用户名: 密码: 验证码:
闭式地表水源热泵系统的滞流型水体与换热器性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地表水源热泵作为地源热泵的一种,是一项节能环保的可再生能源技术,可节约空调采暖能耗,建造节能建筑,尤其是我国江河湖海资源丰富,具有广阔的市场和迫切需求,但在推广应用过程中存在缺乏地表水体温度基础数据和盘管换热器性能参数等关键设计参数,对环境的承载能力评估无依据等问题。针对地表水源热泵尤其是滞流型闭式系统目前的现状,由于机房及室内系统研究应用较为成熟,本文重点对系统中水体温度、盘管换热性能和水体承载负荷三方面进行了理论计算、实验研究和应用分析:在建立水体模型得到水体温度数据基础上,通过水体中的盘管换热性能研究得到设计参考数据,同时评估换热负荷下水体的热承载能力。本文主要研究工作及结论如下:
     1)通过研究滞流型地表水体温度换热规律,建立了完整的三维水体动态耦合模型,并对CFD软件进行二次开发,输入了全年动态气象和边界参数——考虑了大气温度、太阳能辐射、蒸发换热、岩土壁面和底部温度等因素影响。通过大量的数值模拟计算,得到了水体全年逐时温度分布结果,根据垂向温度分布规律分析了地表水源热泵利用:由于太阳能辐射的影响,在水表3m以内温度梯度随外界影响的波动幅度较大,占垂向温度梯度分布的70%以上,而5m以下则较为平缓稳定,夏季约为22℃~24℃。因此利用地表水源作冷热源,建议水体的最小深度为3m,理想深度为5m以上。
     2)由5m、10m和20m不同深度水体在上海典型气象年下全年逐时水温计算结果得出,整个水体与气温的全年平均温度相当,但波动幅度大大降低,环境温度最高为36.8℃,而水体的最高温度仅为27.2℃(5m水体)、25.7℃(10m水体)、24.5℃(20m水体);环境温度最低为-4.5℃,而水体的最低温度仅为3.1℃(5m水体)、3.9℃(10m水体)、6.4℃(20m水体),体现了水体良好蓄能和温度相对稳定特点,因此地表水源比较空气源是良好的空调冷热源,而且夏季优势明显;同时可以看出,对不同深度水体,水体越深,蓄能和随环境温度变化的滞后性能越强,温度波动幅度也就越小,冷热源优势越显著。通过长期和短期实测数据的验证对比,表明全年长期数据具有统计规律,模拟值与实测值具有较好的吻合性,可作为研究应用的基础理论数据。
     3)建立了较为系统和完整的适合不同管型的三维模型,采用混合网格的方法,在交接面进行分割有效解决了数值计算精度、容量和速度问题,进行了多物理场的耦合求解,模拟得出了不同类型盘管换热器(螺旋立管、螺旋平铺管和U型平铺管)的传热结果。比较分析了不同管型的传热性能参数:螺旋管本身由于通道弯曲造成环流增强扰动,有利于管内流体的换热。但是由于管内换热热阻占总热阻的比例仅为约3.5%,因此该优势影响非常小。螺旋立管由于管型布置因素,换热管散热后的蓄热,具有两方面矛盾效应,正面效应是水温提高加大密度小的流体浮升力、促使自然对流换热系数加大,反面效应则造成水体温升而降低实际的管内外换热温度差,反过来影响换热。对不同管型,需要综合分析该两方面的效应,作用大小不同导致最终换热效果不同,对螺旋立管,蓄热过高,导致负面效应远大于正面效应,因此虽然单位管长综合传热系数为螺旋立管最高为25.97W/(m.℃),螺旋平铺管较平铺管略高,分别为25.81W/(m.℃)和25.58W/(m.℃);而最终的换热量综合下来螺旋立管反而最低,仅为为67.00W/m;螺旋平铺管略有蓄热正面效应大于负面效应,综合换热效果最佳,为73.02W/m;U型平铺管综合单位管长换热效果为69.62W/m。通过多个工况实测验证,与理论计算偏差较为接近,推荐模型采用0.9作为理论计算参数的修正系数,为闭式盘管换热器的应用研究提供了理论依据和参考数据,以指导工程应用。
     4)通过耦合室内负荷和室外气象参数,对5m、10m和20m的负荷下水体温度进行了计算,对水温变化规律和承载负荷指标进行了研究分析。得出10m以内的浅型水体容易产生蓄热大于蓄冷的不平衡,造成水体平均温度的偏高,对夏季供冷为主的系统不利,对冬季制热为主的系统相对有利;而对约10m以下的深型水体,蓄冷能力较强,长期运行造成水体温度逐年降低,对夏季制冷为主的系统较为有利,但反之对冬季制热为主的系统则不利。
     5)针对不同深度水体,经过试算得到环境指标限制下的最大水体承载负荷,分别为120W/m~2(5m水体)、140W/m~2(10m水体)和190W/m~2(20m水体)。提出综合环境标准和供能性能要求的最小水体负荷为水体的承载负荷指标:对于10m以上较深水体,环境标准限值下的负荷水温也能达到供能要求,为水体最大承载负荷指标;而对5m浅水体,在环境指标下的负荷水体温度为28.45℃,不能满足供能性能要求,因此按照供能要求最大承载负荷为31W/m~2。可见不同深度水体和不同地域气象条件下的最大承载负荷差别较大,应该针对不同深度、面积和区域的水体计算不同热承载指标。
     6)结合上海淀山湖示范工程应用,综合研究的水体模型、埋管换热模型、系统能耗模型以及承载负荷评估模型,开发了闭式地表水源热泵系统的设计评估软件,完成了系统设计、水体承载负荷评估和实施,并建成地表水源热泵系统的监测平台,通过运行测试进行了季节能效性能系数的评估。
As a renewable energy technology that saves energy and pollutes less, ground sourceheat pump can save HVAC energy consumption. So energy-saving buildings has vast markets,and has to be built according to its urgent needs, especially for our country is wealthy inresources. But there are some problems in application during the promoted applicationprocess: because the surface water source heat pump has been seldom used, the key designparameters of surface water temperature basic data and coil heat transfer performanceparameters is not adequate, the system integration lacks of maturity, the evaluation for thecarrying capacity of environment lacks of basis etc.. This paper aims at the problems