用户名: 密码: 验证码:
海洋中稻瘟病拮抗菌的分离、发酵优化及其活性成分分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稻瘟病是造成水稻减产最严重的病害之一,目前主要以化学防治为主。由于化学防治的局限性及对环境的破坏性,这种防治手段已造成越来越严重的社会问题。以利用微生物天然次生代谢产物为主的生物防控,不仅能有效防治作物病害,而且对环境不会造成污染,符合现代农业发展的需求。
     海洋是一个巨大的生物资源库,但由于其特殊的生存环境,大部分海洋生物资源尚未被开发。随着生物技术的发展;越来越多的海洋微生物被开发、利用,它们的次生代谢产物为生物防控提供了新的策略。
     本研究从海洋样品中分离、鉴定出对稻瘟菌有拮抗作用的细菌,通过发酵优化,提高了活性物质代谢产率;采用各种色谱法对活性物质进行了分离纯化,并测定活性物质的分子量,为后续开发、利用提供了实验依据。本研究的结果有以下几点:
     1.拮抗菌株的分离、鉴定
     从海样样品中分离到了13株对水稻稻瘟菌有明显抑制活性的菌株,通过16SrDNA单引物序比对,发现有ZJ387与Cobetia marina有最高的同源性(99.351%),其他12株菌株与高地芽孢杆菌(Bacillus altitudinis)、同温层芽孢杆菌(Bacillus stratosphericus)及嗜气芽孢杆菌(Bacillus aerophilus)有高度同源性,推测这几种菌株可能为同一种菌。我们选择抑菌活性更强的ZJ186作为目标菌株,用于后续研究。
     通过形态学观察、生理生化指标测定以及16S rDNA系统进化树分析,确定ZJ186属于高地芽孢杆菌。
     本文首次从海洋材料中分离到了高地芽孢杆菌,并首次报道了高地芽孢杆菌对稻瘟菌有拮抗作用。
     2.拮抗菌株ZJ186的发酵优化
     通过发酵培养基的筛选实验,选用Landy作为发酵基础培养基进行优化。经单因素优化试验,确定以最佳碳源糖蜜10g/L、20g/L、30g/L,最佳氮源菜籽粉2.5g/L5g/L、10g/L, NaCl0.75g/L、1.5g/L、3g/L, MgSO40.5g/L,1g/L、2g/L,发酵时间36h、48h、72h,温度28℃、32℃、37℃,初始pH值5、6、7,接种量1%、2%、4%,装液量10%、30%、50%等9种因素各三个水平采用L27313正交表进行优化。
     经显著性检验,糖蜜(碳源)、NaCl、发酵时间、初始ph值及装液量的F值均达极显著水平,菜籽粉(氮源)、MgSO4和温度的F值达到显著水平,而接种量F值不显著。最优发酵组合为:A2B2C3D2E2F1G2I2。
     发酵优化后的发酵液滤液相对抑菌率为67.54%,较优化之前的54.1%,优化效率提高了24.83%,较阳性对照三环唑抑菌活性(21.64%)提高了212.06%。
     通过发酵优化实验,我们提高了稻瘟菌拮抗菌株ZJ186产生抑菌活性物质的能力,为该菌株的进一步开发奠定了研究基础。
     3.抗菌活性物质的分离纯化及活性成分分析
     通过抗菌图谱检测,高地芽孢杆菌ZJ186对测试的不同生理小种的稻瘟菌及水稻纹枯病原菌有拮抗作用,对测试的青霉素类、大环内脂类等抗生素敏感,对杆菌肽、复达欣、环丙氟呱酸三种抗生素有耐药性。
     田间检测发现,菌株ZJ186的发酵液处理后的植株感病指数为12%,显著低于阴性对照,能较好的防治稻瘟病。通过孢子抑制实验进一步证明,拮抗菌ZJ186的发酵液可以抑制孢子萌芽达6h,而阳性对照三环唑处理后的孢子在2h就已经开始产生萌芽。发酵液处理后的孢子芽管长度极显著低于同时期阴性和阳性对照。结果表明,菌株ZJ186的发酵液能有效的防治稻瘟病。
     菌株ZJ186属于分泌型,可通过发酵获得活性物质。该菌株具有较高的遗传稳定性,在连续传代10次后,发酵液活性保持不变。ZJ186在Landy发酵培养基中抑菌活性与菌体生长状况呈极显著正相关(p<0.01),其最佳发酵时间为72h至80h。
     通过对活性物质的理化性质研究,发现活性物质具有耐高温、耐酸性,但其在强碱性条件下容易失活。粗提物最小抑菌浓度为100ug/ml。
     根据活性物质极性较大的特点,采用MCI反相色谱、Sephadex LH-20及高效液相色谱(HPLC)进行分离纯化,经质谱检测,其分子量为270.2。经分子量数据库的检索比对的结果推测,活性物质可能为一种新的抗生素。
Rice blast caused by fungus Magnaporthe oryzae is one of the most serious rice diseases of the world. Chemical control being as the main traditional measure is widely used in rice production to reduce the incidence of rice blast. But due to the restrictions and destructive effects, chemical control caused more and more serious social problems. Biocontrol based on secondary metabolites of microorganisms can not only control disease pathogens, but also be safe to the environment. This special advantage makes it eligible to meet the demand of modern agriculture development.
     The marine environment is the largest habitat on earth. However, mainly because of their extreme living environments compared with terrestrial bacteria, the most majority of marine microbes have not yet been cultured. As the development of biotechnology, more and more marine microorganisms were explored and their secondary metabolites provide a new strategy to plant fungi diseases control.
     A strain was isolated in this study which showed strong inhibition activity against Magnaporthe oryzae. The product yield was significantly increased by fermentation optimize. The active compounds were isolated and purified by chromatography methods, and the molecular mass was also determinated by MS. All the above achievements make it possible for the strain and its natural products to commercial production. The results of this study were summarized in following sections:
     1. The isolation and identification of antifungal strains.
     13strains which showed strong antifungal activity against Magnaporthe oryzae were isolated from marine samples. Strain ZJ387was classified into Cobetia marina by partial sequence analysis, and other12strains showed great homology to Bacillus altitudinis, Bacillus stratosphericus and Bacillus aerophilus, and speculated to be the same bacterium. ZJ186was chose as the target strain and used in following studies.
