用户名: 密码: 验证码:
富氧条件下选择性催化丙烯还原氮氧化物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国及全球机动车保有量的增加,机动车尾气排放问题日趋严重,其控制技术也得到不断的发展。由于具有良好的燃油经济性和污染物低排放性,稀薄燃烧汽油机(lean-burn)和柴油机已成为发动机的主流发展方向,而现有的三效催化(TWC)技术对此类发动机排放的氮氧化物(NO_x)还原去除不再有效。选择性催化还原(SCR)技术是目前最有效的去除NO_x的方法之一,其中NH_3-SCR已被成功应用于工业排放等固定源中NO_x的去除。但该技术不适合用于机动车移动源。
     本论文研究了利用汽(柴)油机尾气中本身含有的碳氢化合物(HCs)作为还原剂,并在较低温度下实现择性催化还原(SCR)NO_x的催化剂及反应体系。采用溶胶凝胶法、水热合成法以及湿式浸渍法等方法分别制备了贵金属负载Pt/TiO_2、金属氧化物SnO_2/TiO_2以及介孔分子筛Pt/SBA-15(Pt/Al-SBA-15)三大类催化剂,通过XRD、TEM、BET、XPS、NMR等分析表征方法及低温吸附(ADS)、程序升温脱附(TPD)、程序升温氧化(TPO)、选择性催化还原反应(SCR)等催化剂活性评价方法,分别考察比较了C_3H_6-SCR催化活性,并结合原位傅立叶变换红外光谱(in situ DRIFTS)表征,初步揭示了富氧条件下Pt/TiO_2、SnO_2/TiO_2催化剂上C_3H_6-SCR可能的反应机理。
     主要工作和结论如下:
     1、当载体TiO_2负载了活性组分后(Pt和SnO_2),对NO_x的吸附能力明显增强,NO在催化剂上除了物理吸附外,还伴有化学吸附(化学反应);但是载体及催化剂对还原剂C_3H_6的吸附则相对较弱。
     2、活性组分的负载显著提高了载体对NO的吸附能力,也相应地增加了NO-TPD的脱附量。在NO-TPD低温段出现的NO脱附峰,主要来自于载体对NO的物理吸附以及NO在贵金属表面的解离吸附;而高温段脱附的NO和NO_2则来自于催化剂表面硝酸盐的分解。催化剂的NO吸附能力及其NO-TPD脱附量的大小,是由载体的BET比表面积等物理化学特性、以及活性组分本身特性及分散度等多方面因素共同决定的。
     3、当载体负载了活性组分Pt后(Pt/TiO_2,Pt/SBA-15),催化剂的NO/C_3H_6-TPO氧化活性显著增强,催化剂的优异低温催化氧化活性和其C_3H_6-SCR活性密切相关,且NO和C_3H_6在SCR反应中的转化相比于在TPO中的转化均受到抑制;而SnO_2/TiO_2样品在TPO以及SCR反应中的相关活性均在中高温区域达到最大值(>300℃),其TPO活性与SCR活性也相关。
     4、在所有Pt/TiO_2系列催化剂中,PT500(0.5%Pt/TiO_2,溶胶凝胶制备TiO_2-焙烧温度500℃)显示出最佳的SCR活性,在180℃可以同时实现47.03%的最大NO_x转化效率和100%的C_3H_6转化率,催化剂的SCR活性随反应温度呈现出“火山口”变化规律。最佳的催化活性与催化剂对NO_x的强烈吸附及其较大的Pt分散度、优异的TPO活性以及锐钛矿晶型有关;金属氧化物Mn_2O_3、CeO_2和Co3O4与PT500催化剂机械混合可以提高SCR活性,协同效应较明显,可能是由于这部分金属氧化物强化了HC-SCR反应中间物种的生成,因而活性得到提高。
     5、SnO_2/TiO_2催化剂在中高温区域具有最大NO_x转化效率。5%SnO_2/TiO_2催化剂在320℃时可以实现40.3%的最大NO_x转化效率及280℃时实现100%的C_3H_6转化率。该催化剂和Pt系催化剂的反应温度区间及活性的差异主要取决于活性组分本身特性。XRD和XPS分析结果表明,活性组分SnO_2负载到T500(溶胶凝胶制备TiO_2-焙烧温度500℃)载体后并没有形成其他复合氧化物。
     6、Pt/SBA-15催化剂具有优异的低温SCR活性,0.5%Pt/SBA-15在140℃可以同时实现80.1%的最大NO_x转化效率和87.04%的C_3H_6转化率,PtO_2可能是该催化剂的主要活性位。该催化剂具有较宽的活性窗口,在相对高温区域(>300°C)仍然具有60%左右的NO_x转化率;适量的Al掺入SBA-15分子筛后,催化剂的NO_x转化效率得到提高,主要是由于进入分子筛骨架的四配位AlO4引起催化剂表面的酸性增强所致。
     7、提高O_2浓度和还原剂C_3H_6浓度均能提高NO_x最大转化效率。活性组分存在最佳负载量:贵金属Pt的最佳负载量为0.5%,金属氧化物SnO_2的最佳负载量为5%;该催化剂具有优良的催化稳定性和结构稳定性。
     8、通过原位红外分析(in situ DRIFTS),对PT500和SnO_2/TiO_2催化剂上C_3H_6-SCR可能的反应机理做了初步探讨。研究结果表明,两种催化剂上C_3H_6-SCR反应均可以归属为硝酸盐反应机理,进一步结合反应物共吸附、SCR反应以及分步反应的红外图谱,分析可知,PT500上主要是双齿硝酸盐参与反应,而SnO_2/TiO_2催化剂上主要是桥式和单齿硝酸盐参与SCR反应。C_3H_6和NO的活化是该反应重要的起始步骤。
With the increase of the motor vehicles, the problems caused by exhaust gaspollution are being much more serious, and also the emission control technology hasbeen developed dramatically. However, the traditional three-way catalysts (TWC) arenot effective for the removal of exhausts emitted from lean-burn engines and dieselvehicles. Alternatively,selective catalytic reduction (SCR) of NO_xis one of the mosteffective methods for NO_x removal, and NH_3-SCR technique has already beenapplied into the removal of NO_x emitted stationary source successfully, which isunsuitable for the removal of NO_x emitted from mobile source.
     Selective catalytic reduction by hydrocarbons (HCs, a natural componentalready present in combustion exhaust) is an effective and convenient techniquewhich can remove both pollutants simultaneously. In this work, the oxygen-rich,low-temperature and low-concentration vehicle exhaust was simulated in lab scale. Aseries of catalysts were prepared for C_3H_6-SCR by sol-gel, hydrothermal andwet-impregnation methods, including Pt/TiO_2, SnO_2/TiO_2and Pt/SBA-15(Pt/Al-SBA-15). The prepared catalysts were characterized by means of XRD, BETsurface area, TEM, NMR, XPS and evaluated by adsorption (ADS), temperatureprogrammed desorption (TPD), temperature programmed oxidation (TPO), selectivecatalytic reduction (SCR),NH_3-TPD and in situ DRIFTS techniques. The main resultsand conclusions are summarized as follows:
     1. The NO_xadsorption ability of the support was enhanced significantly afterimpregnation of active components (Pt and SnO_2), in that case, the adsorptionprocess of NO_xhappened on catalysts not only include physical adsorption, butalso chemical adsorption. In the meantime, both the supports and catalysts hadlimited adsorption capacity of C_3H_6, indicating that main influence factor of propene adsorption depends on the physiochemical properties of supports.
     2. Impregnation of active components enhanced the NO_xadsorption abilitysignificantly as well as the NO_xdesorption amounts during TPD process. The NOdesorption peaks appeared in the low temperature range could be ascribed tophysical adsorption of NO and the dissociative adsorption of NO, whereas the NO_xdesorption peaks displayed in the high temperature range could be assigned to thedecomposition of nitrate species formed on the catalysts surface. The NO-ADScapacity and NO-TPD amounts depends on the physiochemical properties ofsupports (e.g., BET area, acidic and basic properties), as well as the activecomponents natural properties.
     3. It can be concluded that the Pt loading (Pt/TiO_2,Pt/SBA-15) improved thesamples oxidation activities in the TPO processes of NO to NO_2and C_3H_6to CO_2in low temperature range markedly, which correlates well with their SCRactivities. The competitive reaction of reactants (C_3H_6and NO) and intermediateswith the active oxygen species on catalyst surface (e.g., Pt-O, adsorbed oxygen)resulted in mutual inhibitition for the oxidation of NO and C_3H_6in SCR reaction.The SnO_2/TiO_2catalyst reached its maximum NO_xreduction efficiency at relativehigher temperature(>300℃),which correlates well with its NO/C_3H_6-TPOactivity as well.
     4. Among all Pt/TiO_2samples, PT500exhibited the best NO_xconversion efficiencyof47.03%and100%C_3H_6conversion simultaneously at180℃under the standardreaction condition,the SCR activity displayed a “volcano shape” variation versustemperature. This enhanced activity of PT500may be due to the strongest NO_xadsorption capacity,the outstanding oxidation activities in TPO process and thehighest Pt dispersion together with its anatase phase. Promotive effect of MOx(M=Mn, Ce, Co) mechanically mixed with PT500on SCR activity was observed,which might be associated with the enhancement formation of intermediatespecies.