ofsurface water source heat pump especially the stagnant closed-loop system, as their theoreticalsystems are imperfect and lack of basic data, and to reflect the system’s study principles of theorganic interaction, long-term dynamics and3D realistic characteristic, and then this paperfocuses on the theoretical calculation, experimental research and application analysis of thewater temperature, the coil heat transfer performance and the water heat carrying load in thesystem. The main research and conclusion are as follows:
     1) By studying the temperature transfer rule of stagnant surface water, a3D waterdynamic coupling model had been completely established and CFD software has beensecondary developed, and then the annual dynamic meteorological parameters, airtemperature, solar radiation, evaporation heat transfer, geotechnical wall and bottomtemperature etc. were inputted. By simulating a large number of numerical value, the all-yearhourly temperature distribution results of water has been obtained, and then we analyzed theusage of surface water source heat pump from the vertical temperature distribution law;because of the influence of solar radiation, the fluctuation of temperature gradient within3mof water meter was great by the influence of outside, which accounted for more than70%ofthe vertical temperature distribution, while it was relatively gentle and stable below5m, andthe temperature is about22℃~24℃in summer. Therefore, if use surface water as cold andheat source, the minimum recommended water depth is3m, and the ideal depth is5m ormore.
     2) Under the condition of Shanghai typical meteorological year, calculating the all-yearhourly water temperature of5m,10m and20m deep water, we got the results that: the annualaverage temperature of the entire water was close to the air temperature, the fluctuationgreatly deduced, and the maximum environmental temperature was36.8℃, while the highesttemperature of water was only27.2℃(5m water),25.7℃(10m water), and24.5℃(20mwater); when the minimum environmental temperature was-4.5℃, the minimum water temperature was only3.1℃(5m water)3.9℃(10m water), and6.4℃(20m water), whichshowed that the characteristics of good energy storage of water and relatively stabletemperature. Therefore, surface water source is a good air conditioning cool/heat sourcecomparing to the air source, and its advantages is obvious in summer; as to different depths ofwater, it can also be found that the deeper the water, the stronger the hysteresis property ofenergy storage changing with the environmental temperature, and the smaller the temperaturefluctuations, so the advantages of cold and heat source can be much more significant. By thecomparison of measured data of long-term and short-term, it indicated that the long-termannual data had statistical laws, and simulated values was closed to the measured values, so itcould be used as fundamental theoretic data for research applications.
