用户名: 密码: 验证码:
植物营养功能性材料制备及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
21世纪,人口、资源、环境间的矛盾日见突出。化学肥料利用率低以及障碍性土壤地力贫瘠已成为制约我国农业生产和威胁国家粮食安全的关键因素。新型植物营养功能性材料研制并应用于大田作物专用缓/控释肥料和荒漠化土地改良剂的生产,成为农业领域资源高效利用、环境友好新型材料技术的主流。本研究从植物营养功能性材料制备入手,选用工农业废弃物为主要原料,采用现代化工工艺和纳米材料制备技术原创性的研制了2类植物营养功能性材料,通过综合分析方法对功能性材料性能进行了表征测试;将其应用于大田作物缓/控释肥料和荒漠化土地修复等农业和生态环境领域,同时对功能性材料的土壤生物学效应和生态环境安全评价进行了比较系统的探索研究。获得主要研究结果如下:
     1、研发了植物营养功能性材料制备工艺,材料表征结果表明胶团粒径达到纳米-亚微米级。
     选用农业废弃物、工业副产物及廉价、环保的化工原料,通过微乳化、高剪切和非均相混聚等技术,在液相条件下,研制了3种微乳化型和4种化学聚合(缩合)反应型纳米-亚微米级植物营养功能性材料,通过扫描电镜、透射电镜和激光粒度分析仪对植物营养功能性材料进行了表征测试,结果表明,供试材料90%以上胶团粒径在10-120nm范围,胶团粒径达到纳米-亚微米级。
     2、植物营养功能性材料应用于包膜剂生产的作物专用缓/控释肥料,可有效提高氮肥利用率,改善土壤微生物种群结构
     通过“异粒变速”养分缓/控释工艺,制备成养分释放速率与小麦、玉米和水稻生各育期对养分的需求基本吻合的专用缓/控释肥料。缓/控释肥料的应用有效促进不同作物的生长,不同区域较农民习惯施肥处理作物产量增加了2.07%-7.17%;缓/控释肥料可以提升土壤在关键生育期的供氮能力和土壤地力水平,较习惯施肥氮肥可提高利用率在10个百分点以上;在生育期可以降低土壤脲酶活性,土壤细菌shannon指数显著大于施尿素肥料处理(p<0.05),结果表明,用功能性材料作为包膜材料的缓/控释肥料对土壤微生物多样性存在促进作用,有利于土壤微生物活性提高,并能够促进种群数量增加。
     3、植物营养功能性固沙保水剂材料能够改善荒漠化土地保肥持水性能,改善荒漠化土壤的物理结构
     多功能固沙保水剂对土层具有很强的固结能力,与土壤矿物发生络合反应,形成蜂窝状结构,改善了荒漠化土地中的孔隙状况,增加了荒漠化土地中的团粒结构。同时,功能性材料胶团径达到纳米-亚微米级后增强了其比表面积,在土壤表面形成致密的网状结构,形成相对厚的吸附水层或水膜,从而增强荒漠化土地的吸水、持水能力,这是多功能固沙保水剂保水、保肥的根本原因。田间试验表明施用功能性材料能提高5-10cm土层温度0.6-2.6℃和0-20cm上层土壤含水量;种植黑麦草比对照增产2倍以上
     4、植物营养功能性材料提高了土壤生物多样性,生态环境安全
     在室内模拟条件下,选用混合菌剂,植物营养功能性材料在4-20周降解率均达98%以上,降解产物为稳定的小分子、CO2和H2O。功能性材料在降解释放过程中能够增加了土壤有益细菌数量,提高土壤肥力水平,抑制了反硝化细菌的数量,减少了氮素的损失,可以提高氮素肥料的利用率;施用功能性材料处理土壤动物的线虫动物门、蜱螨目的个体数均有所增加,提高了土壤生物多样性。
     综上所述,自主研制的3种微乳化型和4种化学聚合(缩合)反应型纳米-亚微米级植物营养功能性材料具有环境友好性,应用结果表明,功能材料可以提高氮肥利用率,修复荒漠化土地,改善土壤理化性状,增强土壤保肥持水性能;植物营养功能性材料的应用对于维持农田可持续利用、保障国家粮食安全具有重要意义。
The inconsistency among the natural resources, environment and people is getting more and more serious in21th century. Low fertilizer use efficiency and low soil fertility of the cultivated land have turned into the key factors to restrict agricultural production, and threaten national food safety. New functional materials with the character of plant nutrition to be applied for the restoration of desertification and production of slow-release fertilizers become a mainstream in high efficient use of agricultural resources and environmental friendly new material technique. It is a creative technique to prepare functional materials with the character of plant nutrition through modern chemical technology and nano-material technology using industrial and agricultural waste as main raw material. After material preparation and characterization, the functional materials were applied in slow-release fertilizer production and restoration of desertification. The risk of the functional materials in soil and environment was also evaluated in this paper. Main results were as follow:
     1. Preparation and characterization of plant nutrition functional material in nano and sub-nano grade
     Three micro-emulsified and five chemically polymerized nano, sub-nano plant nutrition functional materials were prepared through micro-emulsification, high shear and heterogeneous polymerization techniques using waste, industrial by-product and cheap, environmental friendly chemical materials. Then the materials were characterized with scanning electron microscope (SEM), transmission electron microscope (TEM) and laser particle size analyzer. The results showed that90%colloid particles of the materials were in the size of10-120nm as nano and sub-nano grade.