     According to the morphology, physiological and chemical tests and phylogenetic tree based on the16S rDNA, the strain ZJ186was characterized as Bacillus altitudinis.
     It's the first report of Bacillus altitudinis isolated from marine samples and showing antifungal activity against Magnaporthe oryzae.
     2. Optimization of culture conditions.
     Landy medium was chose as basic culture broth for fermentation of strain ZJ186. Orthogonal optimize with L27313array was performed in9factors and three levels, such as the optimal carbon source molasses (10,20and30g/L), the optimal nitrogen source rapeseedmeal (2.5,5and lOg/L), NaCl (0.75,1.5and3g/L), MgSO4(0.5,1and2g/L), time (36,48and72h), temperature (28,32and37℃), initial pH (5,6and7), inoculum volume (1%,2%and4%) and liquid medium volume (10%,30%and50%).
     The F value of carbon source molasses, nitrogen source rapeseedmeal, NaCl, time, initial pH and liquid medium volume, respectively, were extremely significant (p<0.01) compared with error value. The F value of nitrogen source rapeseedmeal, MgSO4and temperature were significant (p<0.05), while that of inoculum volume was not significant. The best optimal combination was A2B2C3D2E2F1G2I2.
     The relative inhibition of mycelium growth of optimal culture broth was67.54%, increased24.83%compared with that of basic culture broth, and improved nearly2times than that of positive control tricyclazole (0.75%).
     3. The isolation, purification and analysis of active compounds.
     Strain ZJ186showed antifungal activity to all tested physiological races of Magnaporthe oryzae and Rhizoctonia solani from the result of antifungal spectrum, and exhibited sensitive to penicillin antibiotics and macrolide antibiotic, and resistant to bacitracin, fortune and ring c fluorine gung acid.
     The assay of field test indicated that the index of disease infection significantly lower than negative control. This result was confirmed by the experiment that the filtrate of broth culture could suppress germination of pathogen spore for6h, which significantly longer than that of both negative and positive control. The above results suggested the filtrate of culture broth of strain ZJ186might control rice blast disease.
     The active compounds could be secreted, and it could be gathered by fermentation methods.
     Strain ZJ186was capable of genetic stability since the activity of filtrate remained almost unchanged after10generations culture. And the antifungal activity became significant correlated with the cell growth at20h after inoculation till to the whole96h cell growth periods in Landy culture (p<0.01). The best fermentation time for strain ZJ186was72h to80h.
     The active compounds were capable of resistant properties of high-temperature and strong acid, but sensitive to alkalinity. The minimal inhibition concentration (MIC) of primary extract from MCI chromatography was100ug/ml.
     The active compound was isolated and purified with the chromatograph methods, such as MCI reverse phase chromatograph, Sephadex LH-20and HPLC. The molecular mass was270.2by MS detection. The active compound was speculated to be a new antibiotic from the result of Blastn in molecular database.
     In summarize, the product yield of strain ZJ186was increased by optimization experiments. All the above achievements provided detail data for the further research on the Bacillus altitudinis strain ZJ186.
引文
[1]Kato H. Rice blast disease. Pesticide Outlook.2001,12:23-25.
    [2]Ou, S.H..1985. Rice Diseases,2nd Ed. Commonwealth Mycological Institute, Kew, England.
    [3]洪剑鸣,童贤明等.中国水稻病害及其防治.上海,上海科学技术出版社,2006,39-61.
    [4]宋应星.1637.《天工开物·乃粒第一》
    [5]张学博,余菊生.福建水稻品种抗瘟性变化的趋势分析.植物保护学报,1991,18(2):109-115.
    [6]冯代贵.彭国亮,罗庆明,黄富.水稻品种抗病性变化与稻瘟病菌致病性变异的相关效应研究.植物病理学报,1995.25(2):184.
    [71杨祁云,朱小源.广东水稻品种抗性与稻瘟病菌生理小种变化动态的关系.植物保护学报,1998,25(2):97-102.
    [8]刘志恒,吴芷君.1991-1995年辽宁省稻瘟病菌种群动态分析.植物保护,1998,24(4):3-6.
    [9]全国稻瘟病科研协作组.水稻品种资源抗稻瘟病鉴定.中国农业科学,1980,4:44-52.
    [10]Suzuki N, Nature of resistance to blast. The Rice Blast Disease,1965:277-301.
    [11]Skamnioti P, Gurr SJ. Against the grain:safeguarding rice from rice blast disease. Trends in Biotechnology,2009, 27:141-150.
    [12]http://www.knowledgebank.irri.org/ricedoctor/index.php?option=com_content&view=article&id=562&Itemid=2767
    [13]王艳青.近年来中国水稻病虫害发生及趋势分析.中国农学通报,2006,22(2):343-347.
    [14]Cavara F. Fungi Longobaradiae Exciccati.1892,47-49.
    [15]Saccardo PA. Hyphomycetes. Sylloge Fungorum,1886,4:217-218.
    [16]Rossman AY, Howard RJ, Valent B. Pyricularia grisea, the correct name for the rice blast disease fungus. Mycologia, 1990,82:509-512.
    [17]Hebert TT. The perfect stage of Pyricularia grisea. Phytopathology,1975,61:83-87.
    [18]沈瑛,黄大年,邱德文等.稻瘟菌浅黄色素突变体对稻株诱导抗性的探讨.中国水稻科学,1990,4(3):139-142.
    [19]李云成,罗朝喜,林长生.稻瘟病菌三个杂交组合后代菌株的致病性分离.植物保护学报,1997,24(4):293-296.
    [20]孙国昌.关于水稻稻瘟病菌学名的正确使用.真菌学报,1994,13(2):158-159.
    [21]李文新,侯明生等.水稻病害与防治.武昌,华中师范大学出版社,2002,5-7.
    [22]山崎羲人,高坂淖尔等.稻瘟病与抗病育种.北京,农业出版社,1990,41-72.