     3)3D model had been established for different coils, which was relatively systematic andcomplete; had segmentation on the interface of hybrid grid with the hybrid grid method,which efficiently solved the precision, capacity, and speed of data calculation; using Ansyssoftware to solve multi-physical coupling, then simulated and obtained the heat transferresults of different types of coil heat exchanger (vertical spiral coil, horizontal spiralcoilmodel and horizontal U-shaped coil). Calculating and analyzing the simulation results byTecplot and Matlab software, and comparing and analyzing heat transfer property parametersof different coils, we can get that: the channel of the spiral coil is curve that enhances thedisturbing of circulation, which benefits the heat transfer of fluid in the coil. However, thethermal resistance of internal coil heat transfer only occupies about3.5%of total thermalresistance, so it has minimal impact with this advantage. Because of the shape arrangement ofthe vertical spiral coil, the heat storage which after the cooling of heat transfer coil can bewith two contradictory effects: the positive effect was that, as the increasing of watertemperature, the small density of fluid buoyancy was improved and the coefficient of naturalconvection heat transfer was increased; the negative effect was that, it may cause the watertemperature of external coil become higher, which led to the heat exchange of the internal andexternal coil became worse, while in turn, it could also affect the heat transfer. We shouldhave a comprehensive analysis of these two effects of different coils, because different effectslead to different heat transfer effects. And if the heat storage of vertical spiral coil was toohigh would lead to the negative effect rather than the positive effect, so the highest integratedheat transfer coefficient of the vertical spiral coil was25.97W/(m.℃), while the horizontalspiral coil of that was slightly higher than the horizontal coil, were225.81W/(m.℃) and25.58W/(m.℃), respectively; while at last, we can find that the heat transfer of vertical spiral coilwas the lowest, only67.00W/m; the positive effect of heat storage of horizontal spiral coilwas higher than negative effect, the integrated heat transfer effect was the best, which was73.02W/m; the integrated unit length heat transfer of the horizontal U-shaped coil was69.62W/m. Through the verification of multiple conditions testing, the results were close to theoretic calculating deviation, and0.9was the recommended correcting coefficient used astheoretic calculation parameter for model, which also could provided theoretical basis andreference data for the application of the closed coil heat exchanger and to guide theapplication of engineering.
     4)By coupling the indoor load and outdoor meteorological parameters, the5m,10m and20m water temperatures were simulated and calculated, and then the variation of water loadand the indicators of heat carrying load were analyzed. And we found that, the shallow waterwithin10m was prone to generate heat rather than cold, so that the average temperature of thewater was relatively high, which was an unfavorable factor for summer cooling-based systemwhile it was benefit for winter heating-based system; while as for deeper than10m water, itscold storage capacity was small, so after long-term running the water temperature wouldreduce year by year, which was benefit for summer cooling-based system, but wasunfavorable to the winter heating-based system.
     5) Under the limitation of environmental indicators, we try to work out that themaximum water heat carrying load of different depth of water were120W/m~2(5m water),140W/m~2(10m water) and190W/m~2(20m water), respectively. This paper puts forward forthe first time that the minimum water load of integrated environmental standard and energysupply property is the indicator of water heat carrying load: if the water is deeper than10m,the temperature of load water under the limitation of the environmental standards could alsoreach the energy supply requirements, which is the maximum indicator of water heat carryingload; if the water is of5m deep, the temperature of load water under the environmentalindicator could also reach the temperature of28.45℃, which could not meet the demand ofenergy supply property, therefore, the maximum heat carrying load is31W/m~2according tothe energy supply requirement. We can see from above that, the differences of maximum heatcarrying load is obvious under the conditions of different depth of water and different regionalclimate, therefore we should calculate different heat carrying load indicators according todifferent depths, areas, and regions.
     6) By combining with the application of Shanghai Dianshan Lake demonstration project,and by comprehensive studying of Water model, underground heat transfer model, systemenergy consumption model as well as the evaluation model of heat carrying load, wedeveloped the evaluation software of closed-loop surface water source heat pump, andcompleted the evaluation and implementation of system design, water heat carrying load, andestablished the monitoring platform of surface water source heat pump, and at last evaluatedthe property coefficient of seasonal energy efficiency.