     2. Application of the materials as coating agent for slow-release fertilizer, the use efficiency of nitrogen increased and the soil microbial diversity improved
     Specific slow-release fertilizers for wheat, maize and rice were prepared to release nitrogen to meet the demand of crops at different stage. The crop yield enhanced by2.07%to7.17%by use of the functional materials coated slow-release fertilizers in different area comparied with regular fertilizer, soil fertility improved and nitrogen use efficiency increased by more than10%. During crop growth stage, the urease activity decreased. The bacterial Shannon index enhanced significantly comparing with the urea treatment. In all, the soil microbial diversity could be promoted, enzyme activity and microbial population enhanced by the use of slow-release fertilizers.
     3. Application of the materials in desert as sand-fixing and water retaining polymer, the soil characters of sand-fixing, water retaining and physical struncture improved
     Using the materials as sand-fixing and water retaining agent, the soil pore status, aggregate structure improved as its high fixing and complexing reaction with soil minerals. In addition, nano and sub-nano composite materials had huge specific surface area. They formed tight net structure on soil surface, and formed relatively thick adsorption water or water film to enhance the ability of water absorbing and retaining. It is the main reason of the materials for sand-fixing and water retaining. Field experiment with the use of the materials also showed that the soil temperature at5-10cm layer could increase0.6~2.6℃and the soil water content at0-20cm almost two times of the control. The biomass of ryegrass was two times higher than that of the control.
     4. In laboratory conditions, the selected five water-soluble functional materials could be degraded more than98%within4-20weeks when they mixed with microorganisms. The degradated products are small stable molecules, CO2and H2O. The number of beneficial bacteria increased while denitrifying bacteria decreased, which means decrease of nitrogen loss and increase of nitrogen use efficiency. Application of the fertilizers also enhanced the number of nematoda phylum, acari, and improved soil biodiversity.
     In summary, the functional materials with the character of plant nutrition performed environmental friendly characters. They could not only increase nitrogen use efficiency but also control desertification of soil. These materials are very important for cultivited land sustainable use and national food security.
引文
1.朱兆良.我国氮肥的使用现状、问题和对策[A].中国农业持续发展中问题[c].南昌:江西出版社,1998.
    2.陈同斌,陈世庆,徐鸿涛,黄诗铿,陈炎.中国农用化肥氮磷钾需求比例的研究[J].地理学报,1998,53(1):32-41.
    3.林葆,李家康.当前我国化肥的若干问题和对策[J].磷肥与复肥,1997,2:1-5,23.
    4. Keeney D. Sources of nitrate to ground water[R].In CRC Critical Reviews in Environmental Control,1983,16(3):257-304.
    5. Hallberg G.R.. Agricultural chemicals in ground water:extent and implications[J].America Journal of Alternative Agriculture,1987,2:2-15.
    6. Kumazawa K. Nitrogen fertilization and nitrate pollution in groundwater in Japan:Present status and measures for sustainable agriculture[J].Nutrient Cycling in Agroecosystems,2002, 63(2/3):129-137.
    7.粟晓万,杜建军,贾振宇,黄承和,王浩.缓/控释肥的研究应用现状[J].中国农学通报,2007,23(12):234-238.
    8.金继运.化肥与粮食安全.植物营养与肥料学报,2006,12(5):601-609
    9.金继运.我国肥料资源利用中存在的问题及对策建议.农业部种植业专家顾问组2003年专题调研报告,2003
    10.朱兆良.合理使用化肥、充分利用有机肥料,发展环境友好的施肥体系.中国科学院院刊,2003,18(2):89-91
    11.陈文新,李季伦,朱兆良等.从源头控制化学氮肥污染环境.科学时报,2006年10月9日
    12. Aldinger H. Agricultural and environmental policies in the EU and their impact on fertilizer consumption.69th IFA Annual Conference, Sydney, Australia,21-24 May,2001
    13. Bergstrom L., Goulding K. W. Perspectives and challenges in the future use of plant nutrients in tilled and mixed agricultural systems. Ambio.2005,34(4-5):283-287
    14. Bouwman A. F., van Drecht G., van der Hoek K.W. Global and regional surface nitrogen balances in intensive agricultural production systems for the period 1970-2030.2005,15:137-155
    15. Ceotto E. The issues of energy and carbon cycle. New perspectives for assessing the environmental impact of animal waste utilization. Bioresource Technology,2005,96:191-196
    16.张维理,武淑霞,冀宏杰等.中国农业面源污染形势估计及控制对策Ⅰ21世纪初期中国农业面源污染的形势估计[J].中国农业科学,2004,37(7):1008-1017
    17.蔡庆华,刘建康.Lor enz King评价湖泊富营养化的一个合模型[J].应用生态学报,2002,13(12):1674-1678.