     5. Nevertheless, the SnO_2/TiO_2sample showed maximum40.3%NO_xreduction at 320℃and100%conversion of C_3H_6at280℃, respectively. The difference ofcatalytic performances between Pt/TiO_2and SnO_2/TiO_2correlates well withthe natural properties of active components themselves. The XRD and XPSresults exhibited that SnO_2was loaded onto the TiO_2support and no othercomposite oxide was formed.
     6. The0.5%Pt/SBA-15sample achieved markedly high80.1%NO_xreduction and87.04%C_3H_6conversion simultaneously at140℃. The XPS results suggested thatPt, PtO and PtO_2were all presented on the catalyst, whereas PtO_2species mightplay a role as main active site. The incorporation of appropriate amount Al intoSBA-15improved catalytic performance, which could be ascribed to theenhancement of catalyst surface acidity caused by tetrahedrally coordinated AlO4.
     7. Higher concentrations of O_2and C_3H_6led to higher NO_xconversion efficiencies.Higher amount of active components loading also favored NO_xconversion, but anoptimum content was observed. For Pt the optimal amount was0.5%, whereas5%was for SnO_2. In addition, the synthesized catalysts possessed good catalyticstability and physical stability.
     8. From the in situ DRIFTS spectra obtained in C_3H_6-SCR for PT500and SnO_2/TiO_2,it could be deduced that both samples could be ascribed to nitrates reactionmechanism. However, according to the in situ DRIFTS spectra of coadsorption ofreactants, SCR and stepwise reaction, it was obvious that bidentate nitrates weremore active than other kinds of nitrates and readily participating in C_3H_6-SCR onPT500catalysts, whereas bridged and monodentate nitrates were believed to bemore reactive and readily involved in C_3H_6-SCR on SnO_2/TiO_2catalyst. Theinitial activations of NO and C_3H_6were crucial steps in the SCR reaction.
引文
[1] Bosch H,Janssen F,Formation and control of nitrogen oxides.CatalysisToday[J],1988,2(4):369-531.
    [2] Taylor K C, Nitric oxide catalysis in automotive exhaust systems.CatalysisReviews Science&Engineering[J],1993(35):457-481.
    [3] Armor J N, Environmental catalysis.Applied Catalysis B: Environmental[J],1992(1):221-256.
    [4]郝吉明,马广大.《大气污染控制工程》[M],高等教育出版社,2002
    [5]《2010年全国环境统计年报》国家环境保护部网站
    [6] Sounak Roy, Hegde M S, Madras G. Catalysis for NOxabatement. AppliedEnergy[J],2009(86):2283–2297.
    [7]常志鹏.2008年中国汽车产量将冲击1000万辆大关.新华网2008-1-21
    [8]贺泓,李俊华,何洪,上官文峰,胡春等著,《环境催化-原理及应用》[M],科学出版社,2008
    [9] The world health report2002-Reducing Risks, P.H.L., World Health organization,Geneva, Switzerland,2002.
    [10]冯志宏,吕保和.低温等离子体净化汽车尾气中NO的研究.《环境污染与防治》[J],2005(5):57-60.
    [11] Xie X, Huang Z, Wang J S, Impact of building configuration on air quality instreet canyon. Atmospheric Environment[J],2005,39(25):4519-4530.
    [12] Bosch H, Janssen F, Catalytic reduction of nitrogen oxides: a review on thefundamentals and technology. Catalysis Today[J],1988.2(4):369-531.
    [13]周承来,吴梦奎.大气铅污染对幼儿健康影响的调查.《环境与健康》,2001.18(4): p.224-226.
    [14] Ambrogio M,Saracco G,Specchia V, Combining filtration and catalyticcombustion in particulate traps for diesel exhaust treatment. ChemicalEngineering Science[J],2001,56(4):1613-1621.
    [15]叶代启.烟气中氮氧化物污染的治理.《环境保护科学》,1999,25(4):1-4.
    [16]张强.《燃煤电站SCR烟气脱硝技术及工程应用》,化学工业出版社,2007
    [17]许春丽,李保新.日本大气污染控制对策及现状.《环境科学动态》,2001,(3):33-36.
    [18] GB13223-1996,火电厂大气污染物排放标准.
    [19] GB13223-2003,火电厂大气污染物排放标准.
    [20]《节能减排“十二五”规划》国务院2012年8月6日
    [21] Fritz A, Pitchon V,The current state of research on automotive lean NOxcatalysis.Applied Catalysis B: Environmental[J],1997(13):1-25.
    [22] Liu G, Gao P X, A review of NOxstorage/reduction catalysts: mechanism,materials and degradation studies. Catalysis science and technology[J],2011(1):552-568.
    [23] Walker A P, Blakeman P G, Ilkenhans T, et al., The development and in-fielddemonstration of highly durable SCR catalyst systems. SAE2004-01-0473[J].
    [24] Tsyganok A I,Inaba M, Tsunoda T, et a1., Combined partial oxidation and dryreforming of methane to synthesis gas over noble metals supported on Mg-Almixed oxide. Applied Catalysis A:General[J],2004,275(1-2):149-155.
    [25] Yoshida K, Makino S, Sumiya S, et a1.,Simultaneous reduction of NOx andparticulate emissions from diesel engine exhaust.SAE1989-892046[J].
    [26] Y. Teraoka, K.Nakaao,W.F.Shangguan, et a1.Simultaneous catalytic removal ofnitrogen oxides and diesel soot particulate over perovskite-related oxides.CatalysisToday [J],1996,27:107-113
    [27] W.F. Shangguan,Y. Tetaoka, S. Kagawa.Simultaneous catalytic removal of NOxand diesel soot particulates over ternary AB2O4spinel—type oxides. Appliedcatalysis B: Environmental[J],1996,8:217-227
    [28] W. F.Shangguan, Y.Teraoka, S. Kagawa.Kinetics of soot-O2, soot-NO andsoot-O2-NO reactions over spinel-type CuFe2O4catalyst.Applied catalysis B:Environmental[J],1997,12:237-247
    [29] Francke K.-P., Miessner H, Rudolph R, Plasmacatalytic processes forenvironmental problems. Catalysis Today[J],2000(59):411–416.
    [30] Miessner H, Francke K.-P, Rudolph R, Plasma-enhanced HC-SCR of NOxin thepresence of excess oxygen. Applied Catalysis B: Environmental[J],2002(36):53–62.
    [31]吴阿峰,李明伟,黄涛等.烟气脱硝技术及其技术经济分析.《中国电力》[J],2006,(39):71-75.
    [32] Anupam S,William E, Ellison C, Lessons learned from SCR experience of coalfires units in Japan Europe and USA. Conference on SCR and Non-catalyticreduction for NOx control.2002, May15-16.
    [33]吴忠标,蒋新,赵伟荣《.环境催化原理及应用》[M],化学工业出版社,2006.
    [34]吕宏俊.选择性催化还原脱硝工艺的布置方式及分析.《中国环保产业》[J],2007,5:41-45.
    [35] Held W, King A, Richter T,et a1.,Catalytic NOx reduction in net oxidizingexhaust gas.SAE transactions[J],1990,99(4):209-216.
    [36] Iwamoto M,Yahiro H,Yu U Y,et a1.,Selective reduction of NO by lowerhydrocarbons in the presence of O2and SO2over copper ion-exchangedzeolites.Shokubai[J],1990,32(6):430-433.
    [37] Pereda-Ayo B, Duraiswami D, González-Velasco J R, Control of NOxstorageand reduction in NSR bed for designing combined NSR–SCR systems. CatalysisToday[J],2011(172):66–72.
    [38] Lindholm A, Sjoall H, Olsson L, Reduction of NOxover a combined NSR andSCR system. Applied Catalysis B: Environmental[J],2010,(98):112–121.
    [39] Obuchi A,Ohi A, Nakamura M, et al., Performance of Pt-group metal catalystsfor the selectice reduction of nitrogen oxides by hydrocarbons. Applied CatalysisB: Environmental[J],1993,2(1):71-80.
    [40]李俊华,郝吉明,傅立新等.富氧条件下贵金属催化剂上丙稀选择性还原NO的研究.《高等学校化学学报》[J],2003,24(11):2060-2064.
    [41] Burch R, Watling T C, The effect of promoters on Pt/Al2O3for the reduction ofNO by C3H6under lean-burn conditions. Applied Catalysis B[J],1997,11:207-216.
    [42] Burch R, Millington P J, Selective reduction of NOx by hydrocarbons in excessoxygen by Al-and Si-supported catalysts. Catalysis Today[J],1996,29(1-4):37-42.
    [43] Ueda A,Oshima T, Haruta M,Reduction of NO with propene in the presence ofoxygen and moisture over Au supported metal oxides.Applied Catalysis B:Environmental[J],1997,12(2-3):81-93
    [44] Jiraporn Leerat, Somchai Osuwan, Erdogan Gulari, Lean-burn NOx Reductionby Propene over Gold Supported on Alumina Catalysts Derived from theSol–Gel Method. Catalysis Letters [J],2011,141:62-67.
