用户名: 密码: 验证码:
蚕豆油壶菌火肿病(Olpidium viciae Kusano)研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蚕豆油壶菌火肿病(Broad bean blister),由野豌豆油壶菌(Olpidium viciae Kusano)引起,病部细胞增生呈瘤状突起。蚕豆油壶菌火肿病仅在日本东京和中国四川及邻近省的局部地区有发生,该病已成为四川西北高原地区阿坝藏族自治州及邻近地区蚕豆生产上的重要病害。迄今较深入的研究论文仅有3篇,其中日本真菌学家Shunsuke Kusano在1912年对野豌豆油壶菌的生活史和细胞学、野豌豆油壶菌与寄主的关系进行了较系统研究;1984年辛哲生报道了四川省松潘县蚕豆火肿病发生危害与防治的初步研究结果。蚕豆油壶菌火肿病的其它研究未见报道,为此对该病害开展了较为系统深入的研究,并取得了明显进展,在病原生物学、病理组织学、病理生理学和分子生物学研究方面有所创新。
     1.蚕豆火肿病的症状
     蚕豆火肿病主要危害蚕豆叶和茎,也危害叶柄和果柄,但不危害果荚。病部最初出现稍褪绿的近圆形斑痕,随病情发展病斑表面稍显粗糙,并不断向上增生隆起,形成小的瘤状突起。病瘤单生或群生,可相互愈合成不规则状。受害严重时,病叶畸形,植株矮小。病部形成小的瘤状突起、表面稍显粗糙,是本病的标志性特征,是诊断本病的重要依据。本研究完善了蚕豆油壶菌火肿病的症状特征,明确了蚕豆豆荚上的疱状突起不是本病的症状,从而为准确诊断和防冶蚕豆油壶菌火肿病提供了科学依据。
     2.蚕豆火肿病的病原
     蚕豆火肿病病原菌寄生在蚕豆叶、茎和果柄表皮细胞内。营养体为单细胞圆形原生质团,营养体整体产果。无性繁殖结构为游动孢子囊,一般为球形,大小变化较大,一般为12.95~62.16μm,平均28.84μm。游动孢子囊萌发产生游动孢子,通过排孢管(孔)释放。游动孢子卵圆形或球形,大小为4.1-5μm,平均为4.47μm。尾部具一根鞭毛,鞭毛长24-3lμm,平均为26.56μm。游动孢子可作为同形游动配子结合,形成双鞭毛圆形的接合子。接合子侵染蚕豆,在表皮细胞内形成休眠孢子囊。休眠孢子囊圆形厚壁,形状大小较一致,大小为19-31μm,平均为25.51μm,平均壁厚3.81μm。一个寄主细胞中的数目可多达60个以上,休眠孢子囊大多形成在病害后期。对该菌的形态学研究表明:四川蚕豆火肿病是由野豌豆油壶菌(Olpidium viciae Kusano)引起。该菌的分类地位属鞭毛菌亚门、壶菌目、油壶菌科、油壶菌属。
     对蚕豆火肿病菌的生物学研究结果表明:病斑表皮组织中的游动孢子囊成熟后,遇雨水即可萌发,释放出游动孢子。游动孢子囊萌发的温度范围为0-18。C,在18℃下萌发就受到明显抑制,在20℃、25℃和30。C下不能萌发。光照或黑暗对游动孢子囊萌发没有明显影响。K、Na盐离子溶液对孢子囊萌发有一定抑制作用,浓度分别达到80mmo1/L、100mmol/L时,游动孢子囊萌发就几乎被抑制。pH对游动孢子囊萌发也有一定影响,萌发的pH范围为pH5-8,以pH7-7.5最适。温度影响游动孢子的游动时间长短,在0-30℃范围内,随温度升高,游动时间逐渐缩短。在0-5℃下保持游动时间最长可达72h以上,10℃下可达24h,15℃和20℃下可保持10h,25℃下为3h,30℃下仅可保持游动5min。温度对游动孢子侵染及发病有明显影响,在5℃下能成功侵染,但不产生明显症状。侵染和引起发病的温度范围为10~25℃,30。C及以上温度不能侵染和发病。最适侵染和发病的温度为10-20℃。接种游动孢子引起侵染和发病的保湿时间为12h以上。叶龄影响病菌的侵染和发病,幼叶有利侵染和发病。
     病组织中的休眠孢子囊必须经过越夏和越冬后,有水存在时才能萌发产生游动孢子。萌发的温度范围为5-30℃,在17℃左右温度下,经4h即可产生游动孢子。病组织中的休眠孢子囊萌发极不整齐,休眠孢子囊释放游动孢子的方式与游动孢子囊的释放方式相同。
     3.蚕豆火肿病的发生规律
     四川蚕豆火肿病的发生与分布局限在四川西北部高原的阿坝藏族自治州海拔2400m以上的春播蚕豆生态区。病害的循环和发病特点是:病菌以休眠孢子囊随病残体在土壤中越夏和越冬,作为初侵染源。次年春播蚕豆后,休眠孢子囊萌发产生游动孢子侵染蚕豆幼苗,病害始发期在5月。田间发病后,病菌不断产生游动孢子囊,在有雨露时游动孢子囊萌发释放游动孢子进行再侵染。在蚕豆生长期中病菌的再侵染频繁,病害在田间扩展迅速,在蚕豆进入开花和始荚期,病害进入高峰期;蚕豆进入结荚期后,病菌形成休眠孢子囊,病害发展趋于停止。病菌的游动孢子藉风雨在田间近距离传播。连作和施用带有病残体的厩肥有利于发病。目前生产上种植和供抗性鉴定的40多个蚕豆材料均不同程度感病,缺乏抗病品种。病害传播风险的初步结果表明:病区当年的病残体菌源对盆地内秋播蚕豆区不构成侵染发病的危险。
     4.蚕豆火肿病的组织病理学
     野豌豆油壶菌侵入蚕豆叶和茎的表皮细胞后,定殖在侵入的细胞内,菌体生长发育,整体产果,形成游动孢子囊和休眠孢子囊。病菌的侵染刺激了侵染点邻近的表皮细胞和其下的叶肉组织或茎的皮层组织细胞,这些已分化的组织细胞转为分生细胞,进行分裂,分裂方式为平周分裂。原有的正常基本组织细胞被未高度分化的薄壁组织细胞取代。这些细胞具有分生能力并不断分裂,细胞体积增大,造成蚕豆病组织细胞发生畸形增生的病理解剖改变,病部呈瘤状隆起。这是蚕豆油壶菌火肿病症状产生的病理组织学机制,也反映了野豌豆油壶菌和蚕豆在细胞和组织水平上的相互作用。
     5.蚕豆火肿病的病理生理
     蚕豆火肿病的症状特点主要是受病部位产生瘤状突起,病部细胞逐渐褐变坏死。这种畸形的病理改变预示着受病菌侵染后,寄主组织中的植物激素发生了异常变化;受病组织逐渐褐变坏死,显示抗氧化保护酶活力改变,细胞受到伤害,最终坏死。为深入了解蚕豆火肿病发生病理改变的生理机制,测定了病组织中的植物激素含量、抗氧化保护酶活性和丙二醛含量。结果表明,病害初期组织中的ZT和KT含量大幅上升,IAA和GA。含量也有一定程度增加,它们共同刺激蚕豆病部细胞大量分裂、增生和体积逐渐膨大,病部开始隆起;在病害初期ABA含量也大量增加,表现为蚕豆幼苗被害,植株矮化畸形、生育期严重滞后,而成株被害,受病叶片提前衰老、易脱落。在病害中后期组织中的GA3含量急剧增加,是健康组织的3倍,ZT和KT仍维持一定幅度增量,但增量率明显降低,使得病害早期大量分裂增生的细胞在病害中后期迅速膨大,病部异常隆起;ABA在病害中后期也有较大增量,使病部细胞褪绿褐变,最终坏死,受病叶片脱落;而IAA在病害中后期呈现负增长,这是寄主感病的生理表现。受病组织中抗氧化保护酶活力测定的结果表明:病、健组织中的SOD、POD活力在病害初期没有明显差异,在病害中后期病组织均显著高于健康组织,说明病菌侵染破坏了寄主本身正常活性氧消除机制的平衡,导致体内活性氧积累,诱导抗氧化保护酶SOD和POD活性增强,是感病的生化表现。而CAT活力在病程初期和中后期,病组织均极显著低于健康组织。己知CAT和H202具有较高的亲和力,CAT活力降低导致组织中的H202积累,加重对组织的损伤。组织中的MDA含量在病害中后期极显著高于健康组织,说明病部组织细胞生物膜损伤加剧,这种不可逆的伤害使细胞最终破坏解体、组织溃烂。这些结果反映了蚕豆火肿病症状产生的病理生理机制,也揭示了蚕豆火肿病病程中组织细胞内主要抗氧化保护酶的病理变化特点。
     6.野豌豆油壶菌的分子生物学研究
     通过提取病斑组织的总DNA,采用真核生物内转录间隔区通用引物ITS1/ITS4进行扩增,获得了病菌的ITS序列;回收此序列测序,GenBank登记号为HQ677595.1,补充了野豌豆油壶菌的分子生物学研究资料。将病菌与其它真菌进行比对,显示与甘蓝油壶菌(Olpidium brassicae)和瓜类油壶菌(Olpidium bornovanus=O.radical)亲缘关系最近,从分子角度阐释了野豌豆油壶菌与其它油壶菌的分类关系。采集不同地区蚕豆火肿病样本,扩增病菌的ITS序列并进行多态性分析,它们的同源性高达99%以上,说明野豌豆油壶菌ITS序列的保守性高。针对野豌豆油壶菌ITS序列设计一对特征性引物P1/P2,通过优化扩增条件,能够从病斑组织总DNA中特异性扩增病菌的ITS序列,灵敏度达10pg rDNA,对于火肿病的早期检测和病原菌鉴定有实际应用价值。
Broad bean blister is caused by Olpidium viciae Kusano, characterizing by strumae of cell proliferation in lesion spots. Broad bean blister has only been found in Tokyo of Japan, Sichuan and some areas of its neighboring provinces in China. It is the most important disease occurred in broad bean in Northwestern Plateau of Sichuan province, especially in Aba Autonomous Prefecture and its neighboring areas. Till now, only three research papers were found in deep study of broad bean blister. The life-history and cytology of O. viciae, and the host-parasite relationship in Olpidium were studied by Shunsuke Kusano in1912. Broad bean blister was happened in Songpan county, Sichuan province what was reported first in China by Xin Zhesheng in1984. There were not reported on other aspects except studies of the broad bean blister mentioned above. Comprehensive studies of broad bean blister were carried out, some significant progresses and innovations were made especially on pathogen, histopathology, histophysiology and molecular biology.