    18.张维理,田哲旭,张宁,李晓齐.中国北方农用氮肥造成地下水硝酸盐污染的调查[J].植物营养与肥料学报,1995,1(2):80-87.
    19.吴启堂,高婷.减少农业对水体污染的对策与措施[J].生态科学,2003,22(4):85-90
    20. Dunbabin V., Diggle A. J., Rengel Z., van Hungten R. Modelling the interactions between water and nutrient uptake and root growth[J]. Plant and Soil,2002,239:19-38
    21. Fageria N. K., Baligar V. C. Enhancing nitrogen use efficiency in crop plants[J]. Advances in Agronomy,2005,88:97-185
    22. Foley J. A., Defries R., Asner G. P., Barford C., Bonan G., Carpenter S. R., Chapin F. S., Coe M. T., Daily G. C., Gibbs H. K., Helkowski J. H., Holloway T., Howard E. A., Kucharik C. J., Monfreda C., Patz J. A., Prentice I. C., Ramankutty N., Snyder P. K. Global consequences of land use. Science[J],2005,309(5734):570-574
    23. Frinck C.R.,Waggoner P. E., Ausubel J. H. Nitrogen on the land:overcoming the worries[J]. Pollution Prevention Review,2001,11:77-82
    24. Good A. G., Shrawat A. K., Muench D. G. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? [J] Trends in Plant Science,2004, 9(12):597-605
    25. Drinkwater L. E., Snapp S. S. Nutrients in Agroecosystems:Rethinking the Management Paradigm[J]. Advances in Agronomy,2007,92:163-186
    26.李贵宝,尹澄清,周怀东.中国“三湖”的水环境问题和防治对策与管理[J].水问题论坛,2001,(3):36-39.
    27.寇长林,巨晓棠,张福锁.三种集约化种植体系氮素平衡及其对地下水硝酸盐含量的影响[J]。应用生态学报,2005,16(4):660-667;
    28. Huang Shaowen, Jin Jiyun, Yang Liping and Bai Youlu. Spatial variability of soil nutrients and influencing factors in a vegetable production area of Hebei province in China[J]. Nutrient Cycling in Agroecosystems,2006,75:201-212
    29.王少彬,苏维瀚.中国地区氧化亚氮排放量及其变化的估算[J].环境科学,1993,(3):37-44.
    30.闫湘.我国化肥利用现状与养分资源高效利用研究.[D].北京,中国农业科学院,2008.
    31.黄鸿翔.控制化肥生产促进有机肥施用 推进农业可持续发展[J].人民网,2012.3.12.
    32.陈广庭.土地荒漠化[M],化学工业出版社,环境科学与工程出版中心,2002,113.
    33.下金波.浅谈中国的荒漠化及其防治措施[J],甘肃农业,2004,7,16-17.
    34.卢琦,刘力群.中国防治荒漠化对策[J],中国人口·资源与环境,2003,13(1):86-91.
    35.武志杰,陈利军.缓释/控释肥料:原理与应用.科学出版社,2003
    36.武志杰,周健民.我国缓释、控释肥料发展现状、趋势及对策[J].中国农业科技导报,2001,3(1):73-76.
    37.张夫道,王玉军,我国缓/控释肥料的现状和发展方向[J].中国土壤与肥料,2008(4):1-4.
    38.张树清,我国缓控释肥料现状与存在问题分析[J].中国农业信息,2008,11:32-36
    39.黄永兰,罗奇祥,刘秀梅,等.包膜型缓控释肥技术的研究与进展[J].江西农业学报,2008,20(3):55-59.
    40.张民,史衍玺,等.控释和缓释肥料的研究现状与进展[J].化肥工业,2003,28(5):27-30.
    41. Hughes T. D.. Nitrogen release from isobutylidene diurea:Soil pH and fertilizer particle size effects [J]. Agronomy Journal,1976,68:103-106.
    42.廖宗文,杜建军,等.肥料养分控释的技术、机理和质量评价[J].土壤通报,2003,34(2):106-110.
    43.陈润,张文辉.包膜型缓控释肥料的研究综述[J].化学工程与装备,2010,10:126-128.
    44.何绪生.保水型包膜尿素肥料的研制及评价[D].北京,中国农业科学院土壤肥料研究所,2004.
    45.肖强.有机一无机复合材料胶结包膜型缓/控释肥料的研制及评价[D].北京,中国农业科学院农业资源与农业区划研究所,研究生院,2007
    46.杜昌文,周健民.控释肥料的研制及其进展[J].土壤,2002,3:127-133.
    47.许秀成,李萍,王好斌.包裹型缓释/控制释放肥料专题报告[J].磷肥与复肥,2001,16(4):4-8.
    48.牟林,韩晓日,于成广,等.不同无机矿物应用于包膜复合肥的氮素释放特征及其评级[J].植物营养与肥料学报,2009,15(5):1179-1188.
    49.胡宗智,陈燕,桓光新.缓释/控释肥料用包膜材料的现状及发展探讨.广州化工[J].2004,32(2):1-3.