    [23]Sasaki R. Existence of strains in rice blast. Journal of Plant Protection,1922,9:633-644.
    [24]Latterell FM, Tullis EC. Physiologic races of pyricularia oryzae. Phytopathology,1954,44:395.
    [25]Latterell FM, Tullis E C, Collier JW. Physiologic races of pyricularia oryzae. Phytopathology,1960,44:676-683.
    [26]Latterell FM, Marchetti MA, Grove BR. Co-ordination of effort to establish an international system for race identification in Pyricularia oryzae. The Rice Blast Disease. Johns Hopkins Press, Baltimore, Maryland,1965:257—274.
    [27]Bandong JM, Ou SH. The physiologic races of Pyricularia oryzae Cav. in the Philippines. Philippine Agriculture, 1966,49:655-667.
    [28]Lee SC, Matsumoto S. Studies on the physiologic races of rice blast fungus in Korea during the period of 1962-1963. Annals of the Phytopathological Society of Japan,1966,32:40-45.
    [29]Atkins JG, Robert AL and Adair CR et al. An international set of rice varieties for differentiating races of Pyricularia oryzae. Phytopathology,1967,57:297-301.
    [30]全国稻瘟病生理小种联合试验组.我国稻瘟病菌生理小种研究.植物病理学报,1980,10(2):71-82.
    [31]Flor HH. The complementary genic systems in flax and flax rust. Advanced Genetics,1956,8:29-54.
    [32]Yamada M, Kiyosawa S and Yamaguchi T et al. Proposal of a new method for differentiating races of Pyricularia oryzae Cavara in Japan. Annals of the Phytopathological Society of Japan,1976,42:216-219.
    [33]Mackill DJ, Bonman JM. Inheritance of blast resistance in near-isogenic lines of rice. Phytopathology,1992, 82:746-749.
    [34]Ling ZZ, Mew TV and Wang JL et al. Development of Chinese near-isogenic lines of rice and their differentiating ability of pathogenic races of blast fungus. Chinese Agricultural Sciences,2001,50-56.
    [35]Ling ZZ, Mew TV and Wang JL et al. Development of near-isogenic lines as international differentials of the blast pathogen. International Rice Research Newsletter,1995,20(1):13-14.
    [36]周建明,朱群,白永延.稻瘟病菌侵染水稻的机理.植物生理学通讯,1999,35(1):49-54.
    [37]Weintraub RL, Miller WE, Schantz EJ. Chemical stimulation of germination of spores of Pyricularia oryzae. Phytopatholoty,1958,48:7-10.
    [38]Hamer JE, Howard RJ and Chumley FG et al. A mechanism for surface attachment in spores of a plant pathogenic fungus. Science,1988,239:288-290.
    [39]Braun EJ, Howard RJ. Adhesion of funal spores and germlings to host surfaces. Protoplasma,1994,181:202-212.
    [40]Jones GL, Bailey JA O'Connell RJ. Sensitive staining of fungal extracellular matrices using colloial gold. Mycol Res,1995,99:567-573.
    [41]Howard RJ, Valent B. Breaking and entering:Host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annu Rwv Microbial,1996,50:491-512.
    [42]Unchiyama T, Ogasawara N and Nanba Y et al. Conidial germination and appressorial formation of the plant pathogenic fungal on the coverglass or cellophane coated with various lipid components of plant leaf waxes. Agric Biol Chem,1979,43:383-384.
    [43]Lee YH, Dean RA. Hydrophobicity of contact surface induces appressorium. FEMS Microbial Lett,1994, 115:71-76.
    [44]Xiao JZ, Watanabe T and Kamakura T et al. Studies on the cellular differentiation of Magnaporthe grisea: Physicochemical aspects of substratum surfaces in relation to appressorium formation. Physial Mol Plant Pathol,1994b, 44:227-236.
    [45]Till C. Role of wxternal signals in regulation the pre-penetration phase of infection by the rice blast fungus, Magnaporthe grisea. Planta,1994,194:471-477.
    [46]Howard RJ. Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc Natl Acad Sci USA,1991,99:11281-11284.
    [47]Howard RJ. Cell biology of pathogensis. In:Zeigler RS, Leong S, Teng PS(eds). Rice Blast Disease. Wallingford, UK, CAB International,1994,3-22.
    [48]Bourett TM, Howard RJ. In vitro development of penetration structures in the rice blast fungus Magnaporthe grisea. Can J Bot,1990,68:329-342.
    [49]Bourett TM, Howard RJ. Actin in penetration pegs of the funal rice blast pathogen, Magnaporthe grisea. Protoplasma,1992,168:20-26.
    [50]Bourett TM, Howard RJ. Ultrastrucureal immunolocalizaton of actin in a fungus. Protoplasma,1991,163:199-202.
    [51]Heath MC. Correlation between cytologically detected plant-fungal interactions and pathogenicity of Magnaporthe grisea. Phytopathology,1990,80:1382-1386.
    [52]Tamari K and Kaji J. On the biochemical studies of Pyricularia oryzae Cavara, the causative mould of the blast disease, local name "Imochi disease", of rice plants. Part 2. The isolation of picolinic acid and piricularin, the toxic substances produced by Pyricularia oryzae. Niigata Univ Fac Agric Bull,1954,5:33-42.
    [53]Lwasaki S, Nozoe S and Okuda S et al. Isolation and structural elucidation of a phytotoxic substance produced by Pyricularia oryzae Cavara. Tetrahedron Letters,1969,45:3977-3980.
    [54]Lwasaki S, Muro H and Nozoe S et al. Isolation of 3,4-dihydro-3,4,8-trihydroxy-1 (2H)-naphthalenone and tenuazonic acid from Pyricularia oryzae Cavara. Tetrahedron Letters,1972,1:13-16.
    [55]Umetsu N, Kaji J and Tamari K. Isolation of tenuazonic acid from blast-diseased rice plants. Aric Biol Chem,1973. 37:451-452.
    [56]Devys M, Bousquet JF and Barbier M. Le tyrosol (phydroxyphenylethanol), inhibiteur de la germination isole du milieu de culture de Pyricularia oryzae. Phytopathol. Z,85:176-178.