引文
[1]中国工业节能与清洁协会,中国节能环保集团公司.2011中国节能减排发展报告.中国经济出版社.2011:14-18.
    [2]曾少军.后京都时代的中国减排路线图.中国外资(Mar.).2009:25-27.
    [3]李玲,赖志刚,黄光波.论节能减排与低碳经济.环境科学导刊.2012(3):21-23.
    [4] Cai W. J., Wang C., Liu W. L., et al.. Sectoral analysis forinternational technologydevelopment and transfer:cases of coal-firedpower generation,cement and aluminium inChina[J]. Energy Policy.2009:2283–2291.
    [5]薛惠锋,王海宁.《中华人民共和国可再生能源法》的实施回顾及展望.中外能源.2010(3):33-35.
    [6]姚杨,马最良.浅议“热泵”定义[J].暖通空调.2002,32(3):33-36.
    [7]邓军,熊渝兴,黄键良.浅谈可再生能源在我国的发展.能源与环境.2009(02):100-101.
    [8]王秉忱.我国浅层地热能开发现状与发展趋势.供热制冷2011(12):50-51.
    [9]马立新,田舍.我国地热能开发利用现状与发展.中国国土资源经济.2006(09):19-21.
    [10]中国建筑科学研究院. GB50366-2005.地源热泵系统工程技术规范[S].北京:中国建筑工业出版社,2005.
    [11] Geothermal Energy [A]. In: ASHRAE Handbook:1999HVAC Applications [M].ASHARE, Atlanta, GA,1999.
    [12]吴浩,王勇,李文.地表水源热泵以长江水作为低位冷热源的可行性分析[J].制冷与空调.2009,23(1):12-15.
    [13]刘大能.水源热泵的技术特点及几种形式[J].现代机械.2007(5):92-94.
    [14] S. P. Kavanaugh. Design Considerations for Ground and Water Source Heat Pump inSouthenClimates [J]. ASHRAE Transaction.1989.89(1):1139-1149.
    [15] Rose R. Heat pump in Europe—a overview. Proceedings of the7th InternationalEnergyAgency Heat Pump Conference. Beijing,2002,47-53.
    [16] S. P. Kavanaugh, Woodhouse J G, Carter J R. Test results of water-to-air heat pumps withhighcooling efficiency for ground-coupled applications [J]. ASHRAETransactions.1991,97:895-901.
    [17] S. P. Kavanaugh, Pezent M. C. Lake water applications of water-to-air heat pumps [J].ASHRAETransactions.1990,96(1):813-820.
    [18] Calm J. M. Heat pumps in USA [J]. International Journal of Refrigeration,1987,10(4):190-196.
    [19] V.R. Tarnawski, W.H. Leong, T. Momose, Y. Hamada. Analysis of ground source heatpumpswith horizontal ground heat exchangers for northern Japan [J].RenewableEnergy.2009,(34):127-137.
    [20] S. Okamoto. A heat pump system with a latent heat storage utilizing seawater installedinan aquarium [J]. Energy and Building.1996.(38):121-128.
    [21] JARN Ltd. A new river water source heat pump project [J]. Japan Air Conditioning,Heating&Refrigeration News.1996.8-25.
    [22] X. Chen, G. Q. Zhang, J. G. Peng. The performance of an open-loop lake waterheatpumpsystem in south China [J]. Apply thermal energy.2006(26):2255-2261.
    [23]任玉迎,南远新等.海水源热泵的发展和应用[J].制冷与空调.2007,4(2):8-9.
    [24] C.Yvuzturk, A.D.Chiasson. Performance Analysis of U-Tube Concentric Tube, andStandingColumn Well Ground Heat Exchangers Using a System Simulation Approach [J].ASHRAETrans.2002,108(1):925-938.
    [25] Ministry of water resources of PR China, Water resources bulletin, the People’s RepublicofChina2002, Beijing, China,2003. Available from:.
    [26]郭宇,张毅,陈祖铭,等.福州大学新校区山北行政楼湖水源热泵空调系统设计[J].制冷.2008,27(4):67-72.