    50. Kosuge N., Tobataku K.. Coated granular fertilizers[J].EP 030331,1989.
    51. Oertli J. J. and O. R. Lunt. Controlled release of fertilizer minerals by incapsulating membranes: I.Factors influencing the rate of release [J]. Soil Science Society of America Proceedings,1962a, 26:579-583
    52. Lunt O. R.. Modified sulphur coated granular urea for controlled nutrient release. Trans Ninth Int Congr Soil Sci.,1968,3:337-383.
    53. Blouin M., D. W Rindt, O. E. Moore. Sulfur coated fertilizers from control release:pilot plant production [J]. Journal of agricultural and food chemistry,1971,19:801-808.
    54. Christianson C. B, Factors affecting N release of urea from reactive layer coated urea [J]. Fertilizer Research,1988,16:273-284.
    55. Salman O. A.. Polyethylene-coated urea.1. Improved storage and handling properties[J] J.Agric. Food Anal.,1988,13:793-802.
    56.山添文雄,越野正义,藤井国博,等(韩辰极等译).肥料分析方法详解[M].北京:化学工业出版社,1983.
    57. Shaviv A. Plant response and environmental aspects as affected by rate and pattern of nitrogen release from controlled release N fertilizers[A]. Van Clempt. Progress in Nitrogen Cycling Studies[C]. The Netheerlands:Kluwer Academ Pub,1996.285-291.
    58.许秀成,王好斌,李药萍.包裹型缓释/控制释放肥料专题报告:第三报,包膜(包裹)型控制释放肥料各国研究进展1.美国、加拿大;2.日本[J].磷肥与复肥,2000,15(6):7-12.
    59. Oertli J. J. and O. R. Lunt. Controlled release of fertilizer minerals by incapsulating membranes:Ⅱ. Factors influencing the rate of release[J].Soil Science Society of America Proceedings,1962b, 28:584-587.
    60. Patel A J and Sharma G C. Nitrogen release characteristics of controlled-release fertilizers during a four months soil incubation[J].Journal of the American Society for Horticultural Science, 1977,102(3):364-367.
    61. Holcomb E J. A technique for determining potassium release from a slow release fertilizer[J]. Communications in Soil Science and Plant Analysis,1981,12:271-277.
    62. Paramasivam S and A. K. Alva. Nitrogen recovery from controlled release fertilizers under intermittent leaching and dry cyclings[J].Soil Science,1997a,162:447-453.
    63. Paramasivam S. and A. K. Alva. Leaching of nitrogen forms from controlled release nitrogen fertilizers [J]. Communications in Soil Science and Plant Analysis,1997b,28(17&18):1663-1674.
    64.杜建军,廖宗文,等.包膜控释肥养分释放特性评价方法的研究进展[J].植物营养与肥料学,2002,8(1):16-21.
    65. Shoji S.,Gandeza A.T., K. Kimum. Simulation of response to polyolefin-coated Urea:Ⅱ Nitrogen uptake by com [J]. Soil Science Society of America journal,1991,55:1468-1473.
    66. Shoji S.and H. Kanno. Use of polyolefin coated fertilizers for increasing fertilizer efficiency and reducing nitrate leaching and nitrous oxide emissions[J].Fertilizer Research,1994,39:147-152.
    67. Vinay.K J,Masahir,Motohide M.et al.Zeolite formation from coal flysash and heavy metalion removal characteristics of thus obtained Zeolote X in multimetal systems[J].Journal of Environmental Management.2009.90(8):2507-2514
    68. Ronbanchob A.Prasert P.Sorption of Cu2+,Cd2+,and Pb2+ using modified zeolite from coal flyash[J],Chenical Engineering Journal,2008,144:245-258
    69.谢修鸿,梁运江,李玉.黑小耳菌糠改良苏打盐碱土效果研究[J].水土保持学报,2008,22(5):130-133,152.
    70.郝秀珍,周东美.天然蒙脱石和沸石改良对黑麦铜尾矿砂上生长的影响[J].土壤学报,2005,42(3):434-439.
    71. Rautaray S.K.,Ghosh B.C.,Mittra B.N. Effect of fly ash, organicwastes and chemical fertilizers on yield, nutrient uptake, heavy metal content and residual fertility in a rice-mustard cropping sequence under acid lateritic soils [J]. Bioresource Technology,2003,90:275-283.
    72. Schutter M E, Fuhrmann J J. Soil microbial community responses to fly ash amendment as revealed by analyses of whole soils and bacterial isolates[J].Soil Biology & Biochemistry,2001, 33:1947-1958.
    73. Guerrero C, Moral R, Gomez I, et al. Microbial biomass and activity of an agricultural soil amended with the solid phase of pig slurries [J]. Bioresource Technology,2007,98:3259-3264.
    74. Eriksen J. Gross sulphur mineralisation-immobilization turnover in soil amended with plant residues [J]. Soil Biology and Biochemistry,2005,37(12):2216-2224.
    75.李华兴.天然沸石对土壤保肥性能的影响研究[J].应用生态学报,2011,12(2):239.