    [57]Nukina M, Sassa T and Ikeda M et al. Pyriculariol, a new phytotoxic metabolite of Pyricularia oryzae Cavara. Agric Biol Chem,1981,45:2161-2162.
    [58]Nukina M. Terrestric acid as phytotoxic metabolite from Pyricularia oryzae Cavara. Agric Biol Chem,1988, 52(9):2357-2358.
    [59]Kozaka T, Tsuchizawa M and HanaveM et al. Phytoxin glycopeptide inducing white head of rice plant produced by Pyricularia oryzae Cav Am. Phtopath Soc. Japan,1985,5(2):199-204.
    [60]Arases, Kinoshitas and Kssnom et al. On host selective infection Mechanism of phyricularia oryzae cavare(r) production of susceptibility:inducing factor(s) from germination spores and their phytopatho. Logical society of Japan, 1990,56(3):322-330.
    [61]郑祖玲,褚启人,张承妹.稻瘟病菌粗毒素对水稻的致病性.上海农业学报,1985,1(2):85-90.
    [62]王金陵,许文耀,黄碧丽.水稻品种(系)对稻瘟病菌粗毒素的抗性.福建农学院学报,1990,19(4):426-432.
    [63]罗孟军,朱天辉.植物病原真菌毒素.四川林业科技,2001,3(22):1-5.
    [64]李朝灿,杨惠杰,甘代耀等.水稻抗稻瘟病突变体的离体筛选与鉴定.福建省农科院学报,1987,2(2):1-9.
    [65]陈启峰,陈璋,王金陵.运用致病毒素筛选抗稻瘟质细胞突.遗传学报,1993,20(4):340-347.
    [66]陈启峰,陈璋,王金陵.水稻抗瘟病细胞突变体的筛选技术体系的建立及其在品种改良上的应用.中国农业科学,1992,25(2):50-57.
    [67]于翠梅,张月杰,曹萍.水稻抗稻瘟病突变体筛选初报.沈阳农业大学学报,2000,31(2):153-157.
    [68]赵海岩,郑文静.水稻抗稻瘟病变异体离体筛选及在育种中应用.辽宁农业科学,2001,3:21-25.
    [69]王洪凯,林福呈,李德葆.稻瘟病菌致病相关基因研究进展,菌物系统,2002,21(3):459-464.
    [70]Martin SL, Blackmon BP and Rajagopalan R et al. Magnaporthe DB:a federated solution for integrating physical and genetic map data with BAC end derived sequences for the rice blast fungus Magnaporthe grisea. Nucleic Acids Research,2002,30:121-124.
    [71]Valent B. Rice blast as a model system for plant pathology. Phytopathology,1990,80:33-36.
    [72]Nagakubo TM, Taga M and Tsuda M et al. Genetic linkage relationships in Pyricularia oryzae. Mere Coil Agric Kyoto Univ,1983,122:75-83.
    [73]Skinner DZ, Leung H, Leong SA. Genetic map of the blast fungus Magnaporthe grisea. O'Brien SJ(ed) Genetic maps,5th edn. New York, Cold Spring Harbor Laboratory Press, Cold Spring Harbor,1990,3.82-3.83.
    [74]Romao J, Hamer JE. Genetic organization of a repeated DNA sequence family in the rice blast fungus. Proc Natl Acad Sci USA,1992,88:5316-5320.
    [75]Farman ML, Leong SA. Genetic and Physical Mapping of Telomeres in the Rice Blast Fungus, Mapporthe grisea. Genetics,1995,140:479-492.
    [76]Nitta N, Farman ML, Leong SA. Genome organization of Magnaporthe grisea:integration of genetic maps, clustering of transposable elements and identification of genome duplications and rearrangements. Theor Appl Genet, 1997,95:20-32.
    [77]Brondani C, Brondani RPV and Garrido LR et al. Development of microsatellite markers for the genetic analysis of Magnaporthe grisea. Genetics and Molecular Biology,2000,23:753-762.
    [78]Kaye C, Millazzo J and Rozenfeld S et al. The development of simple sequence repeat markers for Magnaporthe grisea and their integration into an established genetic linkage map. Fungal Genet Biol,2003,40(3):207-214.
    [79]王艳丽,Claudia Kaye, Amandine Bordat等.稻瘟病菌株CH63和TH16杂交组合的遗传图谱构建及无毒基因定位.中国水稻科学,2005,19(2):160-166.
    [80]Karaoglu H, Lee CMY, Meyer W. Survey of Simple Sequence Repeats in Completed Fungal Genomes. Molecular Biology and Evolution,2004,22:639-649.
    [81]http://www.broad.mit.edu/annotation/genome/magnaporthe_grisea
    [82]Urban M, Bhargava T, Hamer JE. An ATP-driven efflux pump is a novel pathogenicity factor in rice blast disease. EMBO J,1999,18:512-521.
    [83]Lau GW, Harner JE. Acropetal:A genetic locus required for conidiophore architecture and pathogenicity in the rice blast fungus. Fungal Genetics and Biology,1998,24:228-239.
    [84]Silud D, Tharreau D and Talbot NJ et al. Identification and characterization of apfl-in a non-pathogenic mutant of the rice blast fungus Magnaporthe grisea which is unable to differentiate appressoria. Physiological and Molecular Plant Pathology,1998,53:239-251.
    [85]Zhu H, Whitehead DS and Lee YH et al. Genetic analysis of developmental mutants and rapid chromosome mapping of APPl, a gene requried for appressorium fomation in Magnaporthe grisea. MPMI,1996,9:767-774.
    [86]McCafferty HRK, Talbot NJ. Identification of three ubiquitin genes of the rice blast fungus Magnaporthe grisea, one of which is highly expressed during intial stages of plant colonization. Current Genetics,1998,33:352-361.
    [87]Shi Z, Leung H. Genetic analysis of sporulation in Magnaporthe grisea by chemical and insertional mutagenesis. MPMI,1995,8:949-959.
    [88]Mitchell TK, Dean RA. The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast fungus Magnaporthe grisea. Plant Cell,1995,7:1869-1879.