     1. Symptoms of Broad Bean Blister Disease
     Broad bean blister mainly appeared on the leaf and stalk, sometimes also on petiole and carpopodium, but not pod. The early appearance of its symptom was light green nearly round spots, the surfaces of the spots appeared rough with development, proliferated gradually to form intumescent and strumae finally. The strumae was solitary or colonial, was able to fuse into irregular shape. The severe infected plants were pygmyism and leaves were dysmorphosis. Strumae and slightly rough surface were considered as characterization symptom for the broad bean blister, which are the important basis for the diagnosis. This study identified the characterization symptom for diagnosis of broad bean blister, clarified that the blister on bean pod was not the characteristic symptom, which provided scientific basis to diagnose, prevent and control this disease accurately.
     2. Etiology of Broad Bean Blister Disease
     The pathogen of broad bean blister inhabited in epidermal cells of broad bean leaf, stalk and carpopodium. The fungus body was unicellular and round protoplast, holocarpic reproduction. The vegetative propagation state of O. viciae was zoosporangium, usually sphere, variation in size,12.95~62.16μm in diameter, with an average value of28.84μm. Zoospores were germinated from mature zoosporangium and liberated through spore tubes (holes). Zoospore was oval or spherical,4.1~5μm in size, with an average value of4.47μm. Each zoospore was constituted of a long posterior cilium,24~31μm long with an average value of26.56μm. Zoospore was able to function as motile isogamete and fused together to form zygote with two cilia. Resting sporangium were found in epidermal cells after zygote infected broad bean. Resting sporangium was spherical with thick wall (average value of3.81μm), has approximately uniform size with19~31μm (average value of25.51μm). Resting sporangium was mainly formed at the later period of infection and its number was able to reach more than60in a host cell. According to the morphology, the isolated microorganism was identified as O. viciae which is the disease agent of broad bean blister occurred in Sichuan province. It belongs to the genus Olpidium of the family Olpidiaceae, Chytridiales, Mastigomycotina in taxonomy.
     Biological studies on O. viciae indicated the mature zoosporangium in epidermal cells of disease spots was able to liberate zoospores once in the presence of rain water. The temperature range of germination of zoosporangium was from0to18℃, it will be significantly inhibited below18℃, and was unable to germinate at20℃,25℃and30℃. Light or dark did not result in distinct influence on germination of zoosporangium. K+and Na+inhibited the germination to some degree, and completely inhibited the germination when their concentration reached80or100mmol/L. pH also affected the germination of zoosporangium to some degree, and it was germinated at pH values from5to8, with optimum value between7and7.5. The swarming period of zoospores were depended largely upon the temperature, gradually shortened with temperature increase. The zoospores were able to swim for72h between0and5℃; for24,10, and3h below10,20and25℃, respectively; for only5min when temperature raised to30℃. Temperature apparently affected infection and morbidity of zoospores to plants. Infection and morbidity occurred between10and25℃, no apparent symptom observed at5℃although infection occurred, and both were not observed at30℃or above it. The optimum temperature for infection and morbidity was between10and25℃. The time of keeping high humidity for infection and morbidity of zoospores was12h or longer. Leaf age affected infection and morbidity of zoospores, and young leaves were favorable.
     In the presence of water, zoospores were liberated from resting sporangium that lived through the summer and the winter. The temperature range of germination was between5and30℃, and zoospores were liberated in4h at17℃. The speed of germination in resting sporangia was extremely different. However the release mode of zoospores was the same with zoosporangium.
     3. Occurences and Dynamic of Broad Bean Blister Disease
     Outbreak and distribution of broad bean blister were limited in ecological zone above2400m altitude suitable for spring broad bean growth, Aba Tibetan Autonomous Prefecture, Northwestern Plateau of Sichuan province. Life cycle and clinical characteristics of this disease were as follows:The resting sporangia of O. viciae were lived with sick plant residue through summer and winter together, which was the agent for early infection. Zoospores liberated from resting sporangium would infect seedlings of broad bean in next spring, and then the symptoms of disease were found early in May. Zoosporangiums were constantly reproduced after the disease occurred in field, liberated zoospores with the presence of rain or dew for secondary infection. With highly repeated secondary infection, the disease spread quickly in the field and reached peak outbreak in flowering and pod formation stages, after that formed resting sporangium in following pod stage and then stopped gradually. This disease was able to spread in short distance by wind and rain. Continuous cropping and application of animal manure in which sick plant residue existed could cause this disease seriously. No disease-resistant breed is available in all the44breeds used for planting and disease-resistant identification. Pathogen in the sick plant residue from the same year did not infect autumn broad bean in basin zone according to preliminary epidemiological analysis.
     4. Histopathology of Broad Bean Blister Disease
     To understand the histopathology of broad bean blister caused by O. viciae, the anatomy of epidermal tissues and cross sections of leaf and stem of broad bean, and the growth of the fungus in host cells were observed with light microscope. The results showed that the pathogen infected and parasitized in the epidermal cells of leaf and stem. The whole thallus of the pathogen was converted into a zoosporangium or a resting sporangium. The host responded quickly to the invasion. Once the fungal body in the individual infected cells began to develop, the epidermal cells adjacent infected cell and differentiated cells (including mesophyll cells of leaf and cortex cells of stem) beneath the immediate area of invasion of the pathogen were stimulated to meristematic activity and converted into meristematic cells. The cells of normal basic tissues were replaced by the cells of largely undifferentiated parenchyma with capacity of division. These cells continued to dividing by periclinal or radial division resulting in hyperplasia at local infected site. This histopathological change of hyperplasia was the mechanism of inducing symptom of broad bean blister. The result also indicated the interaction of the pathogen and broad bean at cytological and histological level.
     5. Pathological physiology of Broad Bean Blister Disease
     Broad bean blister was characterized by strumae as major symptom in infected spots, caused brown stain and necrosis of infected cells. The abnormal pathological change indicated phytohormones changed in host tissues, the activity of antioxidant enzymes in disease tissues changed evidenced by brown stain and necrosis of infected tissues, and then hurt cell to death. In order to deep understand the histophysiology of broad bean blister, concentrations of phytohormones, activity of antioxidant enzyme and concentrations of malonaldehyde in diseased tissues were tested in this study. Results showed that concentrations of ZT and KT increased greatly, together with slight increase in IAA and GA3in early stage. They stimulated cells that were divided and proliferated in diseased tissue, which beginning make the spot verrucose in the early stage. At the same time, increased ABA hurt seedling of broad bean plants, caused them to dwarfing and dysmorphia, delayed their growth stage; damaged old plants and made their leaf pro-senescence and easy to abscission as results. Concentrations of GA3increased dramatically in the late-mid-period of infection, higher than that in health tissue by3times, slight increases were observed for both ZT and KT, as a result, cells what were divided and proliferated in early stage were swelled quickly, which making spot verrucose seriously. ABA increased to some degree in these stages, caused infected cells chlorisis and brown stain, Ultimately Death and leaf senescence. However, concentrations of IAA decreased in the late-mid-period, which was reflected the physiological response of suscept. In the early stage, the analysis of antioxidant enzymes activity in diseased tissues indicated that there are no significant differences of both SOD and POD in diseased tissue compared with health tissue as control; however both of them significantly increased in diseased tissues in late-mid-stages. Because active oxygen removing system was disrupted and active oxygen accumulated in the cells of spot. So, the increased activity of SOD and POD was the biochemical characteristic by infection. Activity of CAT in diseased tissues what in early or in late-mid-stage was lower than that in health tissues. It is well known CAT has high affinity to H2O2, so the decreased CAT led to accumulation of H2O2and then damaged the infected tissues deeply. The concentrations of MDA was higher significantly in diseased tissues in late-mid-stage indicated damages to cellular membrane were intensified, and the inreversible damages disrupted cell and ulcerated tissues finally. These studies uncovered the histophysiological mechanism of symptom caused by broad bean blister, and also discovered the change characteristics of major antioxidant enzymes in diseased tissues in the whole process of broad bean blister.
     6. Molecular biology of O. viciae
     The Internal Transcribed Spacer (ITS) was amplified with universal primers ITS1/ITS4using total DNA isolated from infected tissues, further identified by sequencing and deposited at NCBI GenBank under accession number HQ677595.1, which added new information of molecular biology for O. viciae. It was most closely related to Olpidium brassicae and Olpidium bornovanus=O radical, elucidated that taxonomic relationships of O. viciae and other Olpidiums at molecular biology level. The ITS sequences were amplified, compared and analyzed for polymorphism using broad bean blister samples collected from different regions, and the homology was reached above99%, which indicates the ITS sequence of O. viciae is highly conservative. Using designed primers of P1/P2, ITS of O. viciae was amplified specifically from diseased tissues with sensitivity of10pg rDNA after optimizing the amplification conditions, and it had practical value for application in early detection and pathogenic identification of broad bean blister when the characteristic symptom did not appear.