    76.朱建华,王英,徐杨.沸石在环境保护中的新应用[J].安全与环境学报,2001,2(1):3-7
    77.张宏伟,龙明杰,曾繁森.腐质酸接枝共聚物对赤红壤改良研究[J].水土保持研究,2001,(2):115-118.
    78.胡德春,李贤胜,尚健.不同改良剂对棕红壤酸性的改良效果[J].土壤,2006,38(2):206-209.
    79.魏由庆.从黄淮海平原水盐均衡谈土壤盐渍化的现状和将来[J].土壤学进展,1995,23(2):18-24.
    80.陈恩凤.有机质改良盐碱土的作用[J].土壤通报,1984,15(5):193-196.
    81.Sauta-CruzAna,AcostaManuel,etal.Short-termsalttolerancemechanismsindifferentiallysalttolerantto matospecies,PlantPhysiol[J].Biochem.,1999,37(1):65-71.
    82.IacchiniMAMarotta,MdeAgazio.Tolerancetosaltstressinmaiecalluslineswithdifferentpolyaminecont ent[J].PlantcellReports,1997,17(2).:119-122.
    83.DuaRP,SKSharma.Suitablegenotypesofguam(Cicerarietinum)andmechanismoftheirtolerancetosalin ity[J].IndianJoumalofAgriculturalSci.,1997,67(10).:440-443.
    84JGorham,RGWynJones,EMcDonnell.Somemechanismsofsalttoleranceincropplant[J].PlantandSoil, 1985,89(1):15-40.
    85.Abd-AllaMH,SAOmar.Wheatstrawandcellulolyticfungiapplicationincreasenodulation,noduleefficie ncyandgrowthoffenugreek(rigonellafoenum-graceumL.)growninsalinesoil[J].Biology andFertilityo fSoils,1998,26(1):58-65.
    86.Ashraf M,McNeilly T,Bradshaw A D..Selection and heritability of tolerance to sodium chloride in four orage species[J].Crop Sci.,1987,26:232-234.
    87.BentleyCF,etal. AgriculturalProduction:ResearchandDevelopmentStrategiesforthe 1980s[R].Conclu sionsandRecommendationoftheBonnConference.NewYork.1979,12-13.
    88.熊毅等.排水在华北平原防治土壤盐渍化中的重要意义[J].土壤,1962,(3).
    89.田昌玉,李志杰,等.影响盐碱土持续利用的主要环境因子演变[J]Agro-environandd-evelop,1998,15(2):34-35.
    90.王令钊.对富含石膏的盐渍化土壤作物抗盐性的探讨[J].土壤肥料,1997(3):5-8.
    91.李新举,张志国,等.秸杆覆盖对盐渍土水分状况影响的模拟研究[J].土壤通报,1999,30(4):176-177.
    92.樊润威,崔志祥,等.内蒙古河套灌区盐碱土覆膜对土壤生态环境及作物生长的影响[J].土壤肥料,1996,(3):10-12.
    93.王红梅.我国土地荒漠化及其防治对策[J].黑龙江环境通报,2004,28(2):42-43.
    94. Wallace A, Wallace G A. Effects of soil conditioners on emergence and growth of tomato, cotton and lettuce seedlings [J]. Soil Sci.,1986,141(5):313-316.
    95. Sojka R E, Lnetz R D, Westermann D T. Water and erosion management with multiple applications of polyacrylamide in furrow irrigation [J]. Soil Sci. Soc. Am. J.,1998,62: 1672-1680.
    96. Fanta,G.F.,R.C. Burr,et.al.J.Applied Polumer Sci.,1966,10 (5):929-931.
    97.李锦桂,李园春,殷温华.淀粉接枝聚丙烯酰胺系共聚物[[J].造纸化学品,1994,6(3):13-16.
    98.温国勇,温国华,王焕玲.玉米淀粉接枝丙烯酸钠合成高吸水性树脂[J].内蒙古大学学报(自然科学版),2002,33(3):292-294.
    99.左可胜,李建敏,等.淀粉接枝丙烯腈类吸水剂的制造工艺及其原理[J].西安工程学院学报,2002,24(1):76-78.
    100.肖传绪,杜晓燕,莫海涛,等.小质素作为包膜材料包裹尿素的缓释效果研究[J].干旱地区农业研究,2007,25(6):167-170,176.
    101.林海涛,江丽华,刘兆辉,等.生物可降解型自控缓释尿素养分释放规律的研究[J].山东农业科学,2009,11:69-72.
    102.肖强,王甲辰,左强,等.有机-无机复合材料胶结包膜肥料的研制及评价[J].应用生态学报,2010,21(1):115-120.
    103. Ge, J. J., Wu, R., Shi, X. H., Yu, H., Wang, M.,& Li, W. J..Biodegradable polyurethane materials from bark and starch. Ⅱ.Coating materials for controlled-release fertilize[J]. Journal of Applied Polymer Science,2002,86:2948-2952.
    104.应美清.壳聚糖包膜复混肥的研制及其养分释放特性的研究[D].杭州,浙江大学,2006.