    [45] Shichi A,Katagi K,Satsuma A,et a1., Influence of intracrystalline diffusion onthe selective catalytic reduction of NO by hydrocarbon over Cu-MFIzeolite.Applied Catalysis B: Environmental[J],2000,24(2):97-105.
    [46] Resini C, Montanari T, Nappi L,et a1.,Selective catalytic reduction of NO bymethane over Co-H-MFI and Co-H-FER zeolite catalysts:characterisation andcatalytic activity.Journal of Catalysis[J],2003,214(2):179-190.
    [47] Shi C,Cheng M J,Qu Z P,et a1.,Investigation on the catalytic roles of silverspecies in the selective catalytic reduction of NO with methane.AppliedCatalysis B: Environmental[J],2004,51(3):171-181.
    [48] Li G F,Wang X P,Jia C Y,et a1., An in situ Fourier transform infrared studyon the mechanism of NO reduction by acetylene over mordenite-basedcatalysts.Journal of Catalysis[J],2008,257(2):291-296.
    [49] Mosqueda-Jiménez B I, Jentys A, Seshan K, et al.,Reduction of nitric oxide bypropene and propane on Ni-exchanged mordenite. Applied Catalysis B:Environmental[J],2003,43(2):105-115.
    [50]张惠,方和良,李伟等. H-USY负载MnOx催化剂上CH4选择催化还原NOx性能的研究.《高校化学工程学报》[J],2006,20(005):820-824.
    [51]任丽丽.担载型分子筛催化剂上CH4选择还原NO反应的研究:(博士学位论文).大连:中国科学院大连化学物理研究所,2003.
    [52] Maunula T,Ahola J,Hamada H,Reaction mechanism and kinetics of NOxreduction by methane on In/ZSM-5under lean conditions.Applied Catalysis B:Environmental[J],2006,64(1-2):13-24.
    [53] Misono M,Kondo K, Catalytic removal of nitrogen monoxide over rare earthion-exchanged zelites in the presence of propene and oxygen. ChemistryLetters[J],1991: l00l-l002
    [54] Ogura M,kikuchi E, Intrapore catalysis in NO reduction with methane onIr/In/ZSM-5catalyst. Chemitry Letters[J],1996:1017-1018.
    [55] Shi C,Cheng M J,Qu Z P, et a1.,On the selectively catalytic reduction of NOxwith methane over Ag-ZSM-5catalysts.Applied Catalysis B: Environmental[J],2002,36:173-182.
    [56] Ren L L,Zhang T,Liang D B, et a1., Effect of addition of Zn on the catalyficactivity of a Co/H-ZSM-5catalyst for the SCR of NOx with CH4. AppliedCatalysis B: Environmental[J],2002,35:317-321.
    [57] Sato A, Fujimoto T,Kanai S,et a1., Catalytic performance of silver ion-exchangesaponite for the selective reduction of nitrogen monoxide in the presence ofexcess oxygen.Applied Catalysis B: Environmental[J],1997,13:27-33.
    [58] Wen B, Sachtler W M.H, Enhanced catalytic performance of Co/MFI byhydrothermal treatment. Catalysis Letters[J],2003,86(1-3):39-42.
    [59] Sara Erkfeldt, Anders Palmqvist, Martin Petersson. Influence of the reducingagent for lean NOx reduction over Cu-ZSM-5. Applied Catalysis B:Environmental[J],2011,102:547–554
    [60] Maunula T, Kintaichi Y, Inaba M, et a1., Enhanced activity of In andGa-supported sol-gel alumina catalysts for NO reduction by hydrocarbons in leanconditions.Applied Catalysis B: Environmental[J],1998,15:291-304.
    [61] Miyadera T, Alumina-supported silver catalysts for the selective reduction ofnitric oxide with propene and oxygen-containing organic componnds.AppliedCatalysis B: Environmental[J],1993,2:199-205.
    [62] Shimizu K,Satauma A,Hattori T, Selective catalytic reduction of NO byhydrocarbons On Ga2O3/A12O3catalysts.Applied Catalysis B: Environmental[J],1998,16:319-326.
    [63] Haneda M,Kintaichi Y, Hamada H,Effect of SO2on the catalytic activity ofGa2O3-A12O3for the selective reduction of NO with propene in the presence ofoxygen.Applied Catalysis B: Environmental[J],2001,31:251-261.
    [64] Haneda M,Kintaichi Y,Hamada H, Activity enhancement of SnO2-dopedGa2O3-A12O3catalysts by coexisting H2O for the selective reduction of NO withpropene.Applied Catalysis B: Environmental[J],1999,20:289-300.
    [65] Pietrogiacomi D,Tuti S,Campa M C, et a1.,Cobalt supported on ZrO2catalystscharacterization and their activity for the reduction of NO with C3H6inthepresence of excess O2.Applied Catalysis B: Environmental[J],2000,28:43-54.
    [66] Maunula T,Ahola J,Hamada H, Reaction mechanism and kinetics of NOxreduction by propene on CoOx/alumina catalysts in lean conditions.AppliedCatalysis B: Environmental[J],2000,26:173-192.
    [67] Shimizu K,Satauma A,Hattori T, Catalytic performance of Ag/A12O3catalystfor the selective catalytic reduction of NO by higher hydrocarbons.AppliedCatalysis B: Environmental [J],2000,25:239-247.
    [68] Haneda M, Kintaichi Y, Hamada I, Enhanced activity of metal oxide-dopedGa2O3-A12O3for NO reduction by propene. Catalysis Today [J],1999,54:391-400.
    [69] Burch R,Millington P J,Walker A P,Mechanism of the selective reduction ofnitrogen monoxide on platinum-based catalysts in the presence of excessoxygen.Applied Catalysis B: Environmental[J],1994,4(1):65-94.
    [70] Acke F,Skoglundh M, Differences in reaction mechanisms for the selectivereduction of NO under oxygen excess over Pt based catalysts using propane orpropene as the reducing agent.Applied Catalysis B: Environmental[J],1999,22(1):L1-L3.
    [71] Cho B K,Elucidation of Lean-NOx Reduction Mechanism Using Kinetic IsotopeEffect.Journal of Catalysis[J],1998,178(2):395-407.
    [72] W gerbauer C, Maciejewski M,Baiker A,Reduction of nitrogen oxides overunsupported iridium:effect of reducing agent.Applied Catalysis B:Environmental[J],2001,34(1):11-27.
    [73] Burch R,Scire S,Selective catalytic reduction of nitric oxide with ethane andmethane on some metal exchanged ZSM-5zeolites. Applied Catalysis B:Environmental[J],1994,3(4):295-318.
    [74] Seker E,Gulari E,Activity and N2Selectivity of Sol-Gel Prepared Pt/AluminaCatalysts for Selective NOx Reduction.Journal of Catalysis[J],2000,194(1):4-13.
    [75] Valverde J L,Delucas A,Dorado F,et a1., Influence of the operating parameterson the selective catalytic reduction of NO with hydrocarbons usingCu-ion-exchanged titanium-pillared interlayer clays (Ti-PILCs). Industrial andEngineering Chemistry Research[J],2005,44(9):2955-2965.
    [76] Haneda M,Bion N,Daturi M,et a1., In Situ Fourier Transform Infrared Studyof the Selective Reduction of NO with Propene over Ga2O3-A12O3. Journal ofCatalysis[J],2002,206(1):114-124.
    [77] Nikolopoulos A A, Stergioula E S, Efthimiadis E A, et al., Selective CatalyticReduction of NO by Propene in Excess Oxygen on Pt-and Rh-SupportedAlumina Catalysts. Catalysis Today[J],1999,54,439.
    [78] Eduardo Santillan-Jimenez, Mark Crocker, Agustín Bueno-Lopez, et al.,Carbon Nanotube-Supported Metal Catalysts forNOx Reduction UsingHydrocarbon Reductants: Gas Switching and Adsorption Studies. Industrial&Engineering Chemistry Research[J],2011,50:7197-7200.
    [79] Meunier F C, Breen J P, Zuzaniuk V, et al., Mechanistic Aspects of the SelectiveReduction of NO by Propene over Alumina and Silver–Alumina Catalysts.Journal of Catalysis[J],1999,187:493–505.
    [80] Burch R, Coleman M D, An investigation of the NO/H2/O2reactiononnoble-metal catalysts at low temperatures under lean-burn conditions. AppliedCatalysis B: Environmental[J],1999,23:115-121.
    [81] Flores-Moreno J L, Delahay G, Figueras F, et al., DRIFTS study of the natureand reactivity of the surface compounds formed by co-adsorption of NO, O2andpropene on sulfated titania-supported rhodium catalysts. Journal of Catalysis[J],2005,(236):292-303.
    [82] Burch R, Breen J P, Meunier F C, A review of the selective reduction of NOxwith hydrocarbons under lean-burn conditions with non-zeolitic oxide and Ptgroup metal catalysts. Applied Catalysis B: Environmental[J],2002,39(4):283-303.