    [89]Sweigard JA, Chumley FG, Vatent B. Cloning and analysis of CUTl, a cutinase gene from Magnaporthe gresia. Mol Gen Genet,1992a,232:174-182.
    [90]Viaud MC, Balhadere PV, Talbot NJ. A Magnaporthe grisea cyclophilin acts as a virulence determinant during plant infection. Plant Cell,2002,14:917-930.
    [91]Keon JPR, James CS and Court S et al. Isolation of the ERG2 gene, encoding sterol △8△→7isomerase, from the rice blast fungus Magnaporche grisea and its expression in the maize smut pathogen Ustilago maydis. Curr Genet,1994, 25:531-537.
    [92]Shull V, Hamer JE. Genetic differentiation in the rice blast fungus revealed by the distribution of the Fosbury retrotransposon. Fungal Genetic and Biology,1996,20:59-69.
    [93]Xue C, Park G and CHoi W et al. Two novel fungal virulence genes sepcifically expressed in appressoria ofthe rice blast fungus. Plant Cell,2002,14:2107-2119.
    [94]Dobinson KF, Harris RE, Hamer JE. Grasshopper, a long terminal repeat retroelement in the phytopathogenic fungus Magnaporthe grisea. MPMI,1993,6:114-126.
    [95]Valent B, Chumley FG Molecular genetic analysis of the rice blast fungus, Magnaporthe grisea. Annu Rev Phytopathol,1991a,29:443-467.
    [96]Liu S, Dean RA. G protein asubunit genes control growth, development, and pathogenicity of Magnaporthe grisea. MPMI,1997,10:1075-1086.
    [97]Farman ML, Tosa Y and Nitta N et al. MAGGY, a retrotransposon in the genome of the rice blast fungus Magnaporthe grisea. Mol Gen Genet,1996b,251:665-674.
    [98]References S, Kachroo P and Leong S ea al. Mg-SINE:a short interspersed nuclear element from the rice blast fungus, Magnaporthe grisea. Proc Natl Acad Sci USA,1995,92:11125-11129.
    [99]Sone T, Suto M, Tomita E. Host species-specific repetitive DNA sequence in the genome of Magnaporthe grisea, the rice blast fungus. Biosic Biotechnol Biochem,1993,57:1228-1230.
    [100]Kim S, Ahn IP and Rho HS et al. MHPl, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization. Molecular Microbiology,2005,57:1224-1237.
    [101]Lee YH, Dean RA. Stage-specific gene expression during appressorium formation of Magnaporthe grisea. Experimental Mycology,1993,17:215-222.
    [102]Talbot NJ, Ebbote DJ, Hamer JE. Identification and characterization of MPGl, a gene involved in pathogenicity from the rice blast fungus Magnaportke grisea. The Plant Cell,1993,5:1575-1590.
    [103]Xu JR, Staiger CJ, Hamer JE. Inactivation of the mitogen-actibated protein kinase MPSl from the rice blast fungus prevents penetration of host cells but allows activation of plant defense responses. ProcNatlAcod Sci USA,1998, 95:12713-12718.
    [104]Lau G, Hamer JE. Regulatory genes controlling MPGl expression and pathogenicity in the rice blast fungus Magnaporthe grisea. Plant Cell,1996,8:771-781.
    [105]Foster AJ, Jenkinson JM, Talbot NJ. Trehalose synthesis and metabolism are required at different stages of plant infection by Magnaporthe grisea. EMBO J,2003,22:225-235.
    [106]Froeliger EH, Carpenter BE. NUTl, a major nitrogen regulatory gene in Magnaporthe grisea, is dispensable for pathogenicity. Mol Gen Genet,1996,251:647-656.
    [107]Dixon KP, Xu JR and Smimoff N et al. Independent signaling pathways regulate cellular trugor during hyperosmotic stress and appresssorium-mediated plant infection by Magnaporthe grisea. Plant Cell,1999,11:2045-2058.
    [108]Balhadere PV, Talbot NJ. PDE1 encodes a P-ATPase involved in appressorium-mediated plant infection by the rice blast fungus Magnaporthe grisea. Plant Cell,2001,13:1987-2004.
    [109]Clergeot PH, Gourgues M and Cots J et al. PLSl, a gene encobing a tetraspanin-like protein, is required for penetration of rice leaf by the fungal pathogen Magnaporthe grisea. Proc Natl Acad Sci USA,2001,98:6963-6968.
    [110]Kachroo P, Leong SA, Chattoo BB. Pot2, all inverted rpeat transposon from the rice blast fungus Magnaporthe grisea. Mol Genet Genomics,1994,245:339-348.
    [111]DeZwaan TM, Carroll AM, Valent B. Magnaporthe grisea Pthllp is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. Plant Cell,1999,11:2013-2030.
    [112]Park SY, Lee EJ, Lee CW. Molecular cloning and sequence analysis of a putative ras gene of the phytopathogenic fungus Botryotinia fuckeliana. Mol Cell,1997,7:300-304.
    [113]Motoyama T, Imanishi K, Yamaguchi I. cDNA cloning expression, and mutagenesis of scytaione dehydratase needed for pathogenicity of the rice blast fungus, Pyricularia oryzae. Bioscience, Biotechnology, and Biochemistry,1 998,62:564-566.
    [114]Hamer JE, Givan S. Genetic mapping with dispersed repeated sequences in the rice blast fungus:mapping the SMO locus. Molecular and General Genetics,1990,223:487-495.
    [115]Vidal-Cros A, Viviani F and Labesse G et al. Polyhydroxynaphthalene reductase involved in melanin biosynthesis in Magnaporthe grisea. Purification, cDNA cloing and sequencing. Eur J Biochem,1994,219:985-992.
    [116]Wu SC, Kauffmann S and Darvill AG et al. Purification, cloning and characterization of tow xylanases from Magnaporthe grisea, the rice blast fungus. MPMI,1995,8:506-514.
    [117]李宏宇,鲁国东,王宗华.稻瘟菌无毒基因研究进展.中国生物工程杂志,2003,23(6):27-35.