引文
[1]刘镇绪编译.国外蚕豆研究概况.云南农业科技,1981,05,23-30
    [2]周秀涛.中国的蚕豆生产与研究[M].上海农业科学院作物育种、栽培研究所
    [3]游修龄.蚕豆的起源和传播问题.自然科学史研究,1993,12(2):166-173
    [4]刘玉皎,郭兴莲,袁名宜,等.青海省蚕豆产业持续高效发展的问题探讨.青海农林科技,2002,(2):18-20
    [5]姚玉璧,邓振墉,王毅荣,等.甘肃省蚕豆气候生态条件及适生种植区划研究.干旱气象,2005,23(1):58-62
    [6]郭延平,李小宇,杨生华.甘肃省蚕豆生产现状与产业化发展对策.杂粮作物,2002,22(6):350-354
    [7]白淑萍.春蚕豆的生态位适宜度和生产潜力分析.农村开发,1995,(1):47-78
    [8]王佩芝.青蚕豆优异种质产量鉴定初报.作物学报,1996,22(2):254-256
    [9]常吃蚕豆的好处.求医问药,2008
    [10]陈国深,冯丽萍,陈爱娜,等.种植蚕豆对减轻农田面源污染的作用探讨.云南农业科技,2009,(2):61-63
    [11]梁凤全,蒋学彬.蚕豆生产的现状与发展对策.阿坝科技,1998,(1):21-28
    [12]叶茵.中国蚕豆学[M].北京:中国农业出版社,2003
    [13]李华英,黄文涛,杨成灿,等.中国蚕豆(Vicia Faba L.)种植地区分布及其生产区划.青海农林科技,1990,(2):1-6
    [14]杨武云,余冬梅,罗菊枝.四川蚕豆育种及生产现状.四川农业科技,2003,(10):14-14
    [15]Shunsuke Kusano. Broad bean blister [J]. Journal of disease and pest,1936,11 (4):360-426
    [16]辛哲生,熊春兰,欧钰,等.川西北高原蚕豆油壶菌疱疱病的初步研究.植物保护,1982,(2):18-19
    [17]Shunsuke Kusano. On the Life-History and Cytology of a new Olpidium with special Reference to the Copulation of motile Isogametes. Journal of The College of Agriculture (IMPERIAL UNIVERSITY OF TOKYO),1912,4 (3):142-199
    [18]Shunsuke Kusano. The Host-parasite Relationship in Olpidium. Journal of The College of Agriculture (IMPERIAL UNIVERSITY OF TOKYO),1932,11 (4):360-426
    [19]辛哲生,熊春兰,张永华.蚕豆油壶菌疱疱病防治的初步研究.植物病理学报,1984,14(3):165-173.
    [20]王敏生.蚕豆疱疱病发生危害情况调查.农业科技情报(甘肃),1990,(1):29-30
    [21]贺澄.蚕豆疱疱病生产调查及防治试验初报.农业科技情报(甘肃),1990,(1):31-32
    [22]张延礼,王生元,祁效林.蚕豆疱疱病发生规律及防治研究.甘肃农业科技,1993,(12):37-39
    [23]辛哲生,张永华.三唑酮拌种防治蚕豆疱疱病效果好.植物医生,1996,(1):18-18
    [24]林晓民,李振岐,侯军,等.中国菌物[M].北京:中国农业出版社,2007
    [25]邵力平,沈瑞祥,张素轩,等.真菌分类学[M].北京:中国林业出版社,1984
    [26]张中义,冷怀琼,张志铭,等.植物病原真菌学[M].成都:四川科学技术出版社,1988
    [27]刘志恒.现代微生物学[M].北京:科学出版,2002
    [28]Campbell R N, Sim S T. Host specificity and nomenclature of Olpidium bornovanus (=Olpidium radicle) and comparisons to Olpidium brassicae[J]. Can J Bot,1994,72:1136-1143
    [29]Lange L, Insunza V. Root-inhabiting Olpidium species:the O. radical[j]. Trans Br Mycol Soc,1977,69:377-384
    [30]Teakle D S, Thomas B J. Effect of heat on zoospore motility and multiplication of Olpidium radical and O. brassicae[J]. Ann Appl Biol,1985,107:11-15
    [31]魏景超.真菌鉴定手册[M].上海:科学技术出版社,1979
    [32]蒋军喜,羊大进,张景凤,等.寄生甜菜根部油壶菌(Olpidium sp.)种的鉴定.江西农业大学学报,1999,21(4):529-532
    [33]M. de Cara; V. Lopez; M. C. Cordoba; et al. Association of Olpidium bornovanus and Melon necrotic spot virus with Vine Decline of Melon in Guatemala. Plant Disease,2008,92(5):709-713
    [34]Teakle D S. Association of Olpidium brassicae and tobacco necrosis virus[J]. Nature,1960,188(3):431-432.
    [35]Lot H, Campbell R N, Souche S, et al. Transmission by Olpidium brassicae of Mirafiori lettuce virus and Lettuce big-veinvirus, and their roles in Lettuce Big-Vein Etiology[J]. Phytopathology,2002,92(5):288—293.
    [36]Campbell R N, Lot H, Souche S, et al. Fungal transmission of plant viruses[J]. Anna Rev phytopathol,1996, 34:87-108.
    [37]蒋军喜,张景凤,车少臣,等.甜菜黑色焦枯病毒经介体油壶菌传毒的研究[J].江西农业大学学报,1999,21(4):525-528.
    [38]刘仪,张力,高锦梁,等.植物病毒的真菌介体[A].裘维藩.病毒与农业[M].北京:科学出版社,1986,88-98.
    [39]Temmink J H M, Campbell R N, Lot H, et al. Specidicity and site of in vitro acquisition of tobacco necrosis virus by zoospores of Olpidium brassicae[J]. J Gen Virol,1970,9(2):201-213
    [40]Dias H F, Campbell R N. Transmission of cucumber necrosis virus by Olpidium cucurbitacearum Barr and Dias[J]. Virology,1970,40(6):829-839.
    [41]张景凤,蒋军喜,丁群,等.甜菜黑色焦枯病毒经介体油壶菌传毒的研究[A].刘仪.植物病害研究与防治[c].北京:中国农业科技出版社,1998
    [42]Temmink J H M, Campbell R N. The uhrastructure of Olpidium brassicae. I. Formation of sporangia[J]. Carl J Bot,1968,46(8):951-956.
    [43]曾士迈,杨演.植物病害流行学[M].北京:农业出版社,1986
    [44]Richard N.Strange. Introduction to Plant pathology.北京:化学工业出版社,彭友良等译,2007
    [45]Zeng S M. On the mathematical analysis of the epiphytotics of wheat stripe rust:Ⅰ. rate of epidemic(in Chinese)[J]. Acta Phytophyl. Sin.(植物病理学报),1962,1:35-48
    [46]Zeng S M. On the mathematical analysis of the epiphytotics of wheat stripe rust:Ⅱ. distance of spread(in Chinese)[J]. Acta Phytopatho 1. Sin.(植物病理学报),1963,6:141—150.
    [47]曾士迈.抗病性持久度的估测(Ⅱ)-小麦条锈病抗病性持久度的模拟研究.植物病理学报,2002,32(2):103-113
    [48]曾士迈.小麦条锈病越夏过程的模拟研究.植物病理学报,2003,33(3):267-278
    [49]Zeng S M, Luo Y. Long-distance spread and interregional epidemics of wheat stripe rust in China. Plant Dis., 2006,90:980-988
    [50]Zeng S M, Luo Y. Systems analysis of wheat stripe rust epidemics in China. European Journal of Plant Pathology, 2008,121:425-438
    [51]李保华、徐向明.植物病害时空流行动态模拟模型的构建.植物病理学报,2004,34(4):369-375
    [52]骆勇.植物病害分子流行学概述.植物病理学报,2009,39(1):1-10
    [53]O'Connell R J, Herbert C, Sreenivasaprasad S. A novel Arabidopsis-Colletotrichum pathosystem for the molecular dissection of plant fungal interactions[J]. Mol. Plant Microbe Interact.,2004,17:272-282.
    [54]Wharton P S, Julian A M,O'Connell R J. Ultrastructure of the infection of Sorghum bicolor by Colletotrichum sublineolum[J]. Phytopathology,2001,91:149-158.
    [55]Latunde D, Colletotrichum A O. Tales of forcible entry, stealth, transient confinement and breakout[J]. Mol. Plant Pathol.,2001(2):187-198.
    [56]邢梦玉,郑服丛.水稻叶片对稻瘟菌侵染反应的超微结构变化.热带作物学报,2008,29(1):102-105
    [57]田呈明,梁英梅,康振生,等.青杨叶锈病菌(Melampsora larici-populina Kleb.)侵染过程的超微结构研究.植物 病理学报,2002,32(1):71-78
    [58]白志英,王冬梅,侯春燕,等.小麦叶锈菌侵染过程的显微和超微结构.细胞生物学杂志,2003,25(6):393-397
    [59]冯东昕,朱国仁,李宝栋.菜豆锈病菌侵染对寄主超微结构的作用.植物病理学报,2001,31(3):246-250
    [60]陆敏,吴明勤,王金友.苹果链格孢菌侵染对感病苹果品种叶细胞超微结构的影响.植物病理学报,1995,25(1):47-50
    [61]张敬泽,胡东维,徐同.柿树炭疽菌侵染柿树叶柄的超微结构观察.植物病理学报,2005,35(5):434-441
    [62]Perfect S E, O'Connell R J, Green E F, et al. Expression cloning of a fungal proline-rich glycoprotein specific to the biotrophic interface formed in the Colletotrichum bean interaction. Plant,1998,15:273-279
    [63]史娟,韩青梅,张宏昌,等.苜蓿假盘菌侵染苜蓿叶片的细胞学研究.菌物学报,2008,27(2):183-192
    [64]左豫虎,康振生,黄丽丽,等.大豆疫霉菌对大豆下胚轴侵染过程的细胞学研究.植物病理学报,2005,35(3):235-241
    [65]兰景华.感染白粉菌小麦叶片细胞的超微结构变化[J].西南农业大学学报,1992,14(4):289-291
    [66]杨若林,刘建云,吕欣,等.白粉菌侵染对小麦叶片显微及超微结构的影响.西北植物学报,2001,21(2):293-296
    [67]芦光新.禾白粉病菌侵染小麦叶绿体超微结构的研究.青海大学学报(自然科学版),2008,26(1):41-43
    [68]杨谦.核盘菌侵入油菜超微结构及侵染机制的研究.植物病理学报,1994,24(3):245-249
    [69]王宽仓,K.门德根,许海新,等.豌豆尖孢镰刀菌初侵染过程研究.云南农业大学学报,1998,13(3):287-293
    [70]薛春生,赵志伟,肖淑芹,等.玉米弯孢菌侵染过程的组织学观察.玉米科学,2010,18(4):139-141
    [71]李健强.小麦被白粉菌侵染所致结构、化学变化及其与抗病性的关系.植物病理学报,1997,27(4):289-292
    [72]文成敬,陶家凤.细胞乳突的形成和小麦白粉菌成功侵染的关系,植物病理学报,1989,19(1):17-20
    [73]胡东维,李振岐,康振生.小麦抗白粉病菌侵染乳突反应的超微结构研究.植物病理学报,1998,28(4):309-316
    [74]Hu Dongwei, Li Zhenqi, Kang Zhensheng. Ultrastructure and Cytochemistry of Papilla Response in Wheat against Attack by Blumeria graminis f. sp. tritici. Journal of Zhejiang Agricultural University 1998 24(5):502-508.