    105.李华兴,李长洪,张新明,等.沸石对土壤养分生物有效性和土壤化学性质的影响研究[J].应用生态学报,2001,12(5):743-745.
    106. Man Park, Jong Su Kim, Choong Lyeal Choi,et al. Characteristics of nitrogen release from synthetic zeolite Na-P1 occluding NH4NO3 [J]. Journal of Controlled Release,2005,106:44-50.
    107.陈菁,臧小平,孙光明,等.利用硅藻土提高化肥肥效的研究[J].土壤通报,2003,34(6):551-553.
    108.孙美玲.硅藻土作载体的缓释复合肥研制[D].长春,吉林大学,2008.
    109.张昌爱,张民,李素珍.控释尿素硫膜对土壤性质和油菜生长的影响[J].土壤学报,2007,44(1):113-121.
    110.郑磊.硫包膜尿素与硫膜对水稻生长发育及土壤化学性质的影响[D].泰安,山东农业大学,2009.
    111. WANG Yuan-peng, LI Qing-biao, SHI Ji-yan, et al. Effect of sulphur on soil Cu/Zn availability and microbial community composition[J]. Journal of Hazardous Materials:2008,159:385-389.
    112.奚振邦.缓释化肥再认识[J].植物营养与肥料学报2006,12(4):578-583.
    113.陶杨,罗学刚.液体地膜材料的研究现状与进展[J].材料导报,2007,21(4):52-54.
    114.卢雪梅,刘紫鹃.木质素生物降解的化学反应机制[J].林产化学与工业,1996,16(2):75-82.
    115.黄益宗,冯宗炜,张福珠,等.农田氮损失及其阴控对策研究[J].中国科学院研究生院学报,2002,2:49-58.
    116.李小建,王德汉,张玉帅,等.多介质环境下木质素对化肥中N素迁移转化积累的影响[J].农业环境科学学报,2006,25(2):458-463.
    117. Wu Lan, Liu Ming-zhu, Liang Rui. Preparation and properties of a double-coated slow-release NPK compound fertilizer with superabsorbent and water-retention [J]. Bioresource Technology,2009,99:547-554.
    118.吴淑芳,吴普特,冯浩.高分子聚合物对土壤物理性质的影响研究[J].水土保持通报,2003,23(1):42-45.
    119. ELeyder,P.Boulanger.Utraviolet Absorption,Aqueous Solubility and Octanol-Water Partition for Several Phthalates[J].Bulletin of Environmental Contamination and Toxicology,1983,30:152-157.
    120. Charles A StaPles,Deunis R Peterson.The Environmental fate of Phthalate Esters:A Literature Review[J],Chemosphere,1997,35(4):667-749.
    121. Philip H.Howard,Sujit Banerjee,Kenneth H.Pobillard.Measurement of Water Solubilities, Octanol/Water Partition Coefficents and Vapor Pressures of Commercial Phthalate Esters[J].Environmental Toxicology and Chemisty,1985,4:653-661.
    122.吴淑芳,吴普特,冯浩,等.高分子聚合物对坡地产流产沙特征影响的研究[J].土壤学报,2005,42(1):167-170.
    123. Chiellini E., Corti A., Solaro R. Biodegradation of poly (vinyl alcohol) based blown films under different environmental conditions. Polymer Degradation and Stability[J],1999,64(2):305-312.
    124. Entry J.A., Sojka R.E., Watwood M, et al. Polyacrylamide preparations for protection of water quality threatened by agricultural runoff contaminants. Environmental Pollution[J],2002,120(2): 191-200.
    125. Sojka R.E., Entry A., Furhmann J.J.. The influence of high application rates of polyacrylamide on microbial metabolic potential in an agricultural soil[J]. Applied Soil Ecology,2006,32(2): 243-252.
    126. Sivapalan, S..Effect of polymer on soil water holding capacity and plant water use efficiency [C]. In Proceedings 10th Australian Agronomy Conference, Hobart, Tasmania, Australia,2001.
    127. Firouzeh Yazdani, Iraj Allahdadi and Gholam Abas Akbari. Impact of superabsorbent polymer on yield and growth analysis of soybean (Glycine max L.) under drought stress condition[J]. Pakistan Journal of Biological Sciences,2007,10(23):4190-4196.
    128. A. de Varennes,C.Cunha-Queda and A.R.Ramos.Polyacrylate polymers as immobilizing agents to aid phytostabilization of two mine soils[J].Soil Use and Management,2009,25:133-140.
    129. Jeaninel L. Kay-Shoemake, Marye E. Watwood, Rodrick D. Lentz, er al. Polyacrylamide as an organic nitrogen source for soil microorganisms with potential effects on inorganic soil nitrogen in agricultural soil[J]. Soil Biology& Biochemistry,1998,30(8/9):1045-1052.
    130. G. Qu, A. de Varennes and C. Cunha-Queda. Use of insoluble polyacrylate polymers to aid phytostabilization of mine soils:effects on plant growth and soil characteristics[J].Journal of Environment Quality,2010,39:168-175.