    [27]邓波,陈晟,龙惟定,等.大型地表水地源热泵的多因素动态能耗分析[J].暖通空调.2008,38(8):26-29.
    [28] R. Yumrutas, M. Unsal. A computational model of a heat pump system with ahemisphericalsurface tank as the ground heat source[J]. Energy,2000,25:371-388.
    [29]周亚素.土壤热源热泵动态特性与能耗分析研究[博士论文].上海:同济大学.2001.
    [30]宋国军,由世俊,王志刚,等.住宅用水源热泵机组动态数学模型研究[J].流体力学.2005,33(3):59-61.
    [31]曲云霞.地表水源热泵的设计[J].可再生能源.2003.109(3).
    [32]陈晓.地表水源热泵系统的运行特性与运行优化研究[博士论文].湖南:湖南大学.2006:35-36.
    [33] R. Yumrutas, M.Unsal. A computational model of a heat pump system with ahemisphericalsurface tank as the ground heat source[J]. Energy.2000,25:371-388.
    [34] M C.Pezent. Development and Verification of a Thermal Model of Lakes Used withWaterSource Heat Pumps[J]. ASHRAE Transactions.1990,96(1):574-582.
    [35] Hillel Rubin. Modelling The performance of a solar pond as a source of thermalenergy[J].Solar Energy.1984,32(6):771-778.
    [36] J.Srinivasan. The effect of bottom reflectivity on the performance of a solar pond[J].SolarEnergy.1987,39(4):361-367.
    [37] M. Ouni,Simulation of the transient behavior of a salt gradient solar pond in Tunisa[J].Renewable Energy.1998,14(4):69-76.
    [38] Orlod G. T. Mathematical modeling of water quality: Stream, Lakes and Reserviors. ⅡASA,1983.
    [39] Harleman D. R. F. Hydrothermal Analysis of Lakes and Reservoirs. J. Hyd. Div., ASCE,Vol1108,No1Hy3,1982.
    [40]陈永灿.密云水库垂向水温模型研究[J].水利学报.1998,9:21-26.
    [41]钱小蓉.水库水温预测模型研究[J].重庆大型学报(自然版).1997,20(3):134-140.
    [42]叶闽.一维垂向水温分布模型在隔河岩水库中的应用与检验[J].水资源保护.2001,64(2):19-23.
    [43]李怀恩.一维垂向水库水温数学模型研究与黑河水库水温预测[J].水电能源科学.1990.6(4):236-243.
    [44]陈永灿,黄光伟,玉井信行等.日本谷中湖水流及水质特性分区模拟分析[A].中国环境水力学[M].北京:中国水利水电出版社.2002:15-21.
    [45]金士博.水环境数学模型[M].北京:中国建筑工业出版社.1987(1):68.
    [46] Joseph F. A wind-mixed layer model for solar ponds[J]. Solar Energy.1983,31(3):243-259.
    [47]蒋红.水库(湖泊)水温的一维混掺对流模型[J].水电站设计.1992,8:12-16.
    [48] Z.Vassilis. Antonopoulos. Simulation of Water Temperature and Dissolved OxygenDistribution in Lake Vegoritis, Greece[J]. Ecological Modelling.2003.160:39-53.
    [49] J. Vassiljev, S. P. Harrison. Simulation of long-term thermal characteristics of threeEstonian lakes[J]. Journal of Hydrology.1994.163:107-123.
    [50] Xing F., Heinz G.Stefan. Long-term lake water temperature and ice cover simulationmeasurements[J]. Cold Regions science and technology.1996.24:289-304.
    [51] H. Hassan, T. Aramaki. Lake stratification and temperature profiles simulatited usingdown scaled GCM output[J]. Water Science tech.1998,38(11):217-226.
    [52] V. Botte, A model of the wind-driven circulation in Lake Baikal[J]. Dynamics ofAtmospheres and Oceans.2002,35:131-152.
    [53] Paul R. Holland. A Numerical Study of the Dynamics of the Riverine[J]. EnvironmentalFluidMechanics.2001,1:311-332.
    [54]陈小红.水库垂向二维水质分布研究[J].水利学报.1997.No.4:9-16.
    [55]雏文生.水库垂直二维湍流与水温水质耦合模型[J].水电能源科学.1997,15(3):1-6.