    [75]胡东维,李振岐,康振生.小麦抗白粉菌初侵染过敏性反应的细胞学研究.浙江农业大学学报1997,23(4):399-404
    [76]李健强.三唑酮种衣剂在小麦种苗上的药理学及防治小麦白粉病作用机理[D].北京,中国农业大学博士学位论文,1996
    [77]余仲东,李琰,李等武.两类专性寄生真菌侵染植物的组织学染色技术初步研究.武汉植物学研究,2005,23(6):588-591
    [78]胡剑,王国英.玉米感染肿囊腐霉后寄主-病原物互作的超微结构研究.植物病理学报,2002,32(3):241-246
    [79]BENHAMOU N. Ultrastructural and cytochemical aspects of the response of eggplant parenchyma cells in direct contact with verticillium-infected xylem vessels.Physiological and Molecular Plant Pathology,1995,46(4):321-338
    [80]REY P., BENHAMOU N.,WULFF E., et al. Interactions between tomato (Lycopersicon esculentum) root tissues and the mycoparasite Pythium oligandrum. Physiological and Molecular Plant Pathology,1998,53(2):105-122
    [81]曾思海.杉木球果果鳞受顶枯拟盘多毛孢侵染后细胞结构变化的电镜观察.福建林业科技,1998,25(4):30-32
    [82]冯东昕,朱国仁,李宝栋.菜豆锈病菌侵染对寄主超微结构的作用.植物病理学报,2001,31(3):246-250
    [83]张敬泽,胡东维,徐同.柿树炭疽菌侵染寄主的细胞学研究.菌物系统,2003,22(4):645-652
    [84]张元恩,杨爱东,翟彤.小麦慢锈品种’平原50'上条锈菌侵染的超微结构观察初报.中国农业大学学报,1997.2(1):95-101
    [85]马青,商鸿生.小麦与条锈病菌不亲和互作的超微结构.植物病理学报,2002,32(4):306-311
    [86]田呈明,梁英梅,康振生,等.青杨叶锈病菌(Melampsora larici-populina Kleb.)侵染过程的超微结构研究.植物病理学报,2002,32(1):71-78
    [87]Aist J R, Bushnell W R. Invasion of plant by powdery mildew fungi, and cellular mechanism of resistance[A]. Cole G T, Hoch H C. The Fugal Spore and Disease Inhibition in Plants and Animals[M]. New York:Plenum Press, 1991.321-345.
    [88]Hippe-Sanwald S, Hermanns M, Somerville S C. Ultrastructural comparison of incompatible and compatible interactions in the barley powdery mildew disease[J]. Protoplasma,1992,168(1/2):27-40
    [89]胡东维,李振岐,康振生.不同抗性小麦上白粉病菌吸器超微结构研究[J].菌物系统,1997,16(2):122-127.
    [90]邵伯飞,胡东维,李德葆.大豆与白粉病菌相互作用的超微结构与细胞化学[J].电子显微学报,2001,20(6):744-747
    [91]Nelson H, Shiraishi T, Oku H. Primary infection of barley by Erysiphe graminis f. sp. hordei in relation to leaf-age dependent resistance and the roles of the epidermis and mesophyll in this resistance[J]. Phytopathol. Z.,1990, 128(1):55-61.
    [92]YamaokaN, Kobayashi I, Kunoh H. Induced accessibility and enhanced inaccessibility at the cellular level in barley coleoptiles. Ⅻ. Reversal of UV radiation induced accessibility and inhibition of secondary hyphae of Eryisiphe graminis by single sugars [J]. Physio 1. Mo1. Plant Patho1.,1993,42(2):133-140.
    [93]赵淑芳,胡东维.白粉病菌侵染诱导的大麦叶肉细胞变化的超微结构与细胞化学.植物病理学报,2003,33(5):444-448
    [94]Aldesuquy H S, Abdel-Fattah G M, Baka Z A. Changes in chlorophyll, polyamines and chloroplast ultrastructure of Puccinia striiformis induced "green islands" on detached leaves of Triticium aestivum [J]. Plant Physiology Biochemistry,2000,38:613-620
    [95]Carpita N, Gibeaut D. Structural models of primary cell walls inflowering plants:eonsisteney of moleeular structure with the physieal Properties of the walls during growth. Plant J.,1993,3:1-3.
    [96]Cooper R. M. The meehanisms and significance of enzymatic degradation of host cell walls by parasites[A]. Callow J. A. Biochemical Plant pathology[M]. Newyork:John Wiley & Sons Ltd.,1983.101-135.
    [97]Walton J. D. Deconstructing the cel lwall. PI. Physiol.,1994,104(4):1113-1118.
    [98]Kang Z., Huang L., Buchenauer H. Cytochemistry of cell wall component alterations in wheat roots infected by Gaeumannomyces graminis var. tritici. Journal of Plant Diseases and Proteetion,2000,107(4):337-351
    [99]黄丽丽,王兰,康振生,等.玉米叶片受新月弯抱菌侵染后的细胞病理学变化.植物病理学报,2004,34(1):21-26
    [100]康振生,黄丽丽,韩青梅,等.禾谷镰刀菌侵染引致小麦穗组织细胞壁成分变化的细胞化学研究.植物病理学报,2007,37(6):623-628
    [101]李宝聚,周长力,赵奎华,等.黄瓜黑星病菌致病机理的研究Ⅲ细胞壁降解酶和毒素对寄主超微结构的影响及其协同作用.植物病理学报,2001,31(1):63-69
    [102]冯晶,高增贵,薛春生,等.玉米弯孢霉叶斑病菌产生的细胞壁降解酶的致病作用研究.杂粮作物,2002,22(3):164-166
    [103]刘琼光,张静一,冯敏珊,等.水稻基腐病菌毒素对烟草活性氧代谢及细胞超微结构的影响.植物病理学报,2009.39(3):262-271
    [104]于莉,陈捷,李赤,等.黑斑毒素对感病和抗病向日葵叶组织超微结构的影响.植物病理学报, 2002,32(3):252256
    [105]李宗霆,周燮.植物激素及其免疫检测技术[M].江苏科学出版社,1996
    [106]许智宏,李家洋.中国植物激素研究:过去、现在和未来.植物学通报2006,23(5):433-442
    [107]Surico G, Evidente A, Iacobellis N S et al. A new cytokinin from the culture filtrate of Pseudomonas syringae pv. savastanoi. Phytochemistry,1985,24:1499-1502
    [108]Mazzola M, White F F. A mutation in the indole-3-acetic biosynthesis pathway of Pseudomonas syringae pv. syringae affects growth in Phaseolus vulgaris and syrimgomycin production. J Bacteriol,1994,176:1374-1382
    [109]Kataeva N V, Alexandrova I G, Butenko K G et al. Effect of applied and internal hormones on vitrification and apical necrosis of different plant cultured in vitro. Plant Cell, Tissue and Organ Culture,1997,27:149-154
    [110]Fett W F, Ogman S F, Dunn M F. Auxin production by plant pathogenic Pseudomonads and Xanthomonads. Appl Environ Microbiol,1987,53:1839-1845
    [111]Kado C I. Phytohomone-mediated tumorigenesis by plant pathogenic bacteria. In:Verma DDS, Hohn Th (eds). Genes Involved in Microbe-Plant Interactions. Wien:Springer-Verlag,1984:311-336
    [112]Misaghi I J. Physiology and Biocheistry of Plant-Pathogen Interactions. New York:Plenum Press,1982.113-130
    [113]Atzorn R, Gozier A, Wheeler CT et al. Production of gibberellins and indole-3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta,1988,175:532-538
    [114]田国忠,袁巧平,黄钦才,等.类菌原体病原(MLO)的致病机理探讨.中国植物病理学会第二届青年学术研讨会论文选编.北京:中国农业科技出版社,1995:303307
    [115]田国忠,张锡津,罗飞.抗病与感病泡桐感染MLO后过氧化物酶和IAA氧化酶变化比较.林业科学研究,1996,9(专刊):47-52
    [116]田国忠,黄钦才,袁巧平,等.感染MLO泡桐组培苗代谢变化与致病机理的关系.中国科学B辑,1994,24:484-490
    [117]田国忠,张锡津,罗飞.感染植原体的泡桐组培苗体内吲哚乙酸氧化酶的组织印迹定位.中国植物病理学会第六届代表大会学术年会论文选编.北京:中国农业科技出版社,1998:278-279
    [118]山国忠,李怀方,裘维蕃.植物激素与植物病害的相互作用.植物生理学通讯,1999,35(3):177-184
    [119]Iacobellis N S, Sisto A, Surico G et al. Pathogenity of Pseudomonas syringae subsp. savastanoi mutants defective in phytohormone production. J Phytopahtol,1994,140:238-248
    [120]王蕤,王守宗,孙秀琴.激素对泡桐从枝发生的影响.林业科学,1981,3:281-285
    [121]李怀方,裘维蕃.细胞分裂素在感染烟草花叶病毒番茄株系的番茄品种中对抗病性的作用.中国科学B辑,1986,86:276-282
    [122]Shen W H, Davioud E, David C et al. High sensitivity to anxin is common feature of hair root. Plant Plysiol, 1990,94:554-560
    [123]Peter H. Raven and George B. Johnson. Biology(sixth edition). Published by Mc-Grall Hill,2002.