    131.化全县,周健民,王火焰,等.水溶性有机高分子对红壤磷吸附特征的影响[J].水土保持学,2005,19(3):5-8.
    132. James D. Stahl, Michael D. Cameron, Joachim Haselbach, et al. Biodegradation of superabsorbent polymers in soil[J].Environmental Science and Pollution,2000,7(2):83-85.
    133. Aamer Ali Shah, Fariha Hasan, Abdul Hameed, et al. Isolation of Fusarium sp. AF4 from sewage sludge, with the ability to adhere the surface of polyethylene[J]. African Journal of Microbiology Research,2009,3(10):658-663.
    134.杨越超,耿毓清,张民.膜特性对包膜控释肥养分控释性能的影响[J].农业工程学报,2007,23,11:23-30.
    135.鲁如坤.土壤农业化学分析方法[M],北京:中国农业科技出版社,2000.
    136.张夫道,王玉军,张建峰,等.纳米级甲基丙烯酸羟乙酯混合物肥料包膜胶结剂生产方法.中国,ZL200310116857.1,2006年10月11日.
    137.张夫道,王玉军,张建峰,等.纳米-亚微米级泡沫塑料混聚物肥料包膜胶结剂生产方法.中国,ZL200410088477.6,2006年10月11日.
    138.张夫道,张建峰,张俊等.纳米级粘上-聚酯混聚物肥料包膜胶结剂生产技术.中国,ZL02126009.5,2004年10月20日.
    139.张夫道,王玉军,张建峰.纳米-亚微米级聚乙烯醇混聚物肥料胶结包膜剂生产方法.中国,ZL200410091315.8,2009年10月28日.
    140.张夫道,张建峰,张俊,等.纳米级腐殖酸类混聚物生产方法及应用.专利号.ZL02123975.4,2006年2月1日.
    141.张夫道,张建峰,张俊等.一种多功能固沙保水剂生产方法.中国,ZL200310116855.2,2006 年4月5日.
    142.柯扬船,皮特.斯壮.聚合物—无机纳米复合材料[M],北京:化学工业出版社,2003.
    143. Wu Jihuai, Lin Jianming, Zhou Meng, etal. Synthesis and properties of starch-graft-polyaery amide/clays uperabsorbent composite [J]. Macromolecular Rapid Communications,2000,21 (15):1032-10343.
    144. Akelah, A. Novel utilizations of conventional agrochemicals by controlled release formulations[J].Materials Science and Engineering,1996, C4:83-98.
    145. Jarosiewicz,A.,& Tomaszewska, M.. Controlled-release NPK fertilizer encapsulated by polymeric membranes [J]. Journal of Agricultural and Food Chemistry,2003,51:413-417.
    146. TANG Shuan-hu, YANG Shao-hai, CHEN Jian-sheng, XU Pei-zhi, ZHANG Fa-bao, AI Shao-ying HUANG Xu. Studies on the Mechanism of Single Basal Application of Controlled-Release Fertilizers for Increasing Yield of Rice (Oryza safiva L.)[J]. Agricultural Sciences in China,2007,6(5):586-596.
    147. Xie Li-hua, Liu Ming-zhu, Ni Bo-li, ZHANG Xu, WANG Yan-fang. Slow-release nitrogen boron fertilizer from a functional superabsorbent formulation based on wheat straw and attapulgite[J].Chemical Engineering Journal,2010, doi:10.1016/j.cej.2010.12.082.
    148. S.M. Al-Zahrani. Utilization of polyethylene and paraffin waxes as controlled delivery systems for different fertilizers[J], Industrial & Engineering Chemistry.,2000,39:367-371.
    149. M.Y. Guo, M.Z. Liu, R. Liang, A.Z. Niu, Granular urea-formaldehyde slow-release fertilizer with superabsorbent and moisture preservation[J], Journal of Applied Polymer Science,2006,99: 3230-3235.
    150. Maria Tomaszewska, Anna Jarosiewicz. Encapsulation of mineral fertilizer by polysulfone using a spraying method[J]. Desalination,2006,198:346-352.
    151. A. Ombodi and M. Saigusa, Broadest application versus band application of polyolefin-coated fertilizer on green peppers grown[J], Journal of Plant Nutrition and Soil Science,2000,23(10):1485-1493.
    152.戴景瑞,鄂立柱.我国玉米育种科技创新问题的几点思考[J].玉米科学,2010,18(1):1—5.
    153.张四代,王激清,张卫峰,等.我国东北地区化肥消费与生产现状、问题及其调控思路[J].磷肥与复肥,2007,22(5):74-78.
    154.高强,刘振刚.吉林省有机无机肥料的生产和使用[J].磷肥与复肥,2008,23(5):59-59.
    155.代继光,宋丹,明亮,等.辽宁省有机肥料资源利用及发展前景[J].辽宁农业科学,2009,(3):59-60.
    156.李少昆,王崇桃.玉米生产科技农民需求调研报告[J].玉米通讯,2005,77.
    157.宋日,吴春胜,马丽艳,等.有机无机肥料配合施用对玉米根系的影响[J].作物学报,2002,28(3):393-396.