    [83] Sumiya S, He H, Abe A, et al.,Formation and reactivity of isocyanate(NCO)species on Ag/Al2O3. Journal of Chemical Society of Faraday Transcations[J],1998,94:2217-2219.
    [84] He H, Yu Y B, Selective catalytic reduction of NOx over Ag/A12O3catalyst: fromreaction mechanism to diesel engine test. Catalysis Today[J],2005,100(1-2):37-47.
    [85] Yu Y B, He H, Feng Q C, et al., Mechanism of the selective catalytic reduction ofNOx by C2H5OH over Ag/A12O3.Applied Catalysis B: Environmental[J],2004,49(3):159-171.
    [86] Gao H W, He H, Yu Y B, et al.,Density functional theory(DFT) and DRIFTSinvestigations of the formation and adsorption of enolic species on the Ag/A12O3surface. Journal of Physical Chemistry B[J],2005,109(27):13291-13295.
    [87] Miyareda T, Selective reduction of NOx by ethanol on catalysts composed ofAg/A12O3+Cu/TiO2without formation of harmful by-products.Applied CatalysisB: Environmental[J],1998,16(2):155-164.
    [88] Zhang C B,He H,Shuai S J, et al., Catalytic performance of Ag/A12O3-C2H5OH-Cu/A12O3system for the removal of NOxfrom diesel engine exhaust.Environment Pollution[J],2007,147(2):415-421.
    [89] Adelman B J, Beutel T,Lei G D,et a1., Mechanistic Cause of HydrocarbonSpecificity over Cu/ZSM-5and Co/ZSM-5Catalysts in the Selective CatalyticReduction of NOx. Journal of Catalysis[J],1996,158(1):327-335.
    [90] Kotsifa A., Kondarides D.I., Verykios X.E., Comparative study of thechemisorptive and catalytic properties of supported Pt catalysts related to theselective catalytic reduction of NO by propylene. Applied Catalysis B:Environmental[J],2007,72(1-2):136-148.
    [91] Chaisuk C., Praserthdam P., The nature of surface species on modified Pt-basedcatalysts for the SCR of NO by C3H6under lean-burn condition. Reaction Kineticsand Catalysis Letters[J],2003,78(1):99-105.
    [92] Captain D.K., Amiridis M.D., NO reduction by propylene over Pt/SiO2: An insitu FTIR study. Journal of Catalysis[J],2000,194(2):222-232.
    [93] Captain D.K., Amiridis M.D., In Situ FTIR Studies of the Selective CatalyticReduction of NO by C3H6over Pt/Al2O3. Journal of Catalysis[J],1999,184(2):377-389.
    [94] Zhang X., Yu Y., He H., Effect of hydrogen on reaction intermediates in theselective catalytic reduction of NOx by C3H6. Applied Catalysis B:Environmental[J],2007,76(3-4):241-247.
    [95] Sobczak I., Kusior A., Ziolek M., FTIR study of NO, C3H6and O2adsorptionand interaction on gold modified MCM-41materials. Catalysis Today[J],2008,137(2-4):203-208.
    [1] Brandenberger S, Kr cher O, Tissler A,et al., The State of the Art in SelectiveCatalytic Reduction of NOxby Ammonia Using Metal-Exchanged ZeoliteCatalysts. Catalysis Reviews [J],2008,(50):492–531.
    [2] Liu Z M, Woo S I, Recent advances in catalytic deNOX science and technology.Catalysis Reviews[J],2006,48(1):43–89.
    [3] Li Y H, Lee D W, Hong Y K,et al., Influence of Pd precursors on Pd/TiO2/Al2O3catalysts for lean NOx reduction with CO and H2. Reac Kinet Mech Cat[J], DOI10.1007/s11144-009-0132-z
    [4] Li L D, Wu P, Yu Q, et al., Low temperature H2-SCR over platinum catalystssupported on Ti-containing MCM-41. Applied Catalysis B: Environmental[J],2010,(94):254–262.
    [5] Rodr′guez G C M, Saruhan B, Effect of Fe/Co-ratio on the phase composition ofPd-integrated perovskites and its H2-SCR of NOx performance. AppliedCatalysis B: Environmental[J],2010,(93):304–313.
    [6] Schott F J P, Balle P, Adler J, et al., Reduction of NOx by H2on Pt/WO3/ZrO2catalysts in oxygen-rich exhaust. Applied Catalysis B: Environmental[J],2009,(87):18–29.
    [7] Savva P G, Costa C N, Hydrogen Lean-DeNOxas an Alternative to the Ammoniaand Hydrocarbon Selective Catalytic Reduction (SCR). Catalysis Reviews:Science and Engineering[J],2011,(53):91–151.
    [8] Tamm S, Ingelsten H H, Skoglundh M, et al., Differences between Al2O3andAg/Al2O3for lean reduction of NOx with dimethyl ether. Topics in Catalysis[J],2009,(52):1813–1816.
    [9] Tamm S, Ingelsten H H, Skoglundh M, et al.,The influence of gas phase reactionson the design criteria for catalysts for lean NOxreduction with dimethyl ether.Applied Catalysis B: Environmental[J],2009,(91):234–241.
    [10] Fujishima A,Honda K. Electrochemical photolysis of water at a semiconductorelectrode. Nature[J],1972,238(5358):37–38.
    [11] Nakajima F, Hamada I, The state-of-the-art technology of NOx control, CatalysisToday[J],1996,(29):109–115.
    [12]赵天宝.《化学试剂/化学药品手册》(第二版)[M],化学工业出版社,2006:984-985.
    [13]王箴.《化工辞典》(第四版)[M],化学工业出版社,2000:208-209.
    [14] Hidaka H, Zhao J, Satoh Y, et al., Photodegradation to surfactants. Part XII:Photocatalyzed mineraliation of phosphorus-containing surfactants at TiO2/H2Ointerfaces. Journal of Molecular Catalysis A: chemical [J],1994,(88):239–248.
    [15] Chan C Y, Tao S, Dawson R, et al., Treatment of atrazine by integratingphotocatalytic and biological processes. Environment Pollution[J],2004,(131):45–54.
    [16] Parra S, Malato S, Pulgarin C, New integrated photocatalytic-biological flowsystem using supported TiO2and fixed bacteria for the mineralization ofisoproturon. Applied Catalysis B: Environmental[J],2002,(36):131–144.
    [17] Ibusuki T, Takeuchi K, Toluene oxidation on UV irradiated TiO2with and withoutO2, NO and H at ambient temperature. Atmosphere Environment[J],1986,(20):1711–1715.
    [18] Sano T, Negishi N, Uchhino K, et al., Photocatalytic degradation of gaseousacetaldehyde on TiO2with photo deposited metals and metal oxides. Journal ofPhotochemical Photobiology A: chemistry[J],2003,(160):93–98.
    [19] Ao C H, Lee S C, Yu J C, Photocatalyst TiO2supported on glass fiber for indoorair purication:effect of NO on the photodegradation of CO and NO2. Journal ofPhotochemical Photobiology A:chemistry[J],2003,(156):171–177.
    [20] Larsson P-O, Andersson A, Wallenberg L R, et al., Combustion of CO andTuloene characterization of copper oxide supported on titania and activitycomparisons with supported cobalt, iron, manganese oxide. Journal of Catalysis[J],1996,163(2):279–293.
    [21] Kiwi-Minsker L, Yuranov I, Siebenhaar B, et al., Glass fiber catalysts for totaloxidation of CO and hydrocarbons in waste gases. Catalysis Today[J],1999,54(1):39–46.
    [22] Kiwi-Minsker L, Yuranov I, Siebenhaar B, et al., Pt and Pd supported on glassfibers as effective combustion catalysts. Catalysis Today[J],2000,59(1-2):61–68.
    [23] Sounak Roy, Hegde M S, Madras G, Catalysis for NOxabatement. AppliedEnergy[J],2009,(86):2283–2297.
    [24] Arve K,Adam J, Simakova O, et al.,Selective Catalytic Reduction of NOxOver Nano-Sized Gold Catalysts Supported on Alumina and Titania and OverBimetallic Gold–Silver Catalysts Supported on Alumina. Topics in Catalysis[J],2009,(52):1762–1765.
    [25] Nguyen L Q, Salim C, Hinode H, Performance of nano-sized Au/TiO2forselective catalytic reduction of NOxby propene. Applied Catalysis A: General[J],2008,(347):94–99.
    [26] Li J H, Zhu Y Q, Ke R, et al., Improvement of catalytic activity andsulfur-resistance of Ag/TiO2–Al2O3for NO reduction with propene under leanburn conditions. Applied Catalysis B: Environmental[J],2008,(80):202–213.
    [27] Kotsifa A, Kondarides D I, Verykios X E,A comparative study of the selectivecatalytic reduction of NO by propylene over supported Pt and Rh catalysts.Applied Catalysis B: Environmental[J],2008,(80):260–270.
    [28] Yang D, Li J H, Wen M F, et al., Selective Catalytic Reduction of NOxwith CH4over the In/Sulfated TiO2Catalyst. Catalysis Letters[J],2008,(122):138–143.
    [29] Zhixiang Zhang, Mingxia Chen, Wenfeng Shangguan. Low-temperature SCR ofNO with propylene in excess oxygen over the Pt/TiO2catalyst. CatalysisCommunications[J],2009,10:1330–1333.