    [124]黄晓荣,张平治.植物内激素测定方法研究进展.中国农学通报,2009,25(11):84-87.
    [125]增田芳雄,胜见允行,今关英雅,等.辽宁铁岭农学院《植物激素》翻译小组译.植物激素[M].北京:科学出版社,1972
    [126]丁静,沈镇德,方亦雄,等.植物内源激素的提取分离和生物鉴定.植物生理学通讯,1979,(2):27-39
    [127]马建义等.植物生长调节剂生物筛选方法的初步构建.浙江大学学报(理学版),2002,29(3):329-335
    [128]马庆虎,谭志一,焦述平.简评植物激素的几种测定方法.植物生理学通讯,1987(1):7-11
    [129]Wount Boerjan et al. A new bioassay for auxins and cytokinins. Plant Physiology,1992,99:1090-1098
    [130]Morits R. O, et al. Rapid identificat ion of cytok inins by an immunological method. Plant Physiol,1991,95:1156-1160
    [131]Nakajima M, et al. Monoclonal antibodies specifie for non-derivatized gibberellins Ⅰ. Preparation of monoclonal anti-bodies against GA4 and their use in inmunoaffinity colum chromatography. Plant Cell Physiol,1991,32: 515-521
    [132]周燮,徐义俊,陈婉芬.脱落酸(ABA)的放射免疫测定法(RIA).南京农业大学学报,1985(1):89-91
    [133]吴颂如,周燮.赤霉素1,3,4,7放射免疫测定药盒的研制.南京农业大学学报,1990,13(1):24-27
    [134]吴颂如,周燮,陈婉芬.赤霉素A_4(GA_4)放射免疫测定法.南京农业大学学报,1988,11(1):127-129
    [135]张能刚,周燮,吴颂如.吲哚乙酸间接酶联免疫法的建立.南京农业大学学报,1990,13(1):116-119
    [136]吴颂如,陈婉芬,周燮.酶联免疫法(ELISA)测定内源植物激素.植物生理学通讯,1988(5):53-57
    [137]陈以峰,周燮.二氢玉米素核苷组细胞分裂素的放射免疫测定法.生物技术,1995,5(4):27-29
    [138]印天寿,陈世勇,于群英,等.赤霉素的快速分光光度测定法的研究.分析化学,1990,18(10):966-969
    [139]吴少伯.赤霉素荧光测定的光谱特征.植物生理学通讯.1990(4):56-58
    [140]何伟平.用红外光谱法测定赤霉素的含量.化学世界,1991(8):363-364
    [141]Meyer R, Rautenbach GF, Dubery IA. Identification and quantification of methyl jasmonate in leaf volatiles of Arabidopsis thaliana using solid-phase microextraction in combination with gas chromatography and mass spectrometry. Phytochem Anal,2003,14(3):155-159
    [142]Birkemeyer C, Kolasa A, Kopka J. Comprehensive chemical derivatization for gas chromatography-mass spectrometry-based multi-targeted profiling of the major phytohormones. J Chromatogr A,2003,993(1-2):89-102
    [143]Liu HT, Li YF, Luan TG, et al.Simultaneous determination of phytohormones in plant extracts using SPME and HPLC. Phytochemistry,2007,66(7-8):515-520
    [144]Crozier A, Loferski K, Zaerr JB, et al. Analysis of pictogram quantities of indole-3-acetic-acid by high-performance liquid chromatography-fluorescence procedures. Planta,1980,150(5):336-370
    [145]Chiwocha SDS, Abrams SR,Ambrose SJ, et al. A method for profiling classes of plant hormones and their metabolites using liquid chromatography-electrospray ionization tandem mass spectrometry:an analysis of hormone regulation of chermodormancy of lettuce (Lactuce sativa L.) seeds. Plant J,2003,35(3):405-417
    [146]李雨薇,肖浪涛.植物激素检测技术的现状和发展.生命科学仪器,2007,5(12):10-14
    [147]白玉,杜甫佑,白玉等.植物激素检测技术研究进展.生命科学,2010,22(1):36-44
    [148]马有宁,陈铭学.植物内源激素预处理方法与色谱检测技术的研究进展.中国农学通报,2011,27(03):15-19
    [149]田敏,饶龙兵,李纪元.植物细胞中的活性氧及其生理作用.植物生理学通讯,2005,41(2):235-240
    [150]王宝山.生物自由基与植物膜伤害.植物生理学通讯,1988,24(2):12-16
    [151]蒋明义.水分亏缺诱导的氧化胁迫和植物的抗氧化作用.植物生理学通讯,1996,32(2):144-150
    [152]张宪政,汪晓峰,苏正淑.小麦水分胁迫与活性氧伤害.国外农业-麦类作物,1996,1:18-21
    [153]Mishra N P, Mishra R K, Singhal G S. Changes in the activities of antioxidant enzymes during exposure of intact wheat leaves to strong visible light at different temperatures in the presence of protein synthesis inhibitors. Plant Physiol,1993,102:903-908
    [154]孙国荣,彭永臻,阎秀峰.十旱胁迫对白桦实生苗保护酶活性及膜质过氧化的影响.林业科学,2003,39(1):165-167
    [155]Suzuki N, Mittler R. Reactive oxygen species and temperature stresses:a delicate balance between signaling and destruction. Physiologia Plantarum,2006,126:45-51
    [156]Almeselmani M, Deshmukh P S, Sairam R K, et al. Protective role of antioxidant enzymes under hiht temperature stress. Plant Science,2006,171:382-388
    [157]林植芳,李双顺,林桂珠,等.水稻叶片的衰老与超氧物歧化酶活性及脂质过氧化作用的关系.植物学报,1984.26(6):605-615
    [158]王根轩,杨成德,梁厚果.蚕豆叶片发育与衰老过程中超氧物歧化酶活性与丙二醛含量变化.植物生理学报,1989.15(1):13-17
    [159]邱竟,胡萍,潘学标.棉花叶片自然衰老和病害胁迫时SOD、POD活性与光合特性的变化.棉花学报,1992,4(1): 57-60
    [160]徐继忠,史宝胜,马宝焜,等.苹果不同矮砧与其对应中间砧植株POD、IOD酶活性的研究.中国农业科学,2002.35(4):415-420
    [161]王成霞,董晓颖,李培环,等.桃叶片POD、SOD、CAT活性与树体矮化和生长的关系.中国农学通报,2007,23(6):353-357
    [162]邓茳明,熊格生,袁小玲,等.棉花不同耐高温品系的SOD、POD、CAT活性和MDA含量差异及其对盛花期高温胁迫的响应.棉花科学,2010,22(3):242-247
    [163]关雪莲,张宇,马清水,等.4种常绿阔叶植物越冬期间叶片组织POD、SOD活性和MDA含量的变化.安徽农业科学,2007,35(15):4422-4423
    [164]毕会涛,黄付强,邱林,等.干旱胁迫对灰枣保护酶活性及膜脂过氧化的影响.中国农学通报,2007,23(2):151-155
    [165]王建华,刘鸿先,徐同.超氧物歧化酶(SOD)在植物逆境和衰老生理中的作用.植物生理学通讯,1989,1:1-7
    [166]陈金峰,王宫南,程素满.过氧化氢酶在植物胁迫响应中的功能研究进展.两北植物学报,2008,28(1):0188-0193
    [167]蒋永涛,刘传兰,马勇,等.低钾胁迫对黄瓜生长和抗氧化酶活性的影响.山东农业科学,2010,5:47-50
    [168]Joseph L M,Tan T K,Wong S M,et al.Antifungal effects of hydrogen peroxide and peroxidase on sporegerm ination and mycelia growth of pseudocercospora species. Candian journal of botany,1998,76(12):2119-2124
    [169]蒋选利,李振岐,康振生.过氧化物酶与植物抗病性研究进展.西北农林科技大学学报,2001,29(6):124-129
    [170]曾富华,王勇刚,姚志雄,等.不同处理对水稻病程相关蛋白和过氧化物酶的影响.核农学报,2002,16(1):8-14
    [171]郭新梅,陈耀锋,李春莲,等.禾谷镰刀菌粗毒素对不同小麦品种幼苗MDA含量和SOD、PAL活性的影响.两北植物学报,2007,27(1):0068-0073
    [172]李妙,李俊明,裴宝琦.病害对不同抗枯类型棉花品种SOD和POD活性的影响.棉花学报,1995,7(1):52-55
    [173]邵登魁,裴建文,雷建明,等.白菜型冬油菜白粉病病程中超氧化物歧化酶和过氧化物酶及多酚氧化酶的变化.西北农业学报,2006,15(5):118-122
    [174]郑翠明,腾冰,高凤兰,等.感染SMV后大豆种皮超氧物歧化酶、过氧化物酶和多酚氧化酶的变化.中国农业科学,1999,32(1):99-101
    [175]袁庆华,桂枝.苜蓿褐斑病抗性与几种同工酶的关系.草业科学,2003,12(6):58-63
    [176]张曦,宋晓斌,史明欣.酸活性与枣树炭疽病抗性的关系研究.西北林学院学报,2010,25(3):114-117
    [177]徐建华,利容千,王建波.黄瓜不同抗病品种感染镰刀菌枯萎病菌后几种酶活性的变化.植物病理学报,1995,25(3):239-242
    [178]李云锋,王振中.稻瘟菌GP66激发子诱导的水稻膜脂过氧化及其保护酶活性变化.植物病理学报,2005,35(1):43-48
    [179]董金皋,樊慕贞,韩建民,等.芸苔链格孢菌毒素对白菜细胞膜透性、SOD酶和POD酶活性的影响.植物病理 学报,1999,29(2):138-141
    [180]董金皋,韩建民,张利辉.玉米大斑病菌HT-毒素与玉米细胞的膜脂过氧化研究.微生物学通报,2001,28(5):1-5
    [181]郭海军,董志强,林永增,等.黄萎病对棉花叶片SOD、POD酶活性和光合特性的影响.中国农业科学,1995,28(6):40-46
    [182]刘峰,张文吉,丁秀英,等.感染立枯病对水稻旱育秧苗保护酶系的影响.华北农学报,2002,17(增刊):6-11
    [183]Karakousis A, Tan L, Ellis D, et al. An assessment of the efficiency of fungal DNA extraction methods for maximizing the detection of medically important fungi using PCR. Journal of Microbiological Metho,2006,65:38-48
    [184]Min J, Arganoza M T, Ohmberger J, et al. Alternative methods of preparing whole eel! DNA from fungi for dot-blot, restriction analysis, and colony filter hybridization. Anal Biochem,1995,225:94-100
    [185]Moller E M, Bahnwec G, Sandermann H et al. A simple and efficient protocol for isolation of high molecular weight DNA fromfilamentous fugi, fruitbodies, and infected plant tissues. Nucleic Acid Research,1992,20(22): 6115-6116
    [186]Mcdonald M B, Elliot L J, Sweeney P M. DNA extration from dry seeds for RAPD analyses in variety identification studies. Seed Sci. & Technol,1994,22:171-176
    [187]Saghai M A, Soliman K M, Jorgensen R A, et al. Ribosomal DNA spacer-length polymorphism in barley: mendeian inheritance, chromosomal location an d population dynamics. Proc. Nail. Acad. Sci. USA,1984, 81(24):8014-8018.