    [56]陈丽星.模拟热分层流场的湍流模型的比较及优化[J].原子能科学技术.2003,37(5):389-394.
    [57] Y. Q. Wang. A Semi-Implicit Semispectral Primitive Equation Model for LakeCirculationDynamics and Its Stability Performance[J]. Journal of comptational physics.1998,139:209-241.
    [58]邓云,李嘉,罗麟,等.水库温差异重流模型的研究[J].水利学报.2003,7.
    [59]郝瑞霞.潮汐水域电厂温排水的水流和热传输准三维数值模拟[J].水利学报.2004(8).
    [60]郝瑞霞.天然河道湍浮力流动的数值模拟Ⅱ:数学模型及其在冷却水工程中的应用实例[J].水利学报.1999,6(6).
    [61]范亚明.开式静水水体水源热泵的水体传热与系统性能研究[博士论文].重庆大学.2009,9.
    [62]张文宇.上海世博园大型地表水源热泵对黄浦江水环境的影响分析[硕士论文].上海:同济大学.2007,3.
    [63]郑红旗,徐催,陈九法,等.闭式U型地表水换热器传热数值模拟与实验研究.建筑热能通风空调.2010(4):17-20.
    [64]谢汝鏮.地源热泵系统的设计[J].现代空调.2001(3):33-74.
    [65]徐伟等译.地源热泵工程技术指南[美][M].北京:中国建筑工业出版社.2002:77-78.
    [66]马最良,吕悦.地源热泵系统设计与应用[M].北京:机械工业出版社.2007.
    [67]蒋能照,刘道平.水源地源水环热泵空调技术及应用.[M].北京:机械工业出版社.2007.
    [68]马最良,姚杨,姜益强.暖通空调热泵技术[M].北京:中国建筑工业出版社.2008.
    [69]押淑芳,倪龙,马最良.地表水源热泵塑料螺旋管换热器面积设计.建筑科学.2011(4):84-88.
    [70]潘洁,刘传聚.谨防地表水源热泵可能引起的热污染[J].能源技术.2007,28(5):287-290.
    [71]朱亮.供水水源保护与微污染水体净化[M].北京:化学工业出版社.2005:20-22.
    [72] Hattemer B., Kavanaugh S. P. Design temperature data for surface water heating andcoolingsystems [J]. ASHRAE Transactions.2005,111(1):15-20.
    [73] Sauer J. H., Howell R. H. Heat Pump systems [J]. New York: John Wiley&Sons.1993,106-110.
    [74] Aittomaki. Lakes as heat source in cold climate. Proceedings of the21st InternationalCongress of Refrigeration,Washington.2003:111-115.
    [75]国家海洋局第二海洋研究所.象山港电厂温排水对海洋生态环境影响预测研究报告
    [R].2006.
    [76]国家环境保护总局,国家质量监督检验检疫总局.GB3838-2002.地表水环境质量标准.中国环境科学出版社.2002-4-26.
    [77]潘洁,刘传聚.地表水源热泵应用中的热污染隐患[J].上海节能.2007(3):27-31.
    [78]曲云霞,方肇洪,张林华等.地表水源热泵系统的设计[J].实用技术.2003(3):30-32.
    [79] J.M.Cantrell.Shallow Ponds for Dissipation of Building Heat: A Case Study[J]. ASHRAETransactions.1984,90(2A):238-246.
    [80]吴浩.湖水源热泵系统水体热承载能力的研究[硕士论文].重庆大学.2008.
    [81]沈晋.环境水文学[M].合肥:安徽科学技术出版社.1992:211-223.
    [82] Joseph F. A wind-mixed layer model for solar ponds. Solar Energy[J].1983,31(3):243-259.
    [83] J. Antenucci and A. Imerito. The CWR Dynamic reservoir simulation model.DYRESM[M]. Australia: The University of Western Australia.
    [84] Chiasson A D. Spitler J D.Rees S J A model for simulating the performance of a shallowpondas a supplemental heat rejecter with closed-loop ground-source heat pump systems2000(2).
    [85] B. A. JUBRAN, A. R. EL-BAZ M. AEffects of climatic conditions on thepermormance of carnallite solar ponds Iinternational Journalof Energy Research. VOL.20:1037~1048(1996).