    [30] Prasad K, Pinjari D V, Pandit A B, et al., Phase transformation of nanostructuredtitanium dioxide from anatase-to-rutile via combined ultrasound assisted sol–geltechnique. Ultrasonics Sonochemistry[J],2010,(17):409–415.
    [31] Kinsinger N M, Wong A, Li D S, et al., Nucleation and Crystal Growth ofNanocrystalline Anatase and Rutile Phase TiO2from a Water-Soluble Precursor.Crystal growth&design[J],2010,(10):5254-5261.
    [32] Wang J Y, Han X J, Liu C, et al., Adjusting the Crystal Phase and Morphology ofTitania via a Soft Chemical Process. Crystal growth&design[J],2010,(10):2185-2191.
    [33] Ricci P C, Casu A, Salis M, et al., Optically Controlled Phase Variation of TiO2Nanoparticles. Journal of Physical Chemistry C[J],2010,(114):14441–14445.
    [34] Liu L J, Chan J, Sham T K, Calcination-Induced Phase Transformation andAccompanying Optical Luminescence of TiO2Nanotubes: An X-ray AbsorptionNear-Edge Structures and X-ray Excited Optical Luminescence Study. Journal ofPhysical Chemistry C[J],2010,(114):21353–21359.
    [35] Song S,Liu Z W,He Z Q,et al., Impacts of Morphology and Crystallite Phasesof Titanium Oxide on the Catalytic Ozonation of Phenol. Environment Scienceand Technology[J],2010,(44):3913–3918.
    [36] Zheng F, Liu Y, Liu Z, et al., Study on defect properties of nanocrystalline TiO2during phase transition by positron annihilation lifetime. Journal of CrystalGrowth[J],2012,(353):55–58.
    [37] Li C J, Xu G R, Influence of ammonia on the morphologies and enhancedphotocatalytic activity of TiO2micro/nanospheres. Applied Surface Science[J],2011,(257):4951–4955
    [38] Fang D, Luo Z P, Huang K L, et al., Effect of heat treatment on morphology,crystalline structure and photocatalysis properties of TiO2nanotubes on Tisubstrate and freestanding membrane. Applied Surface Science[J],2011,(257):6451–6461.
    [39] Wantala K, Laokiat L, Khemthong P, et al., Calcination temperature effect onsolvothermal Fe-TiO2and its performance under visible light irradiation. Journalof the Taiwan Institute of Chemical Engineers[J],2010,(41):612–616.
    [40] Novotna P, Krysa J, Maixner J, et al., Photocatalytic activity of sol–gel TiO2thinfilms deposited on soda lime glass and soda lime glass precoated with a SiO2layer. Surface&Coatings Technology[J],2010,(204):2570–2575.
    [41] Puddu V, Choi H, Dionysiou D D, et al., TiO2photocatalyst for indoor airremediation: Influence of crystallinity, crystal phase, and UV radiation intensityon trichloroethylene degradation. Applied Catalysis B: Environmental[J],2010,(94):211–218.
    [42] Paez C A, Poelman D, Pirard J P, et al.,Unpredictable photocatalytic ability ofH2-reduced rutile-TiO2xerogel in the degradation of dye-pollutants under UVand visible light irradiation. Applied Catalysis B: Environmental[J],2010,(94):263–271.
    [43] Schulte K L, DeSario P A, Gray K A, Effect of crystal phase composition on thereductive and oxidative abilities of TiO2nanotubes under UV and visible light.Applied Catalysis B: Environmental[J],2010,(97):354–360.
    [44] Andronic L, Andrasi D, Enesca A, et al., The influence of titanium dioxide phasecomposition on dyes photocatalysis. Journal of Sol-Gel Science andTechnology[J],2011,(58):201–208.
    [45] Hao H Y, He C X, Tian B Z, et al.,Study of photocatalytic activity of Cd-dopedmesoporous nanocrystalline TiO2prepared at low temperature. Research onChemical Intermediates [J],2009,(35):705–715.
    [46] Li G Q, Zhang S, Yu J H, Facile Synthesis of Single-Phase TiO2Nanocrystalswith High Photocatalytic Performance. Journal of Americal Ceramics Society[J],2011,(94):4112-4115.
    [47] Xu H, Zhang L, Selective Nonaqueous Synthesis of C-Cl-Codoped TiO2withVisible-Light Photocatalytic Activity. Journal of Physical Chemistry C[J],2010,(114):11534–11541.
    [48]储伟.《催化剂工程》[M],四川大学出版社2006:69-70.
    [49]朱洪法,刘丽芝.《催化剂制备及应用技术》[M],中国石化出版社,2011:148-149
    [50]辛勤,罗孟飞.《现代催化研究方法》[M],科学出版社,2009:1-2.
    [51] Savva P G, Costa C N, Hydrogen Lean-DeNOx as an Alternative to theAmmonia and Hydrocarbon Selective Catalytic Reduction (SCR). CatalysisReviews: Science and Engineering[J],2011,53:91–151.
    [52] Kotsifa A, Kondarides D I, Verykios X E, Comparative study of thechemisorptive and catalytic properties of supported Pt catalysts related to theselective catalytic reduction of NO by propylene. Applied Catalysis B:Environmental[J],2007,(72):136–148.
    [53] Ivanova E, Mihaylov M, Thibault-Starzyk F, Daturi M, and co-adsorption onPt/TiO2. Journal of Molecular Catalysis A: Chemical[J],(274):179–184.
    [54] Li J H, Che J J, Ke R,et al., Effects of precursors on the surface Mn species andthe activities for NO reduction over MnOx/TiO2catalysts. CatalysisCommunications[J],2007,(8):1896–1900.
    [55] Li J H, Hao J M, Fu L X,et al., The activity and characterization of sol–gelSn/Al2O3catalyst for selective catalytic reduction of NOxin the presence ofoxygen. Catalysis Today[J],2004,(90):215–221.
    [56] Gorce O, Baudin F, Thomas C, et al., On the role of organic nitrogen-containingspecies as intermediates in the hydrocarbon-assisted SCR of NOx. AppliedCatalysis B: Environmental[J],2004,(54):69–84.
    [57] Liu Z M, Woo S I, Lee W S. In Situ FT-IR Studies on the Mechanism ofSelective Catalytic Reduction of NOxby Propene over SnO2/Al2O3Catalyst.Journal of Physical Chemistry B[J],2006,(110):26019–26023.
    [58] Adamowska M, Krzton A, Najbar M,et al., Ceria–zirconia-supported rhodiumcatalyst for NOxreduction from coal combustion flue gases. Applied Catalysis B:Environmental[J],2009,(90):535–544.
    [59] Yentekakisa I V, Tellou V, Botzolaki G, et al., A comparative study of the C3H6+NO+O2, C3H6+O2and NO+O2reactions in excess oxygen over Na-modifiedPt/γ-Al2O3catalysts. Applied Catalysis B: Environmental[J],2005,(56):229–239.
    [60] Rodríguez G C M, Saruhan B, Petrova O, et al.,Pd-Integrated Perovskite asEffective Catalyst for Selective Catalytic Reduction of NOxby Propene. Topicsin Catalysis[J],2009,(52):1723–1727.
    [61] Seker E, Gulari E. Activity and N2Selectivity of Sol–Gel Prepared Pt/AluminaCatalysts for Selective NOxReduction. Journal of Catalysis[J],2000,(194):4–13.
    [62] Seker E, Gulari E, Hammerle R H,et al., NO reduction by urea under leanconditions over alumina supported catalysts. Applied Catalysis A: General[J],2002,(226):183–192.
    [63] Iliopoulou E F, Evdou A P, Lemonidou A A, et al., Ag/alumina catalysts for theselective catalytic reduction of NOxusing various reductants. Applied CatalysisA:General[J],2004,(274):179–189.
    [64] Jen H W. Study of nitric oxide reduction over silver/alumina catalysts under leanconditions: Effects of reaction conditions and support. CatalysisToday[J],1998,(42):37–44.
    [65] Lanza R, Eriksson E, Pettersson L J, NOxselective catalytic reduction oversupported metallic catalysts. Catalysis Today[J],2009,(147S):S279–S284.
    [66] Kumar P A, Reddy M P, Lee K J, et al.,Novel Silver Loaded HydroxyapatiteCatalyst for the Selective Catalytic Reduction of NOxby Propene. CatalysisLetters[J],2008,(126):78–83.
    [67] Xu S C, Li J H, Yang D, et al., Promotional Mechanism of Sulfation on SelectiveCatalytic Reduction of NO by Methane in Excess Oxygen: A Comparative Studyof Rh/Al2O3and Rh/Al2O3/SO42-. Journal of Physical Chemistry C[J],2008,(112):16052–16059.
    [68] Jang J H, Lee S C, Kim D J,et al., Characterization of Pt-impregnated MCM-41and MCM-48and their catalytic performances in selective catalytic reduction forNOx. Applied Catalysis B: Environmental[J],2010,(94):254–262.