    158.周桦,马强,姜子绍,等.有机肥用量对玉米体内养分浓度及分配的影响[J].中生态农业学报,2009,17(4):647-650.
    159. Yang, S. M., Malhi, S. S., Jiang, R. S., Crop yield, nitrogen uptake and nitrate-nitrogen accumulation in soil as affected by 23 annual applications of fertilizer and manure in the rainfed region of Northwestern China[J]. Nutrient Cycling Agroecosystems,2006,76:81-94.
    160.范仲学,王璞,M. Boening-Zilkins,梁振兴,等.优化灌溉和施肥对冬小麦产量的影响[J].麦类作物学报,2003,23(4):99-103.
    161.沙之敏,边秀举,郑伟,等.最佳养分管理对华北冬小麦养分吸收和利用的影响[J].植物营养与肥料学报,2010,16(5):1049-1055.
    162.王宜伦,张许,谭金芳,等.农业可持续发展中的土壤肥料问题与对策[J].土壤肥料科学,2008,24(11):278-281.
    163.张夫道,王玉军,张建峰.我国有机肥料利用现状、问题和产业化[J].中国土壤学会第十次全国会员代表大会会议论文.2004.
    164.朱菜红,沈其荣,徐阳春.配施有机肥提高化肥氮利用效率的微生物作用机制研究[J].植物营养与肥料学报,2010,16(2):282-288.
    165. Barbara Krajewska.Application of Chitin and Chitosan-Based Material for Enzyme Immobilizations:a Review[J].Enzyme Microb Tech.2004,35:126-139.
    166. Leprince F;Quiquampoix H Extracellular enzyme activity in soil:effect of pH and ionic strength on the interaction with montmorillonite of two acid phosphatases secreted by the ectomycorrhizal fungus Hebeloma cylindrosporum 1996(4):1365-2389.
    167. Dong Y, Zhang H, Gao AC, Marshall JR, Ip C. Androgen receptor signaling intensity is a key factor in determining the sensitivity of prostate cancer cells to selenium inhibition of growth and cancer-specific biomarkers[J]. Molecular Cancer Therapeutics,4:1047,2005.
    168. Janpen Prakamhang, Kiwamu Minamisawab, Kamonluck Teamtaisong,et al.The communities of endophytic diazotrophic bacteria in cultivated rice (Oryza sativa L.) [J] Applied Soil Ecology 2009,42(2):41-149
    169. M. S. Girvan, J. Bullimore, J. N. Pretty, A. M. Osborn,. A. S. Ball, Appl. Environ[J]. Microbiol. 2003,69:1800.
    170. Griffin, T.S. Estimates of gross transformation rates of dairy manure N using 15N pool dilution[J]. Communications in Soil Science and Plant Analysis,2007,38:1451-1465.
    171. Amebrandt.Changes in micro2 fungal community st ructure after fertilisation of Scots pine forest soil with ammonium nit rate or urea[J]. Biology and Fertility of Soils,1990,22:309-312.
    172. Yunfu Gu., Xiaoping Zhang., Shihua Tu., Mauritz Vestberg., Kristina Lindstrom. Soil microbial biomass, crop yields, and bacterial community structure as affected by long-term fertilizer treatments under wheat-rice cropping[J]. European Journal of Soil Biology.2009,45(3):239-246.
    173.孙保平.荒漠化防治工程学[M],北京:中国农业出版社,2000.8.
    174.杨中喜,岳云龙,陶文宏.高性能固沙材料的开发与研究[J],济南大学学报(自然科学版),2002,16(1):71-73.
    175.丁庆军,许祥俊,陈友治.化学固沙材料研究进展[J],武汉理工大学学报,2003,25(5):27-29.
    176.李臻,王宗玉,胡英娣.新型化学固沙剂的试验研究[J].石油工程建设,1997,(2):3-6
    177.龚云表,石安富.合成树脂与塑料手册[M].上海:上海科学技术出版社,1993.661-662,628630-631.
    178.饶少敏.分光光度法测定废水中COD[J].分析测试技术与仪器,2005,11(2):111-113
    179.张夫道.长期施肥条件下土壤养分的动态和平衡——Ⅱ.对土壤氮的有效性和腐殖质氮组成的影响[J].植物营养与肥料学报,1996,2(1):39-48.
    180. LIU Xiu-mei,FENG Zhao-bin,ZHANG Shu-qing et,al.Effect of Nano-subnanocomposites on contents and distribution of organic C,total N and P in soil organic-mineral granules in drab fluvo-aquic soil[J],Plant Nutrition and Fertilizing Science,2007,13(1):57-63.
    181.尹文英等著.中国土壤动物[M].北京:科学出版社,2000:8-10.
    182.张夫道等著.中国土壤生物演变及安全评价[M].北京:中国农业出版社,2006:34-36.
    183.张建峰,姜慧敏,李桂花,杨俊诚,张夫道.微生物对水溶性聚合物的生物降解作用[J].农业环境科学学报.2009,28(3):956-960.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700