    [118]孙柏欣,邱德文,纪明山等.稻瘟菌相关蛋白基因研究进展.现代农业科技,2006,6:42-45.
    [119]Bohner HU, Fudal I and Dioh W et al. A putative polyketide synthase/peptide synthetase form Magnaporthe grisea signals pathogen attack to resistant rice. Plant Cell,2004,16:2499-2513.
    [120]Dioh W, Tharreau D and Notteghem JL et al. Mapping of avirulence genes in the rice blast fungus, Magnaporthe grisea, with RFLP and RAPD markers. MPMI,2000,13:217-227.
    [121]Valent B, Farrall L, Chumley FG Magnaporthe grisea genes for pathogenicity and virulence identified through a series of backcross. Genetics,1991b,127:87-101.
    [122]Silue D, Notteghem JL, Tharreau D. Evidence of a gene-for-gene relationship in the Oryza sativa-Magnaporthe grisea pathosystem. Phytopathology,1992,82:577-580.
    [123]Sweigard JA, Valent B and Orbach MJ et al. Genetic map of the rice blast fungus Magnaporthe grisea. O'Brien SJ (ed.), Genetic Maps, New York, Cold Spring Harbor Press,1993,3112-3117.
    [124]林菲,李进斌,李成云等.利用RAPD分子标记定位2个水稻稻瘟病菌非致病性基因.中国农业科学,2002,35(9):1079-1084.
    [125]Orbach MJ, Farrall L and Sweigard JA et al. A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell,2000,12:2019-2032.
    [126]Yasuda N, Noguchi MT, Fujita Y. Identification of an avirulence gene in the fungus Magnaporthe grisea corresponding to a resistance gene at the Pik locus. Phytopathology,2005,95:768-772.
    [127]王宝华,鲁国东,林伟明等.稻瘟病菌无毒基因Avr-Pil、Avr-Pi2和Avr-Pi4a的遗传分析及其分子标记.遗传学报,2002,29(9):820-826.
    [128]Sawata KZ, Ashizawa T, Koizumi S. Pi34-AVRPi34:a new gene-for-gene interaction for partial resistance in rice to blast caused by Magnaporthe grisea. Journal of General Plant Pathology,2005,71:395-401.
    [129]冯淑杰,王玲,马俊红等.稻瘟病菌无毒基因AvrPi7的遗传及物理作图.科学通报,2007,52(3):283-290.
    [130]Yasuda N, Fujuta Y, Noguchi M. Identification of avirulence genes in the rice blast fungus corresponding to three resistance genes in Japanese differentials. J Gen Plant Pathol,2004,70:202-206.
    [131]Luo CX, Yin LF and Koyanagi S et al. Genetic mapping and chromosomal assignment of Magnaporthe orvzae avirulence gene AvrPik, AvrPiz and AvrPiz-t controlling cultivar specificity on rice. Phytopathoiogy,2005,95:640-647.
    [132]刘俊峰,张国珍,马秋娟等.一个与稻瘟病菌无毒基因AVR-Pikrm连锁的SCAR标记的分离.植物病理学报,2003,33(2):151-155.
    [133]李成云,罗朝喜,李进斌等.稻瘟病菌无毒基因的分子标记.中国农业科学,2000,33(3):49-53.
    [134]Chen QH, Wang YC, Zheng XB. Genetic analysis and molecular mapping of the avirulence gene PREl, a gene for host-species specificity in the blast fungus Magnaporthe grisea. Genome,2006,49:873-881.
    [135]Valent B, Crawford MS and Weaver CG et al. Genetic studies of fertility and pathogenicity in Magnaporthe grisea (Pyricularia orvzae). Iowa State J Res,1986,60:569-594.
    [136]Kang S, Sweigard JA, Valent B. The PWL host specificity gene family in the blast fungus Magnaporthe grisea. MPMI,1995,8:939-948.
    [137]Lau GW, Chao CT, Ellingboe AH. Ineteraction of genes controlling avirulence/virulence of Magnaporthe grisea on rice cultivar Katy. Phytopathology,1993,83:375-382.
    [138]孙国昌,杜新法,陶荣祥等.水稻稻瘟病防治研究进展和21世纪初研究设想.植物保护,2000,26(1):33-35.
    [139]Saxena RC. International Congress of Entomology. Beijing,351.
    [140]孙国昌,孙漱沅.中国部分水稻主栽品种对稻瘟病的抗性分析和利用评价.中国农业科学,1996,29(6):55-59.
    [141]VanderPlank JE. Plant diseases:epidemics and control. University of Minnesota, Academic Press,1963:93-169.
    [142]Johnson R. Genetic background of durable resistance. New York, Plenum Press,1983:5-26.
    [143]何月秋,唐文华.水稻抗稻瘟病研究进展.云南大学学报,2000,15(4):371-375.
    [144]张传清,周明国,朱国念.稻瘟病化学防治药剂的历史沿革与研究现状.农药学学报,2009,11(1):72-80.
    [145]INOUE S. The Tendency of R ice B last Chem ical Control in Japan. Pestic Outl,1990,1(4):31-37.
    [146]MISATO T. Antibiotics as Protectant Fungicides against Rice Blast (3). Ann Phytopathol Soc Jpn,1961,26:19-24.
    [147]KIMURA M,YAMAGUCHI I. Recent Development in the Use of Blasticidin S, a Microbial Fungicide, as a Useful Reagent in Molecular Biology. Pestic Biochem Physiol,1996,56(3):243-248.
    [148]FURUICHI N, TOMIYAMA K and DOKE N et al. Inhibition of Further Development of Hypersensitive Reactivity to Phytophthora infestans by Blasticidin S in Cut Tissues of Potato Tuber at Various Stages of Aging Process. Ann Phytopathol Soc Jpn,1979,45(2):215-222.
    [149]HEATHM C. Effects of Heat Shock, Actinomycin D, Cyclohexim ide and Blasticidin S on Non-host Interac tions with Rust Fungi. Physiol Plant Pathol,1979,15(2):211-218.
    [150]UMEZAWA H. A New Antibiotic, Kasugamycin. J Antibiotics,1965,18:101-103.