    [69] Shen S C, Kawi S. Mechanism of selective catalytic reduction of NO in thepresence of excess O2over Pt/Si-MCM-41catalyst. Journal of Catalysis[J],2003,(213):241–250.
    [70] Jeon J Y, Kim H Y. Woo S I, Mechanistic study on the SCR of NO by C3H6overPt/V/MCM-41. Applied Catalysis B: Environmental[J],2003,(44):301-310.
    [71] Yang J I, Jung H. The effect of temperature on NOx reduction by H2in thepresence of excess oxygen on a Pt/Al2O3monolithic catalyst. ChemicalEngineering Journal[J],2009,(146):11-15.
    [72] Koebel M, Madia G, Raimondi F,et al.,Enhanced Reoxidation of Vanadia byNO2in the Fast SCR Reaction. Journal of Catalysis[J],2002,(209):159–165.
    [73] Liu Z M, Woo S I. Recent advances in catalytic deNOXscience and technology.Catalysis Reviews[J],2006,48(1):43–89.
    [74] Yokoyama C,Misono M. Catalytic reduction of NO by propene in the presenceof oxygen over mechanically mixed metal oxides and Ce-ZSM-5. CatalysisLetters[J],1994,(29):1-6.
    [75] Ueda A, Haruta M. Reducation of nitrogen monoxide with propene overAu/Al2O3mixed mechanically with Mn2O3. Applied Catalysis B:Environmental[J],1998,(18):115-121.
    [76] Nguyen L Q, Salim C, Hinode H. Promotive effect of MOxmechanically mixedwith Au/TiO2on the catalytic activity for NO reduction by propene. Topics inCatalysis[J],2009(52):779-783.
    [77] Chuang K H, Liu Z S, Chang Y H,et al., Study of SBA-15supported catalysts fortoluene and NO removal: the effect of promoters (Co, Ni, Mn, Ce). Reac KinetMech Cat[J],2010(99):409–420.
    [78]刘先红,李德炳,范文青等.纳米Co3O4的制备及其在富氢气氛下CO选择性氧化反应中的催化性能.《厦门大学学报》[J],2009(48):773-779.
    [1]吕逵弟,余林等.二氧化锡超细粉体的制备.《无机硅酸盐》[J],2005,4,37(4):7-11.
    [2]刘国汉.溶胶-凝胶法制备纳米SnO2多孔气敏薄膜研究.《云南大学学报》[J],2005,27(3A),P:105-108.
    [3] http://cst-www.nrl.navy.mil/lattice/index.html
    [4]刘国汉.溶胶-凝胶法制备纳米SnO2多孔气敏薄膜研究.《云南大学学报》[J],2005,27(3A),P:105-108.
    [5] Kim T W,Lee D U,Lee J H,Yoon Y S.Surface and microstructural propertiesof SnO2thin films grown on p-lnP(100)substrates at low temperature.Solid StateCommunications[J],2000,115:503-507.
    [6] Jin Z,Zhou H J,Jin Z L, et al., Application of nanocrystalline porous tinoxide thin film for CO sensing.Sensors Actuators B[J],1998,52:188-194.
    [7] Chen Z W, Jiao Z, Wua M H,et al.,. Microstructural evolution of oxides andsemiconductor thin films. Progress in Materials Science [J],2011,(56):901–1029.
    [8] Barth S, Hernandez-Ramirez F, Holmes J D, Romano-Rodriguez A. Synthesis andapplications of one-dimensional semiconductors. Progress in Materials Science[J],2010,(55):563–627
    [9] Shahid M, Shakir I, Yang S J, et al., Facile synthesis of core–shell SnO2/V2O5nanowires and their efficient photocatalytic property. Materials Chemistry andPhysics[J],2010,(124):619-622.
    [10] He Z Q, Wang C, Wang H Y, et al.,Increasing the catalytic activities of iodinedoped titanium dioxide by modifying with tin dioxide for the photodegradation of2-chlorophenol under visible light irradiation. Journal of HazardousMaterials[J],2011,(189):595–602.
    [11] Liu R L, Huang Y X, Xiao A H,et al.,Preparation and photocatalytic property ofmesoporous ZnO/SnO2composite nanofibers. Journal of Alloys andCompounds[J],2010,(503):103–110.
    [12] Srinivasan N R, Bandyopadhyaya R, Highly accessible SnO2nanoparticleembedded SBA-15mesoporous silica as a superior photocatalyst. Microporousand Mesoporous Materials[J],2012,(149):166–171.
    [13] Hwang S H, Kim C H, Jang J S, SnO2nanoparticle embedded TiO2nanofibers—Highly efficient photocatalyst for the degradation of rhodamine B. CatalysisCommunications[J],2011,(12):1037–1041.
    [14] Kang J, Kuang Q, Xie Z X, et al., Fabrication of the SnO2/α-Fe2O3hierarchicalheterostructure and its enhanced photocatalytic property. The Journal of PhysicalChemistry C[J],2011,(115):7874–7879.
    [15] Sasikala R, Shirole A, Sudarsan V, et al., Highly dispersed phase of SnO2onTiO2nanoparticles synthesized by polyol-mediated route: Photocatalytic activityfor hydrogen generation. International Journal of Hydrogen Energy[J],2009,(34):3621-3630.
    [16] Abanadesa S, Charvina P, Lemontb F,et al., Novel two-step SnO2/SnOwater-splitting cycle for solar thermochemical production of hydrogen.International Journal of Hydrogen Energy [J],2008,(33)6021–6030.
    [17] Charvin P, Abanades S, Lemont F, et al., Experimental Study of SnO2/SnO/SnThermochemical Systems for Solar Production of Hydrogen. AIChE Journal[J],2008,(54):2759-2767.
    [18] Mohamed R M, Aazam E S, Photocatalytic Oxidation of CarbonMonoxide overNiO/SnO2Nanocomposites under UV Irradiation. Journal of Nanotechnology[J],doi:10.1155/2012/794874
    [19] Malpass G R.P., Miwa D W, Machado S A.S., et al.,SnO2-based materials forpesticide degradation. Journal of Hazardous Materials[J],2010,(180):145–151.
    [20] Kocemba I, Rynkowski J M,The effect of oxygen adsorption on catalytic activityof SnO2in CO oxidation. Catalysis Today[J],2011,(169):192–199.
    [21] Wierzchowwski P T, Zatorski L W. Kinetics of catalytic oxidation of CO andCH4combustion over alumina supported Ga2O3, SnO2or V2O5.Applied CatalysisB:Environmental[J],2003,(44):53-65.
    [22] Wang X,Xie Y C. Total oxidation of CH4on Sn-Cr composite oxide catalysts.Applied Catalysis B:Environmental[J],2001,(35):85-94.
    [23] Urfels L, Ge′lin P, Primet M, et al., Complete oxidation of methane at lowtemperature over Pt catalysts supported on high surface area SnO2.Topics inCatalysis[J] Vols.30/31, Nos.1–4, July2004
    [24] Wei L S, Li J H, Tang X F. NOxStorage at Low Temperature over MnOx–SnO2Binary Metal Oxide Prepared Through Different Hydrothermal Process. CatalysisLetters[J],2009,(127):107-112.
    [25] Li J H, Hao J M, Fu L X, et al., The activity and characterization of sol–gelSn/Al2O3catalyst for selective catalytic reduction of NOxin the presence ofoxygen. Catalysis Today[J],2004,(90):215–221.
    [26] Liu Z M, Oh K S, Woo S I. Novel Sn–Ce/Al2O3catalyst for the selectivecatalytic reduction of NOxunder lean conditions. Catalysis Letters[J],2006,(106):35-40.
    [27]辛勤,罗孟飞.《现代催化研究方法》[M],科学出版社,2009:381-398.
    [28] Cited from Online Tutorials materials:“Introduction to surface analysis”CEM924. written by Simon Garett, Michigan State University, posted atwww.uksaf.org
    [1] IUPAC Manual of Symbols and Terminology. Pure Applied Chemistry [M],1972,31,578.
    [2] Suib S L, A review of framework open structures. Annual Review of MaterialsScience[J].1996,(26):135-151.
    [3] Beck J S, Vartuli J C, Roth W J, et al., A new family of mesoporous molecularsieves prepared with liquid crystal templates. Journal of the American ChemicalSociety[J],1992(114):10834-10843.
    [4] Kresge C T, Leonowicz M E,Roth W J, et al., Nature[J],1992(359):710-712.
    [5] Jang J H,Lee S C,Kim D J,et al., Characterization of Pt-impregnated MCM-41and MCM-48and their catalytic performances in selective catalytic reduction forNOx. Applied Catalysis A: General[J],2005,(286):36–43.
    [6] Jeon J Y, Kim H Y, Woo S I. Selective catalytic reduction of NOx in lean-burnengine exhaust over a Pt/V/MCM-41catalyst. Applied Catalysis B:Environmental[J],2003,(44):311–323.
    [7] Shen S C, Kawi S. Kinetic studies of selective catalytic reduction of nitric oxideby propylene on Pt/MCM-41.Catalysis Today[J],2001,(68):245-254.
    [8] Li L D, Wu P, Yu Q, et al.,Low temperature H2-SCR over platinum catalystssupported on Ti-containing MCM-41. Applied Catalysis B: Environmental[J],2010,(94):254–262.