    [86] Lewis W, Incropera, F. and Viskanta, R. Interferometric study of mixing layerdevelopmentina laboratory simulation of solar pond condition. Solar Energy.1982,(28):389~401.
    [87]濮培民.水面蒸发与散热系数公式研究(Ⅰ)[J].湖泊科学.1994,6(1):1~12.
    [88]濮培民.水面蒸发与散热系数公式研究(Ⅱ)[J].湖泊科学.1994,6(3):201~210.
    [89]《地下建筑暖通空调设计手册》编写组.地下建筑暖通空调设计手册.中国建筑工业出版社.1983.
    [90]陶文铨.数值传热学[M].西安:西安交通大学出版社.2004:350-356.
    [91]韩占忠,王敬,兰小平. FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社.2004.
    [92]王福军.计算流体动力学分析:CFD软件原理与应用[M].北京:清华大学出版社.2004.
    [93]国家气象中心.2002年中国地面气象资料年册.doc.北京.2002.
    [94]国家质检总局. GB50038-2005.人民防空地下室设计规范.中国标准.2005.
    [95]余建祖.换热器原理与设计.北京:北京航空航天大学出版社.2006.
    [96]孙德兴,水力直径作为当量直径的适用范围、欠缺与修正.工程热物理学报.1987.8(4):357~361.
    [97]杨世铭.自然对流换热基本规律研究的新进展.见:陶文铨,林汉涛,李长发等编.传热学的研究与进展.北京:高等教育出版社.1995.17~26.
    [98]杨世铭,陶文铨.传热学(第三版).北京:高等教育出版社.1998.
    [99]徐催.地表水源热泵换热器的模拟与实验研究[硕士论文].东南大学.2008.40-41.
    [100]许京荆.ANSYS13.0Workbench数值模拟技术.中国水利水电出版社.2012.
    [101]师访.ANSYS二次开发及应用实例详解.中国水利水电出版社.2012.
    [102]李进良;李承曦;胡仁喜.精通FLUENT6.3流场分析.化学工业出版社.2009.
    [103]李鹏飞,徐敏义,王飞飞.精通CFD工程仿真与案例实战FLUENT GAMBIT ICEMCFD Tecplot.人民邮电出版社.2011.
    [104]王正林,刘明.精通MATLAB.电子工业出版社.2011.
    [105]雷克滕瓦尔德(Recktenwald, Gerald W.).数值方法和MATLAB实现与应用Numerical methods with MATLAB implementation and application.机械工业出版社.2004.
    [106]申世超,黄高飞.水源热泵空调系统能耗的分析与比较[J].医药工程设计.2008,29(3):57-59.
    [107]苏华,王靖.建筑能耗的计算机模拟技术[J].计算机应用.2003,23(2):411-414.
    [108]汪训昌.空调冷水系统的沿革与变流量一次泵水系统的实践[J].暖通空调.2006,36(7):32~40.
    [109]范亚明,付祥钊.湖泊、池塘的水温模型与最大供冷能力的分析研究[J].暖通空调.2009,39(7):27~32.
    [110]中国建筑科学研究院.可再生能源示范热泵系统测试工况系统能效比[技术报告].北京.2006.
    [111]中华人民共和国建设部. GB50189-2005.公共建筑节能设计标准[S].北京:中国建筑工业出版社.2005.
    [112]合肥通用机电研究所、中国标准化研究院、中国质量认证中心.GB/T19409-2003.水源热泵机组.国家质检总局.2003.
    [113]肖杰,范波,刘圣先.某海水源热泵空调工程能耗分析[J].青岛理工大学学报,2008,29(2):141-144.
    [114]李莉,陶求华.居住建筑空调能耗模拟及夏季室内温度设定[J].建筑热能通风空调.2008,27(6):78-80.
    [115]杨妩姗,王万江.建筑能耗分析方法的探讨[J].山西建筑.2008,34(1):246-246.
    [116]清华大学建筑技术科学系Dest开发小组.Dest用户使用手册.2004,4.
    [117]李力.建筑能耗计算法的分析比较[J].重庆建筑大学学报.1999,21(5).
    [118]中国建筑科学研究院,上海市建筑科学研究院,深圳市建筑科学研究院.可再生能源建筑应用示范项目测评导则.中国人民共和国建设部与财政部.1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700