-731.
    [209]陈舜青.对车削钢件时的流屑角的研究[J].机械工程师,1990,5:37-39.
    [210]刘清友,张茂,刘勇.车削流屑角的试验研究[J].机械工程师,1993,5:4-6.
    [211]徐亦红,曲贵明,郑利明,李振加.流屑角变化规律研究[J].哈尔滨科学技术大学学报,1996,20(1):1-5.
    [212]刘旺玉,明冬兰,吴斌.大刃倾角斜角切削流屑角的实验研究[J].机械设计与制造,1999,6:37-39.
    [213] Russell J K, Brown R H. The measurement of chip flow direction[J]. InternationalJournal of Machine Tool Design Research,1966,6:129-138.
    [214] Luk W K. The direction of chip flow in oblique cutting[J]. International Journal ofProduction Research,1972,10(1):67-76.
    [215] Kluft W, K nig W, van Luttervelt C A, Nakayama K, Pekelharing A J. Presentknowledge of chip control[J]. Annals of the CIRP,1979,28(2):441-455.
    [216] Jawahir I S, van Luttervelt C A. Rencent developments in chip control research andapplications[J]. Annals of the CIRP,1983,42:659-693.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700