    [188]Doyle J J, Doyle J L. A rapid DNA isolation from small amount of fresh leaf tissue. Phytochem Bull,1987,19: 11-15
    [189]朱衡,瞿峰,朱立煌.利用氯化苄提取适于分子生物学分析的真菌DNA.真菌学报1994,13(1):34-40
    [190]钟铃,汪天虹.氯化苄法提取染色体DNA.微生物学杂志,1997,17(3):62-63
    [191]Tan S L, Dossett M, Katze M G. Extraction of genomic DNA suitable for PCR analysis from dried plant rhizomes/roots[J]. Biotech,1998,25(5):796-801
    [192]Sun Y, Zhang W. Li F L, et al. Identification and genetic m apping of novel genes that regulate leaf development in Arabidopsis[J]. Cell Research,2000,10(4):325-335.
    [193]刘少华,陆金萍,朱瑞良,等.一种快速简便的植物病原真菌基因组DNA提取方法.植物病理学报,2005,34(4)362-365
    [194]吴志红,汪天虹,黄卫,等.简便易行的丝状真菌染色体DNA提取法.菌物系统,2001,20(4):575-577
    [195]Kim C S, Lee C H, Shin J S, et al. Simple and rapid method for isolation of high quality genomic DNA from fruit trees and conifers using PVP[J]. Nucleic Acids Res,1997,25(5):1085.
    [196]Porebski S, Bailey LG, Bernand R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components[J]. Plant Mol Biol RPp,1997,15(1):8.
    [197]Stein N, Herren G, Keller B. A new DNA extraction method for high-throughput marker analysis in a large-genome species such as Triticum aestivu[J]. Plant Breed,2001,120(6):354.
    [198]Xin Z, Velten J P, Oliver M J, et al. High-throughput DNA extaction method suitable for PCR [J]. Biotechiques, 2003,34(4):820-827
    [199]马兵钢,赵宗胜,冯建荣,等.梨属DNA提纯方法的比较研究.石河子大学学报,2000,4(4):277-281
    [200]任俊云,刘秀菊,关键平,等.适于AFLP分析的蚕豆DNA提取.青海大学学报(自然科学版),2007,25(2):22-30
    [201]刘玉皎,杨菁,崔志松.适于AFLP分析的蚕豆DNA提取方法的改良.分子植物育种,2007,5(5):747-750
    [202]张炎,韩笑天,邹景忠,等.一种快速制备甲藻细胞PCR扩增DNA模板的方法.海洋科学,2005,29(11):1-2
    [203]Ogram A. Sayler G S. Barkay T. The extraction and purification of microbial DNA from sediments[J]. Journal of Microbiology,1987(7):57-66.
    [204]余仲东,高爱琴,曹支敏.锈菌夏孢子DNA的微量快速提取方法.生物技术通讯,2005,16(1):48-50
    [205]韩冰,蔺瑞明,曹远银.小麦条锈菌DNA提取方法的比较研究.中国农学通报,2006,22(4):81-83
    [206]曹丽华,康振生,魏国荣.小麦条锈菌基因组DNA的分离及其RAPD分析体系的建立.西北农林科技大学学报(自然科学版),2004,32(4):33-36
    [207]刘先宝高宏华,蔡吉苗,等.橡胶树白粉病菌rDNA-ITS序列及其系统发育分析。热带作物学报,2008,29(2):215-219
    [208]王云月,马俊红,何霞红,等.马铃薯癌肿病菌分离及基因组DNA提取.云南农业大学学报,2002,17(4):432-433
    [209]杨佩文,李家瑞,杨勤忠,等.根肿病菌核糖体基因ITS区段的克隆测序及其在检测中的应用.云南农业大学学报,2003,18(3):228-233
    [210]张荣,孙广宇,张雅梅,等.小麦蓝矮病植原体16S rDNA序列分析研究.植物病理学报,2005,35(5):397-402
    [211]张荣,崔晓艳,孙广宇,等.小麦蓝矮病植原体核糖体蛋白基因片段序列分析.两北农林科技大学学报(自然科学版),2006,34(11):194-198
    [212]Gardes M,White T J,Fortin J A. et al. Identification of indigenous and introduced symbiotic fungi in extomycorrhizae by amplification of nuclea r and mitochondrial ribosomal DNA. Canadian Journal of Botany, 1991,69:180-190.
    [213]Marmeisse J C. Debace J C. Casselton L A. DNA probes for species and strain identification in the extomycorrhizl fungus Hebeloma[J]. Mycological Research,1992,96:161-165.
    [214]Terashima Y, Nakai T. Identification of the DNAs of Tricholoma bakamatsutake[J]. Mycoscience,1996,37(3): 371-375.
    [215]Iwen P C, Hinrichs S H, Rupp M E. Utilization of the internal transcribed spacer regions as molecular targets to detect and identify human fungal pathogens [J]. Med Mycol,2002,40:87-109.
    [216]孙广宇,彭友良,李振歧,等.核苷酸序列分析在真菌系统学研究中的应用.西北农林科技大学学报(自然科学版),2003,31(6):187-192
    [217]刘春来,文景芝,杨秀明,等rDNA-ITS在植物病原真菌分子检测中的应用.东北农业大学学报,2007,38(1):101-106
    [218]燕勇,李卫平,高雯洁,等rDNA-ITS序列分析在真菌鉴定中的应用.中国卫生检验杂志,2008,18(10):1958-1961
    [219]林晓民,李振岐,王少先.真菌rDNA的特点及在外生菌根菌鉴定中的应用[J].西北农业学报,2005,14(2):120-125.
    [220]Miller J R.吴石君译5S rRNA基因[A].见:N.麦克莱恩等主编.真核基因结构活性调节[M].北京:科学出版社,1987,151-160
    [221]Duchesne L C, Anderson J B. Location and direction of transcription of the 5S rRNA gene in Armillaria [J]. Mycological Research,1990,94:266-269
    [222]余仲东,张星耀,曹支敏.真菌核糖体基因间隔区研究概况.西北林学院学报,2000,15(2):107-112
    [223]Einsele H, Hebart H, Roller G, et al. Detection and identification of fungal pathogens in blood by using molecular probes. Journal of Clinical Microbiology,1997,35(6):1353-1360
    [224]Szymanski M, Barciszewska M Z, Barciszewski J, et al. 5S ribosomal RNA database Y2K. Nucleic Acids Research,2000,28(1):166-167
    [225]White T J, Bruns T, Lee S. Analysis of phytogenetic relationships by amplification and direct sequencing of ribosomal RNA genes[M]//Innis M A, Gelfand D H, Sninsky J J, et al. PCR protocols:A guide to methods and applications. New York:Academic Press,1990.
    [226]郑雪松,杨虹,李道棠,等.基因间隔序列(ITS)在细菌分类鉴定和种群分析中的应用[J].应用与环境微生物学报,2003,9(6):678-684
    [227]Storck R, Alexopoulos C J. Deooxyibonudeic acid of fungi. Bacterial Rev,1970,34:126-154
    [228]高强,吴品珊,戴良英,等.分子生物学技术在腥黑粉菌种间分类鉴定的应用.植物检疫,2004,18(6):355-359
    [229]匡治州,许杨.核糖体rDNA ITS序列在真菌学研究中的应用.生命的化学,2004,24(2):120-122
    [230]Smith S E, Read D J. Mycorrhizal symbiosis.2nd ed. Cambridge:Academic Press,1997.
    [231]王源超,张正光,郑小波.核糖体基因ITS作为苎麻疫霉、恶疫霉分类辅助性状的研究[J].菌物系统,2000,19(4):485-491.