    [151]Szuzke T, Komatsu M, Isono H. Cytotoxicity of Organochlorine Pesticides and Lipid Peroxidation in Isolated Rat Hepatocytes. Biol & Pharm Bull,1997,20(3):271-274.
    [152]Ranvir GD, Vadlamudiv P and More PR et al. Toxicity Evaluation of Kiazin, an Organophosphate Pesticide. Ind J Toxic,2002,9(1):39-42.
    [153]Kodama O. Edifenphos, Inhibitor of Phosphatidy Choline Biosynthesis in Pyricularia Oryzae. Aric Biol Chem. 1980,44(5):1015-1021.
    [154]Katagiri M, Uesugi Y. Similarities between the Fungicidal Action of Isoprothiolane and Organohposorus Thiolate Fungicides. Phytopathology,1977,67:1415-1417.
    [155]马忠华.烯丙异噻唑对稻瘟病防病机理的研究.南京,南京农业大学,1999.
    [156]FORDJ D, PAGETC J and CAUSEL R et al. Tricyclazole:a New Systemic Fungicide for Control of Pyricularia oryzae. Phytopathology,1976,66:1135-1139.
    [157]KIYOSHI I, TAKECHI S, HASIMOTO. Behavior of Tricyclazole Residue on Rice Leaves and its Efficacy for Rice Blast Control in the Field. Ann Phytopathol Soc Jpn,1992,58:259-266.
    [158]陆贻通.三环唑的毒性研究总结.农药译丛,1991,13(5):50-55.
    [159]张一宾.新的稻瘟病防治药剂—氰菌胺.世界农药,2002,24(1):50-51.
    [160]HATTORI T, KURAHASHI K and KAGABU S et al. Biological Activity of Carpropamid (KTU3616):a New Fungicide for Rice Blast Disease. Jpn J Pestic Sci,1997,22:108-112.
    [161]张一宾.新颖杀菌剂tiadinil的创制.世界农药,2005,27(1):1-4.
    [162]GULLINO ML, LEROUX P, SMITH CM. Uses and Challenges of Novel Compounds for Plant Disease Control. Crop Protec,2000,19:1-11.
    [163]VERONIKA H, JOHANNES D and DORTE K et al. New Benzodioxepin Type Strobilurins from Basidiomycetes Structural Revision and Determination of the Absolute Configuration of Strobilurin D and Related P-Methoxyacrylate Antibiotics. Tetrahedron,1999,55:10101-10118.
    [164]BECKER WF, JAGOW GV and ANKE T et al. Oudemansin, Strobilurin A, Strobilurin B and Myxothiazol:New Inhibitors of the Bcl Segment of the Respiratory Chain with an E-β-Methoxyacrylate System as Common Structural Element. FEBS Lett,1981,132:329-333.
    [165]张舒亚,周明国.甲氧丙酸酯类杀菌剂的生物学及应用技术研究.中国植物病害化学防治研究(第三卷).北京,中国农业科技出版社,2002,1-10.
    [166]凌忠专.寄主、病原菌体系基因对基因关系及其在抗病基因分析中的应用.作物学报,1984,10(1):25-32.
    [167]Vanderplank JE. Host-pathogen interactions in plant disease. New York, Academic Press,1982.
    [168]Vandetplank JE. Disease resistance in plants,2nd ed. New York, Academic Press,1984.
    [169]曾士迈.植物病害流行学.北京,农业出版社,1986,34-54.
    [170]孙国昌,杜新法,柴荣耀等.水稻品种与稻瘟病菌群体互作的选择作用研究.植物病理学报,1999.29(1):45-49.
    [171]Xiong L, Lee MW and Qi M et al. Identification of defense-related rice genes by suppression subtractive hybridization and differential sereening. MPMI, 2001,14:685-692.
    [172]Lu Q, Jantasuriyarat C and Zhou B et al. Compatible Isolation and characterization of novel defense response genes involved in and incompatible interactions between rice and Magnaporthe grisea. Theor Appl Genet,2004,108:525-534.
    [173]Betts MF, Tucker SL and Galadima NG et al. Development of a high throughout transformation system for insertional mutagenesis in Magnaporthe grisea. Fungal Genetics and Biology,2007,44:1035-1049.
    [174]Bryan GT, Wu KS and Farrall L et al. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. The Plant Cell,2000,12:2033-2046.
    [175]Jia Y, McAdams SA and Bryan GT et al. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J,2000,19:4004-4014.
    [176]刘二明,叶华智,孙雁等.水稻抗瘟性分类及品种与病菌谱系互作.湖南农业大学学报(自然科学版),2005,31(2):147-152.
    [177]Wang AM, Maekill DJ, Bonman JM. Inheritance of partial resistance to blast in indica rice eulfivars. Crop Science, 1989,29:848-853.
    [178]Wang GL, Mackill DJ and Bonman JM et al. RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cuitivar. Genetics, L994,136(4):1421-1434.
    [179]Sifithunya P, Tmgoonrung S and Vanavichit A et al. Quantitative trait loci associated with leaf and neck blast resistance in recombinant inbred line population ofce(Oryza Sativa L.). DNA Research,2002,9:79-88.
    [180]徐吉臣,王久林,凌忠专等.利用OTL定位分析水稻的稻瘟病抗性基因.科学通报,2004,49(3):245-251.
    [181]Wu JL, Fan YY and Li DB et al. Genetic control office blast resistance in the durably resistant cultivar Gumei 2 against multiple isolates. Theor Appl Genet,2005,111:50-56.
    [182]Sailaud C, Lorieux M and Roumen E et al. Identification of five new blast resistance genes in the highly blast resistant rice variety IR64 using a QTL mapping strategy. Theor Appl Genet,2003,106:794-803.
    [183]伍尚忠,朱小源,杨祁云等.籼稻品种三黄占2号的稻瘟病持久抗性评价与遗传分析.中国农业科学,2004,37(4):582-534.
    [184]曾士迈,王沛有.相对寄生适台度研究方法的初步研究.北京农业大学学报,1990(增刊):163-169.
    [185]赵桢梅,赵美琪,马占鸿等.氮肥对水稻品种一稻瘟菌小种相对寄生适合度的影响.植物病理学报,2001,31(3):193-198.