    [9] Areaner R J, Keading W, Anderson R. L.,U.S. Patent3,702,886(1972).
    [10] Olson D H, Kokotailo G T, Lawton S L, et al., Crystal structure and structure-related properties of ZSM-5. Journal of Physical Chemistry B[J],1981.85(15): p.2238-2243.
    [11] Liu Z M, Woo S I. Recent Advances in Catalytic DeNOxScience andTechnology. Catalysis Reviews[J],2006,(48):43–89.
    [12] García-Cortés J M, Pérez-Ramírez J, Illán-Gómez M J, Kapteijn F, Moulijn J A,Salinas-Martínez de Lecea C, Comparative study of Pt-based catalysts ondifferent supports In the low-temperature de-NOx-SCR with propene. AppliedCatalysis B: Environmental[J],2001,30(3-4): p.399-408.
    [13] Zhao D Y, Huo Q S, Feng J L, et al., Nonionic Triblock and Star DiblockCopolymer and Oligomeric Surfactant Syntheses of Highly Ordered,Hydrothermally Stable, Mesoporous Silica Structures. Journal of the AmericanChemical Society[J],1998,(120):6024-6036.
    [14] Zhao D Y, Feng J L, Huo Q S, et al.,Triblock copolymer syntheses ofmesoporous silica with periodic50to300angstrom pores. Science[J],1998,(279):548-552.
    [15] Kruk M, Jaroniec M, Ko C H, et al., Characterization of the Porous Structure ofSBA-15.Chemistry of Materials[J],2000,(12):1961-1968.
    [16] NMReeytsowooop roRkr?o, uJsKo ouS rnilCailc oaH:f, PAKhyrrrsauicyka l oMCf, heUemnt iisfaoltrr.ym, B B[MloJ] ec,sk2o-0pC0oo0rp,eo(1s lymer-Templated Ordered04o)r:1M14e6s5o-p1Mo1r4iec7r1o.pore
    [17] Galarneau A, Cambon H, Renzo F D, et al., Microporosity and connectionsbetween pores in SBA-15mesostructured silicas as a function of thetemperature of synthesis. New Journal Chemistry[J],2003(27):73-79.
    [18] Joo S H, Ryoo R, Kruk M, et al., Evidence for General Nature of PoreInterconnectivity in2-Dimensional Hexagonal Mesoporous Silicas PreparedUsing Block Copolymer Templates. Journal of Physical ChemistryB[J],2002,(106):4640-4646.
    [19] Newalkar B L, Komarneni S. Control over Microporosity of OrderedMMMaiiccterrooriwpoalarsvo[euJ]-s,H2yM0d0re1os,to(hp1eo3rr)mo:4au5ls73C-4o5n7dS9iitl.iiocnas: EfSfeBcAt-1o5f Salt FAradmdeitwioonrk. Chemuinsdtreyr[20] Sayari A. Catalysis by Crystalline Mesoporous Molecular Sieves. Chemistry ofMaterials[J],1996,(8):1840-1852.
    [21] Corma A. From Microporous to Mesoporous Molecular Sieve Materials andTheir Use in Catalysis. Chemical Reviews[J],1997,(97):2373-2419.
    [22] Ressler T, Dorn U, Walter A, Schwarz S, Hahn AHP. Structure and properties ofPVMo11O40heteropolyoxomolybdate supported on silica SBA-15as selectiveoxidation catalyst. Journal of Catalysis[J],2010,(275):1–10.
    [23] Saad R, Thiboutot S, Ampleman G, et al., Degradation of trinitroglycerin (TNG)using zero-valent iron nanoparticles/nanosilica SBA-15composite(ZVINs/SBA-15). Chemosphere [J],2010,(81):853–858.
    [24] Bhagiyalakshmi M, Anuradha R, Park S D,et al., Octa(aminophenyl)silsesquioxane fabrication on chlorofunctionalized mesoporous SBA-15for CO2adsorption. Microporous and Mesoporous Materials[J],2010,(131):265–273.
    [25] Chuang K H, Liu Z S, Chang Y H,et al., Study of SBA-15supported catalystsfor toluene and NO removal: the effect of promoters (Co, Ni, Mn, Ce).Reac. Kinet. Mech. Cat.[J],2010,(99):409–420.
    [26] Perathoner S, Lanzafame P, Passalacqua R, et al., Use of mesoporous SBA-15for nanostructuring titania for photocatalytic applications. Microporous andMesoporous Materials[J],2006,(90):347–361
    [27] Rico M J O, Moreno-Tost R, Jiménez-López A,et al., Study of nanoporouscatalysts in the selective catalytic reduction of NOx. Catalysis Today[J],2010(158):78-88.
    [28] Liang X, Li J H, Lin Q C, et al.,Synthesis and characterization of mesoporousMn/Al-SBA-15and its catalytic activity for NO reduction with ammonia.Catalysis Communications[J],2007,(8):1901-1904.
    [29] Segura Y, Chmielarz L, Kustrowski P, et al., Characterisation and reactivity ofvanadia-titania supported SBA-15in the SCR of NO with ammonia. AppliedCatalysis B: Environmental[J],2005,(61):69-78
    [30] Segura Y, Cool P, Kustrowski P, et al., Characterization of vanadium andtitanium oxide supported SBA-15. Journal of Physical Chemistry B[J],2005,(109):12071-12079.
    [31] Chmielarz L, Kustrowski P, Dziembaj R, et al., Catalytic performance of variousmesoporous silicas modified with copper or iron oxides introduced by differentways in the selective reduction of NO by ammonia. Applied Catalysis B:Environmental[J],2006,(62):369-380.
    [32] Patel A, Rufford T E, Rudolph V, et al., Selective catalytic reduction of NO byCO over CuO supported on SBA-15: Effect of CuO loading on the activity ofcatalysts. Catalysis Today[J],2011,(166):188-193.
    [33] Boutros M, Trichard J, Costa P D. Silver supported mesoporous SBA-15aspotential catalysts for SCR NOxby ethanol. Applied Catalysis B:Environmental[J],2009,(91):640-648.
    [34]朱洪法,刘丽芝.《催化剂制备及应用技术》[M],中国石化出版社,2011:176-177.
    [35] Yue Y H, Gédéon A, Bonardet J L,Melosh N, Jean-Baptiste D, Fraissard J,Direct synthesis of AlSBA mesoporous molecular sieves: characterization andcatalytic activities. Chemical Communication[J],1999,(19):1967-1968.
    [36]辛勤,罗孟飞.《现代催化研究方法》[M],科学出版社,2009:346-347.
    [37]贺泓,李俊华,何洪,上官文峰,胡春等著,《环境催化-原理及应用》[M],科学出版社,2008:26-27.
    [38] Calleja G, Aguado J, Carrero A, et al., Preparation,characterization and testingof Cr/AlSBA-15ethylene polymerization catalysts. Applied Catalysis A:General[J],2007,(316):22-31.
    [39] Ravikovitch P I, Neimark A V. Characterization of micro-and mesoporosity inSBA-15materials from adsorption data by the NLDFT method. Journal ofPhysical Chemistry B[J],2001,(105):6817-6823.
    [40] Jang M, Park J K, Shin E W. Lanthanum functionalized highly orderedmesoporous media: Implications of arsenate removal. Microporous andMesoporous Materials[J],2004,(75):159-168.
    [41] Pitchon V, Fritz A. The Relation between Surface State and Reactivity in theDeNOXMechanism on Platinum-Based Catalysts. Journal of Catalysis[J],1999,(186):64–74.
    [42] Li H F, Lü J, Zheng Z L, et al., An efficient and reusable silica/dendrimersupported platinum catalyst for electron transfer reactions. Journal of Colloid andInterface Science[J],2011,(353):149–155.
    [43] García-Cortés J M, Illán-Gómez M J, Solano A L,et al., Low temperatureselective catalytic reduction of NOxwith C3H6under lean-burn conditions onactivated carbon-supported platinum. Applied Catalysis B: Environmental[J],2000,(25):39–48.
    [44] Matyshak V A, Sadykov V A, Chernyshov K A,et al., In situ FTIR study of theformation and consumption routes of nitroorganic complexes-Intermediates inselective catalytic reduction of nitrogen oxides by propene over zirconia-basedcatalysts. Catalysis Today[J],2009,(145):152–162.
    [45] Nguyen L Q, Salima C, Hinode H. Roles of nano-sized Au in the reduction ofNOx by propene over Au/TiO2: An in situ DRIFTS study. Applied Catalysis B:Environmental[J],2010,(96):299–306.
    [46] Li J H, Hao J M, Fu L X,et al., The activity and characterization of sol-gelSn/Al2O3catalyst for selective catalytic reduction of NOxin the presence ofoxygen. Catalysis Today[J],2004,90(3-4):215-221.
    [47] Iliopoulou E F, Evdou A P, Lemonidou A A, et al., Ag/alumina catalysts for theselective catalytic reduction of NOxusing various reductants. Applied CatalysisA:General[J],2004,(274):179–189.