    [232]赵国柱,张天宇,张猛.核糖体基因簇在真菌系统学研究中的意义[J].生命的化学,2002,22(1):13-15
    [233]章初龙.徐同Trichoderma harzianum及其近缘种的分子系统学研究[J].生物多样性,2003,11(1):10~19
    [234]Singh N, Somai B M, Pillay D. Molecular profiling demonstrates limited diversity amongst geographically separate strains of Ustilago scitaminea. FEMS Microbiol Lett,2005,247:7
    [235]Wu Zuo-Wei, BAI Feng-Yan. ITS SEQUENCE AND ELECTROPHORETIC KARYOTYPE COMPARISONS oF THE ASCOMYCETOUS YEAST SPECIES WITH IDENTICAL OR SIMILARLSU RRNA GENE D1/D2 DOMAIN SEQUENCES. Mycosystema,2005,24(2):193-198
    [236]Wei Yu—Hui, Lee Fwu-Ling, Hsu Wen—Haw, et al. Pseudozyma antarctica in Taiwan:a description based on morphological, physiological and molecular characteristics. Bot Bull Acad Sin,2005,46:223
    [237]章桂明.小麦印度腥黑粉菌及其近似种的分子系统发育分析和形态学比较[D].华南农业大学,1999.
    [238]Bryan G T, Daniels M J, Osbourn A E. Comparison of fungi within the Gaeumannomyces Phialophora complex by analysis of ribosomal DNA sequences. Applied and Environmental Microbiology,1995,61:681-689.
    [239]Zambino P J, Szabo L J. Phylogenetic relationships of selected cereal and grass rusts based on rDNA sequence analysis. Mycologia,1993,85; 401-414.
    [240]I Carbone, L M Kohn. Ribosomal DNA sequence divergence within internal transcribed spacer 1 of the Scleroliniaceae. Mycologia,1993,81:415-427.
    [241]Rehner S A, Uecker F A. Nuclear ribosomal internal tranxribed spacer phylogeny and host diversity in the coelomycete Phomopsis. Can J Bot,1994,72(11):1666-1674.
    [242]周永力.球壳孢目真菌个体发育及DNA指纹图谱分析研究[D].沈阳,沈阳农业大学,1996
    [243]陈伟群.链格孢属及相似属代表种的分子系统学研究[D].陕西,两北农业大学.1997
    [244]陈应龙,弓明钦,Bernie Dell分子生物学技术在菌根研究中的应用及其进展.土壤与环境,1999,8(3):230-234
    [245]杨佩文,李家瑞,杨勤忠,等.根肿病菌核糖体基因ITS区段的克隆测序及其在检测中的应用[J].云南农业大学学报,2003,18(3):228-233
    [246]Tooley P W, Bunyard B A. Development of PCR primers from internal transcribed spacer region 2 for detection of Phytophthora species infecting potatoes. Applied and environmental microbiology,1997, (4):1467-1475.
    [247]谢勇,王云月,陈建斌,等.烟草黑胫病分子检测.云南农业大学学报,2000,15(2):176.
    [248]王立安,张文利,王源超,等.大豆疫霉的ITS分子检测.南京农业大学学报,2004,27(3):38-41.
    [249]朱有勇,王云月Lyon B R.大丽轮枝菌核糖体基因ITS区段的特异扩增.植物病理学报,1999,29(3):250-255.
    [250]楼兵干,张炳欣PYTHIUM SYLVATICUM鉴定及其专一性PCR引物.菌物学报2004,23(3):356-365
    [251]FAO. International Standards for Phytosanitary Measures. Part 1:Import Regulations:Guidelines for Pest Risk Analysis (Draft Standard)[M]. Secretariate of the International Plant Protection Convention, Food and Agriculture Organization of the United Nations. Rome, Italy.1996.
    [252]梁忆冰,蒋青,王乃杨,等.有害生物危险性分析概述.植物保护,1994,(3):31-36.
    [253]季良.检疫性有害生物危险性评价.植物检疫,1994,(2):100-105.
    [254]刘红霞,温俊宝,骆有庆,等.森林有害生物风险分析研究进展.北京林业大学学报.2001,23(6):46-51.
    [1]S. B. Chattopadhyay. Plant Diseases and their Management [M]. New Delhi, Aditya Books private Limited,2008.
    [2]Shunsuke Kusano. On the Life-History and Cytology of a new Olpidium with special Reference to the Copulation of motile Isogametes. Journal of The College of Agriculture (IMPERIAL UNIVERSITY OF TOKYO),1912,4 (3):142-199
    [3]辛哲生,熊春兰,张永华.蚕豆油壶菌疱疱病防治的初步研究.植物病理学报,1984,14(3):165-173.
    [4]林大武,崔广程.西藏蚕豆油壶菌火肿病发生调查简报.西南农业学报,1989,Vol.2,NO.2:86-87
    [5]方中达.植病研究方法(第三版)[M].中国农业出版社,北京,1998年
    [6]George N. Agrios. Plant pathology[M] New York. Academic Press,1978.
    [1]George N. Agrios. Plant pathology [M] New York. Academic Press,1978.
    [2]Shunsuke Kusano. Broad bean blister. Journal of disease and pest,1936,11 (4):360-426
    [3]辛哲生,熊春兰,张永华.蚕豆油壶菌疱疱病防治的初步研究.植物病理学报,1984,14(3):165-173.
    [4]Shunsuke Kusano. On the Life-History and Cytology of a new Olpidium with special Reference to the Copulation of motile Isogametes. Journal of The College of Agriculture (IMPERIAL UNIVERSITY OF TOKYO),1912,4 (3):142-199
    [5]Richard G C. John R E. Light microscopic techniques for detection of plant virus inclusions. Plant Disease,1986, 7(4):273-279
    [6]方中达.植病研究方法(第三版)[M].中国农业出版社,北京,1998年
    [7]康振生.植物病原菌超微结构[M].北京:中国科学技术出版社,1996
    [8]李振歧,曾士迈,等著.中国小麦条锈病[M].北京:中国农业出版社,2002年
    [1]辛哲生,熊春兰,张永华.蚕豆油壶菌疱疱病防治的初步研究.植物病理学报,1984,14(3):165-173.
    [2]王敏生.蚕豆疱疱病发生危害情况调查.农业科技情报(甘肃),1990,(1):2930
    [3]贺澄.蚕豆疱疱病生产调查及防治试验初报.农业科技情报(甘肃),1990,(1):31-32
    [4]张延礼,王生元,祁效林.蚕豆疱疱病发生规律及防治研究.甘肃农业科技,1993,(12):37-39
    [5]George N. Agrios. Plant pathology[M] New York. Academic Press,1978.
    [1]Shunsuke Kusano, On the Life-History and Cytology of a new Olpidium with special Reference to the Copulation of motile Isogametes [J]. Journal of The College of Agriculture. Imperial University of Tokyo.1912.4 (3):141-199
    [2]Richard G C, John R E, Light microscopic techniques for detection of plant virus inclusions [J]. Plant disease, 1986,7(4):273-279
    [3]方中达.植病研究方法(第三版)[M].北京:中国农业出版社,1998年
    [4]Ervin H Barnes. Atlas and Manual of Plant Pathology [M]. New York and London:Plenum Press,1979.79-123
    [5]Matsubara S Nakahira R. Cytokinin activity in an extract from the gall of Plasmodiophora infect root of Brassicarapa [J]. Tokyo: Bot. Mag.,1967.373-374
    [6李正理、张新英.植物解剖学[M].北京:高教出版社,1983,53
    [7]Dekhuijzen H M, Overreen J C. The role of cytokinin in clubfoot formation [J]. Physiol. plant pathology,1971.1: 151-162
    [8]Comai L, Kosuge T. Involvement deoxyribonucleic acid in indoleacetic acid synthesis in pseudomonas [J]. J. bacterial., 1980,143:950-957
    [9]Kuo T, Kosuge T. Factors influencing the production and further metabolism of Indole-3-acetia acid by pseudomonas savastanoi [J]. J. Gen. Appl. Microbiol.1969,15:51-63
    [1]李宗霆,周燮.植物激素及其免疫检测技术[M].江苏科学出版社,1996
    [2]许智宏,李家洋.中国植物激素研究:过去、现在和未来.植物学通报,2006,23(5):433-442
    [3]蒋明义.水分亏缺诱导的氧化胁迫和植物的抗氧化作用.植物生理学通讯,1996,32(2):144-150
    [4]张宪政,汪晓峰,苏正淑.小麦水分胁迫与活性氧伤害.国外农业一麦类作物,1996,1:18-21
    [5]Mishra N P, Mishra R K, Singhal G S. Changes in the activities of antioxidant enzymes during exposure of intact wheat leaves to strong visible light at different temperatures in the presence of protein synthesis inhibitors. Plant Physiol,1993,102:903-908
    [6]王宝山.生物自由基与植物膜伤害.植物生理学通讯,1988,24(2):12-16
    [7]杨途熙,魏安智,郑元,等.高效液相色谱法同时分离测定仁用杏花芽中8种植物激素.分析化学研究简报,2007,35(9):1359-1361.
    [8]王世平,阮小凤.四种植物激素的分离与纯化[J].植物生理学通讯,1987,(5):48-51
    [9]于玉梅,刘春香,朱妍妍,等.高效液相色谱法在黄瓜果实内源激素测定上的应用及改进[J].山东农业科学,2008(7):97-99.
    [10]蒋永涛,刘传兰,马勇,等.低钾胁迫对黄瓜生长和抗氧化酶活性的影响.山东农业科学,2010,5:47-50
    [11]张有林,党娅,张静,等.高效液相色谱法同时测定银凤桃中的赤霉素和脱落酸.西北植物学报,2005,25(7):1467-1471.
    [12]谢君,张义正.植物内源激素的反相高效液相色谱法测定[J].分析测试学报,2001,20(1):60-62.
    [13]谢君.高效液相色谱测定多种植物内源激素方法研究.四川农业大学学报,1997,15(3):297-299.
    [14]胡佩,杨红,刘德辉,等.高效液相色谱法测定蚓粪中的植物激素.分析试验室,2001,20(6):8-10.
    [15]曾庆钱,陈厚彬,鲁才浩,等.HPLC测定荔枝不同器官中内源激素流程的优化.果树学报,2006,23(1):145-148.
    [16]符继红,褚金芳,王吉德,等.固相萃取反相高效液相色谱荧光检测法测定拟南芥中的生长素.分析化学研究简报,2009,37(9):1324-1327.
    [17]陈昆松,许昌杰,李方,等.HPLC法检测果实组织中内源IAA、ABA方法的改进.果树学报,2003,20(1):4-7.
    [18]lacobellis N S, Sisto A, Surico G et al. Pathogenity of Pseudomonas syringae subsp. savastanoi mutants defective in phytohormone production. J Phytopahtol,1994,140:238-248
    [19]Dekhuijzen H M, Overreen J C. The role of cytokinin in clubfoot formation.Physiol.plant pathology,1971.1:151-162
    [20]Comai L, Kosuge T. Involvement deoxyribonucleic acid in indoleacetic acid synthesis in pseudomonas.J. Bacterial, 1980,143:950-957
    [21]Kuo T,Kosuge T. Factors influencing the production and further metabolism of Indole-3-acetic acid by pseudomonas savastanoi. J.Gen.Appl.Microbiol,1969,15:51-63
    [22]严吉明,叶华智.蚕豆油壶菌火肿病的组织病理学.植物病理学报,2012,42(4):已接收,排版中
    [23]田国忠,张锡津,罗飞.抗病与感病泡桐感染MLO后过氧化物酶和IAA氧化酶变化比较.林业科学研究,1996,9(专刊):47-52
    [24]Intapruk C, Yamamoto K, Sekine M. et al. Regulatory sequences involved in the peroxidase gene expression in Arabidopsis thaliana. Plant Cell Rep.1994,13:123-129
    [25]Zin-Huang Liu, Mang-Jye Ger. Changes of Enzyme Acticity. During Pollen Germination in Maize, and possible Evidence of Lignin Synthesis. Aust plant physiol.1997,24:329-335
    [26]田国忠,李怀方,裘维蕃.植物激素与植物病害的相互作用.植物生理学通讯,1999,35(3):177-184
    [27]Brew baker J. L.植物生理生化译丛(第三集)[M].中国科学院植物研究所植物生理生化研究室译.科学出版 社,1980
    [28]王根轩,杨成德,梁厚果.蚕豆叶片发育与衰老过程中超氧物歧化酶活性与丙二醛含量变化.植物生理学报,1989,15(1):13-17
    [29]王建华,刘鸿先,徐同.超氧物歧化酶(SOD)在植物逆境和衰老生理中的作用.植物生理学通讯,1989,1:1-7
    [30]林植芳,李双顺,林桂珠,等.水稻叶片的衰老与超氧物歧化酶活性及脂质过氧化作用的关系.植物学报,1984.26(6):605-615
    [31]邱竟,胡萍,潘学标.棉花叶片自然衰老和病害胁迫时SOD、POD活性与光合特性的变化.棉花学报,1992,4(1):57-60
    [32]董金皋,樊慕贞,韩建民.芸苔链格孢菌毒素对白菜细胞膜透性、SOD酶和POD酶活性的影响.植物病理学报,1999,29(2):138-141
    [33]廖林,赵荣林,张志权,等.不同抗性大豆品种感染大豆花叶病毒后一些生理生化形状的变化.中国油料,1993(1):26-29
    [34]庄炳吕,徐豹,廖林.接种大豆花叶病毒后大豆叶片超氧物歧化酶、过氧化物酶和蛋白组份的变化.植物病理学报,1993,23(3):261-265
    [35]郑翠明,滕冰,高凤兰,等.感染SMV后大豆种皮超氧物歧化酶、过氧化物酶和多酚氧化酶的变化.中国农业科学,1999,32(1):99-101
    [36]李妙,李俊明,裴宝琦.病害对不同抗枯类型棉花品种SOD和POD活性的影响.棉花学报,1995,7(1):52-55
    [37]郭海军,董志强,林永增,等.黄萎病对棉花叶片SOD、 POD酶活性和光合特性的影响.中国农业科学,1995,28(6):40-46
    [38]陈金峰,王宫南,程素满.过氧化氢酶在植物胁迫响应中的功能研究进展.西北植物学报,2008,28(1):188-193
    [39]刘峰,张文吉,丁秀英,等.感染立枯病对水稻旱育秧苗保护酶系的影响.华北农学报,2002,17(增刊):6-11
    [40]王宝山.生物自由基与植物膜伤害.植物生理学通讯,1988,24(2):1216
    [41]李云锋,王振中.稻瘟菌GP66激发子诱导的水稻膜脂过氧化及其保护酶活性变化.植物病理学报,2005,35(1):43-48
    [42]谢红辉.稻瘟病菌激发子诱导玉米病害防御酶活性的变化.广西热带农业,2010,(4):1-4
    [43]陈利锋,宋玉立,徐雍皋,等.抗感赤霉病小麦品种超氧化物歧化酶和过氧化氢酶的活性比较.植物病理学报,1997,27(3):209-213
    [44]郭新梅,陈耀锋,李春莲,等.禾谷镰刀菌粗毒素对不同小麦品种幼苗MDA含量和SOD、PAL活性的影响.西北植物学报,2007,27(1):0068-0073
    [45]董金皋,韩建民,张利辉.玉米大斑病菌HT-毒素与玉米细胞的膜脂过氧化研究.微生物学通报,2001,28(5):1-5
    [46]邓茳明,熊格生,袁小玲,等.棉花不同耐高温品系的SOD、 POD、 CAT (?)舌性和MDA含量差异及其对盛花期高温胁迫的响应.棉花科学,2010,22(3):242-247
    [47]毕会涛,黄付强,邱林,等.干旱胁迫对灰枣保护酶活性及膜脂过氧化的影响.中国农学通报,2007,23(2):151-155
    [1]Iwen P C, Hinrichs S H, Rupp M E. Utilization of the internal transcribed spacer regions as molecular targets to detect and identify human fungal pathogens [J]. Med Mycol,2002,40:87-109.
    [2]White T J, Bruns T, Lee S. Analysis of phytogenetic relationships by amplification and direct sequencing of ribosomal RNA genes[M]//Innis M A, Gelfand D H, Sninsky J J, et al. PCR protocols:A guide to methods and applications. New York:Academic Press,1990.
    [3]郑雪松,杨虹,李道棠,等.基因间隔序列(ITS)在细菌分类鉴定和种群分析中的应用[J].应用与环境微生物学报,2003,9(6):678-684
    [4]林晓民,李振岐,王少先.真菌rDNA的特点及在外生菌根菌鉴定中的应用[J].西北农业学报,2005,14(2):120-125.
    [5]Storck R, Alexopoulos C J. Deooxyibonudeic acid of fungi. Bacterial Rev,1970,34:126-154
    [6]高强,吴品珊,戴良英,等.分子生物学技术在腥黑粉菌种间分类鉴定的应用.植物检疫,2004,18(6):355-359
    [7]萨姆布鲁克(JOSEPH SAMBROOK), D. W拉塞尔(DAVID W. RUSSELL)著,黄培堂,王恒梁,周晓巍,等译.分子克隆实验指南(精编版)[M].北京:化学工业出版社,2008.
    [8]马兵钢,赵宗胜,冯建荣,等.梨属DNA提纯方法的比较研究.石河子大学学报,2000,4(4):277-281
    [9]任俊云,刘秀菊,关键平,等.适于AFLP分析的蚕豆DNA提取.青海大学学报(自然科学版),2007,25(2):22-30
    [10]刘玉皎,杨菁,崔志松.适于AFLP分析的蚕豆DNA提取方法的改良.分子植物育种,2007,5(5):747-750
    [11]Wei Yu—Hui, Lee Fwu-Ling, Hsu Wen—Haw, et al. Pseudozyma antarctica in Taiwan:a description based on morphological, physiological and molecular characteristics. Bot Bull Acad Sin,2005,46:223
    [12]章桂明.小麦印度腥黑粉菌及其近似种的分子系统发育分析和形态学比较[D].华南农业大学,1999.
    [13]Bryan G T, Daniels M J, Osbourn A E. Comparison of fungi within the Gaeumannomyces Phialophora complex by analysis of ribosomal DNA sequences. Applied and Environmental Microbiology,1995,61:681-689.
    [14]I Carbone, L M Kohn. Ribosomal DNA sequence divergence within internal transcribed spacer 1 of the Scleroliniaceae. Mycologia,1993,81:415-427.
    [15]Rehner S A, Uecker F A. Nuclear ribosomal internal tranxribed spacer phylogeny and host diversity in the coelomycete Phomopsis. Can J Bot,1994,72(11):1666-1674.
    [16]吉同宾,李敏慧,吴云,等.葛拟锈病菌rDNA-ITS的序列分析.华南农业大学学报,2007,28(2):42-46
    [17]沙涛,丁烨孙,李觅,等.松口蘑与假松口蘑ITS序列测定和分析比较.菌物学报,2005,24(1):48-52.
    [18]汤洪敏,虞泓,吴刚,等.大白口蘑分离菌株的DNA鉴定.菌物学报,2008,27(2):230-236.
    [19]张瑞颖,黄晨阳,左雪梅,等.香菇菌株分子鉴定技术的分辨率比较.菌物学报,2005,24(4):517-524.
    [20]Tooley P W, Bunyard B A. Development of PCR primers from internal transcribed spacer region 2 for detection of Phytophthora species infecting potatoes. Applied and environmental microbiology,1997, (4):1467-1475.
    [21]朱有勇,王云月Lyon B R大丽轮枝菌核糖体基因ITS区段的特异扩增.植物病理学报,1999,29(3):250-255.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700