    [48] Kumar P A, Reddy M P, Lee K J,et al., Novel Silver Loaded HydroxyapatiteCatalyst for the Selective Catalytic Reduction of NOxby Propene. CatalysisLetters[J],2008,(126):78–83.
    [49] Giroir-Fendler A, Denton P, Boreave A, et al., The role of support acidity in theselective catalytic reduction of NO by C3H6under lean-burn conditions. Topicsin Catalysis[J], Vols.16/17, Nos.1–4,2001.
    [50] X P Wang, Yu S S, Yang H L, et al., Selective catalytic reduction of NO by C2H2over MoO3/HZSM-5. Applied Catalysis B: Environmental[J],2007,(71):246–253.
    [51] Torre-Abreu C, Ribeiro M F, Henriques C, et al., Copper-exchanged mordenitesas active catalysts for NO selective catalytic reduction by propene underoxidising conditions: Effect of Si/Al ratio, copper content and Briinsted acidity.Applied Catalysis B: Environmental[J],1997,(13)251-264.
    [52] Sumiya S, Oumi Y, Uozumi T, et al., Characterization of AlSBA-15prepared bypost-synthesis alumination with trimethylaluminium. Journal of MaterialsChemistry[J],2001,(11):1111-1115.
    [53] Li Y, Zhang W H, Lei Z Z,et al., Direct Synthesis of Al-SBA-15MesoporousMaterials via Hydrolysis-Controlled Approach. Journal of Physical ChemistryB[J],2004(108):9739-9744.
    [54] Jiang T L, Tao H X, Ren J W,et al., Fluoride ions assistant synthesis of extremelyhydrothermal stable Al-SBA-15with controllable Al content. Microporous andMesoporous Materials[J],2011(142):341-346.
    [1]贺泓,李俊华,何洪,上官文峰,胡春等著《环境催化-原理及应用》[M],科学出版社,2008:56-57.
    [2]辛勤,罗孟飞.《现代催化研究方法》[M],科学出版社,2009:284-285.
    [3] Ryczkowski J.IR Spectroscopy in catalysis.Catalysis Today[J],2001,68(4):263-381.
    [4] Khah K, Species formed after NO adsorption and NO+O2co-adsorption on TiO2:an FTIR spectroscopic study. Physical Chemistry Chemical Physics[J],2000,(2):2803-2806.
    [5] Kantcheva M, Identification, Stability, and Reactivity of NOx Species Adsorbedon Titania-Supported Manganese Catalysts. Journal of Catalysis[J],2001,(204):479-494.
    [6] Petros G, Costas S, Costa N, Hydrogen Lean-DeNOx as an Alternative to theAmmonia and Hydrocarbon Selective Catalytic Reduction (SCR). CatalysisReviews: Science and Engineering[J],2011,(53):91–151.
    [7] Valanidou L, Theologides C, Zorpas A A, et al., A novel highly selective andstable Ag/MgO-CeO2-Al2O3catalyst for the low-temperature ethanol-SCR of NO.Applied Catalysis B: Environmental[J],2011,(107):164–176
    [8] Tang N, Liu Y, Wang H Q,et al., Mechanism Study of NO Catalytic Oxidationover MnOx/TiO2Catalysts. Journal of Physical Chemistry C[J],2011,(115):8214–8220.
    [9] Nguyen L Q, Salim C, Hinode H, Roles of nano-sized Au in the reduction of NOxby propene over Au/TiO2: An in situ DRIFTS study. Applied Catalysis B:Environmental[J],2010,(96):299–306.
    [10] Kotsifa A, Kondarides D I, Verykios X E. Comparative study of thechemisorptive and catalytic properties of supported Pt catalysts related to theselective catalytic reduction of NO by propylene. Applied Catalysis B:Environmental[J],2007,(72):136–148.
    [11] Sobczak I, Kusior A, Ziolek M, FTIR study of NO, C3H6and O2adsorption andinteraction on gold modified MCM-41materials. Catalysis Today[J],2008,137(2-4):203-208.
    [12] Yentekakis I V, Tellou V, Botzolaki G, et al.,A comparative study of the C3H6+NO+O2, C3H6+O2and NO+O2reactions in excess oxygen over Na-modifiedPt/γ-Al2O3catalysts. Applied Catalysis B: Environmental[J],2005,56(3):229-239.
    [13] Matyshak V A, Sadykov V A. Chernyshov K A, et al., In situ FTIR study of theformation and consumption routes of nitroorganic complexes—Intermediates inselective catalytic reduction of nitrogen oxides by propene over zirconia-basedcatalysts. Catalysis Today[J],2009,(145):152–162.
    [14] Li J H, Ke R, Li W, et al., Mechanism of selective catalytic reduction of NOover Ag/Al2O3with the aid of non-thermal plasma. Catalysis Today[J],2008,(139):49–58.
    [15] Shimizu K, Shibata J, Satsuma A, et al., Mechanistic causes of the hydrocarbone.ect on the activity of Ag-Al2O3catalyst for the selective reduction of NO.Physical Chemistry Chemical Physics[J],2001,(3):880-884.
    [16] Shimizu K, Shibata J, Yoshida H,et al., Silver-alumina catalysts for selectivereduction of NO by higher hydrocarbons: structure of active sites and reactionmechanism. Applied Catalysis B: Environmental[J],2001,(30):151–162.
    [17] Yu Y B, Zhan X L g, He H, Evidence for the formation, isomerization anddecomposition of organo-nitrite and-nitro species during the NOx reduction byC3H6on Ag/Al2O3. Applied Catalysis B: Environmental[J],2007(75):298–302.
    [18] Kantcheva M, Identification, Stability, and Reactivity of NOx Species Adsorbedon Titania-Supported Manganese Catalysts. Journal of Catalysis[J],2001,(204):479-494.
    [19] Flores-Moreno J L, Delahay G, Figueras F, et al., DRIFTS study of the natureand reactivity of the surface compounds formed by co-adsorption of NO, O2andpropene on sulfated titania-supported rhodium catalysts. Journal of Catalysis[J],2005,(236):292–303.
    [20] Captain D K, Amiridis M D, NO Reduction by Propylene over Pt/SiO2: An inSitu FTIR Study. Journal of Catalysis[J],2000,(194):222–232
    [21] Meunier F C, Breen J P, Zuzaniuk V, et al.,Ross.Mechanistic Aspects of theSelective Reduction of NO by Propene over Alumina and Silver–AluminaCatalysts. Journal of Catalysis[J],1999,(187):493–505.
    [22] Tamm S, Ingelsten H H, Palmqvist A E.C, On the different roles of isocyanateand cyanide species in propene-SCR over silver/alumina. Journal of Catalysis[J],2008,(255):304–312.
    [23] Centi G, Galli A, Perathoner S. Reaction pathways of propane and propeneconversion in the presence of NO and O2on Cu/MFI. Journal chemical society ofFaraday Transcation[J],1996,92(24):5129-5140.
    [24] Halkides T I, Kaxev DI, Mechanistic study of the reduction of NO by C3H6in thepresence of oxygen over Rh/TiO2catalysts. Catalysis Today[J],2002,73(3-4):213-221.
    [25] Zhang C B, He H, Tanaka, K.-i., Catalytic performance and mechanism of aPt-TiO2catalyst for the oxidation of formaldehyde at room temperature. AppliedCatalysis B: Environmental[J],2006,65(1-2):37-43.
    [26] Ivanova E, Mihaylov M, Thibault-Starzyk F, et al., FTIR spectroscopy study ofCO and NO adsorption and co-adsorption on Pt/TiO2. Journal of MolecularCatalysis A: Chemical[J],2007,(274):179–184.
    [27] Beutel T, Adelman B, Sachtler W.M.H., Potential reaction paths in NOxreductionover Cu/ZSM-5. Catalysis Letters[J],1996,37(3-4):125-130.
    [28] Shen S.-C., Kawi S, Mechanism of selective catalytic reduction of NO in thepresence of excess O2over Pt/Si-MCM-41catalyst. Journal of Catalysis[J],2003,(213):241–250.
    [29] Burch R, Breen J P, Meunier F C, A review of the selective reduction of NOxwith hydrocarbons under lean-burn conditions with non-zeolitic oxide andplatinum group metal catalysts. Applied Catalysis B: Environmental[J],2002,(39):283–303.
    [30] Kameoka S, Chafik T, Ukisu Y, et al., Reactivity of surface isocyanate specieswith NO, O2and NO+O2in selective reduction of NOx over Ag/Al2O3andAl2O3catalysts. Catalysis Letters[J],1998,(55):211–215.
    [31] Sumiya S, He H, Abe A, et al., Formation and reactivity of isocyanate (NCO)species on Ag/Al2O3. Jounal of Chemical Society of Faraday Transcations[J],1998,94(15):2217-2219.
    [32]张长斌,贺泓,余运波等.富氧条件下Cu/Al2O3催化剂上C3H6选择性还原NO的研究.《高等学校化学学报》[J].2004(25):136-139.
    [33] Zhang X L,Yu Y B, He H. Effect of hydrogen on reaction intermediates in theselective catalytic reduction of NOxby C3H6. Applied Catalysis B:Environmental[J],2007,(76):241–247.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700