    [186]侯明生,黄俊斌.农业植物病理学.北京,科学出版社,2006,1-51.
    [187]Yu ZH, Mackill DJ and Bonman JM et al. Tagging genes for blast resistance in rice via linkage to RFLP make. Theoretical and Applied Genetics,1991,81:471-476.
    [188]Yu ZH, Mackill DJ and Bonman JM et al. Molecular mapping of genes for resistance to rice blast (Pyricularia grisea Sacc.). Theor Appl Genet,1996,93:859-863.
    [189]Inukai T, Nelson RJ and Zeigler RS et al. Allelism of blast resistance gene in near-isogenic lines of rice. Phypathology,1994,84:1278-1283.
    [190]Liu G, Zeng L, Wang GL. Two broad-spectrum blast resistance genes, Pi9(t) and Pi2(t), are physically linked on rice chromosome 6. Moi Genet Genomics,2002,267:472-480.
    [191]Liu B, Zhang SH and Zhu XY et al. Candidate defense genes as predictors ofquantitative blast resistance in rice. Mol Plant-Microbe Interact,2004,17:1146-1152.
    [192]Liu XQ, Wang L and Chen S et al. Genetic and physical mapping of Pi36(t), a novel rice blast resistance gene located on rice chromosome 8. Mol Genet Gen,2005,274:394-441.
    [193]Naqvi NI, Bonman JM and Mackill DJ et al. Identification of RAPD markers linked to a major blast resistance gene in rcie. Mol Breeding,1995,1:341-348.
    [194]朱立煌,徐吉臣,陈英等.用分子标记定位一个未知的抗稻瘟病基因.中国科学(B辑).1994(24):1048-1052.
    [195]Pan QH, Hu ZD and Takathoshi T et al. Fine mapping of the blast resistance gene PU5, linked to Pil, on rice chromosome 9. Acta Botanica Sinica,2003,45:871-877.
    [196]Ahn SN, Kim YK and Hong HC et al. Molecular mapping of a new gene for resistance to rice blast (Pyricularia grisea Sacc.). Euphytica,2000,116:17-22.
    [197]Imbe T, Oba S and Yanoria MJT et al. A new gene for blast resistance in rice cultivar, IR24. Rice Genetics News, 1997,14:60-62.
    [198]Fukuoka S, Okuno K. QTL analysis and mapping of Pi21, a recessive gene for field resistance to rice blast in Japanese upland rice. Theor Appl Genet,2001,103:185-190.
    [199]Zhuang J, Wu J and Chai R et al. DNA markers based gene mapping for leaf and neck blast resistance and verification of gene effects in rice. In:Abstracts of General Meeting of the International Program orl Rice Biotechnology. Phuket, Thailand,1999,297.
    [200]Chen DH, delavina M and Inukai T et al. Molecular mapping of the blot resistance gene, Pi44(t) in a line derived from a durably resistant rice cultivar. Theor Appl Genet,1999,98:1046-1053.
    [201]Kaji R, Ogawa T. RFLP mapping of blast resistance gene Pi-km in rice. IRRN,1996,21:47.
    [202]Miyamoto M, Ando I and Rybka K et al. High resolution mapping of the indica-derived rice blast resistance genes, L Pib. Mol Plant Microbe Interact,1996,9:6-13.
    [203]Chauhan S, Farman ML and Zhang HB et al. Genetic and physical mapping of a rice blast resistance locus, PiCO39(t), that corresponds to the avirulence gene AVR-CO39 of Magnaporthe grisea. Mol Genet Genomics,2002, 267:603-612.
    [204]Rybka K, Miyamoto M and Ando I et al. High resolution mapping of the indica-derived rice blast resistance gene. II. Pi-ta2 and Pi-ta and a consideration of their origin. Mol Plant-Microbe Interact,1997,10:517-524.
    [205]Zheng KL, Zhuang JY and Lu J et al. Identification of DNA markers tightly linked to blast resistance genes in rice. In:Khush, G. S. ed. Rice genetics Ⅲ. Philippines, IRRI,1996,565-569-132.
    [206]Hayashi K, Yoshida,H and Ashikawa et al. Development of PCR-based allele-specific and InDel marker sets for nine rice blast resistance genes. Theoretical and applied genetics,2006,113(2):251-260.
    [207]Tabien RE, Li Z and Paterson AH et al. Mapping of four major rice blast resistance genes from 'Lemont' and 'Teqing' and evaluation of their combinatorial effect for field resistance. Theor Appl Genet,2000,101:1215-1225.
    [208]李仕贵,马玉清,王玉平等.籼稻品种地谷抗稻瘟病基因的遗传分析和定位.自然科学进展,2000,,10(1):44-48.
    [209]张建福,王国英,谢华安等.粳稻云引抗稻瘟病基因的遗传分析及其定位.农业生物技术学报,2003,11(3):241-244.
    [210]张建福,凌忠专,王国英等.利用SSR标记定位粳稻云引抗稻瘟病基因.分子植物育种,2006,4(3):359-364.
    [211]鄂志国,张丽靖,焦桂爱等.稻瘟病抗性基因的鉴定及利用进展.中国水稻科学,2008,22(5):533-540.
    [212]董丽英,徐兴芬.水稻抗稻瘟病基因研究进展.云南农业科技,2007,3:25-26.
    [213]林世成.水稻多抗育种.遗传与育种,1978,4:17-18.
    [214]雷捷成,游年顺,黄利兴等.籼稻不育系福伊A选育与利用.杂交水稻,1998,13(3):8-11.
    [215]雷捷成,游年顺,黄利兴.福建省农业科学院又育成4个籼型野败不育系.杂交水稻,2002,17(1):61.
    [216]雷捷成,游年顺,黄利兴等.籼稻雄性不育系福伊A抗稻瘟特性的研究与应用.福建农林大学学报,2004,33(2):141-147.
    [217]游年顺,黄利兴,雷捷成等.四个野败新不育系的选育及其利用初报.福建稻麦科技,2002,20(2):5-7.
    [218]雷上平,黄利兴,张以华等.安丰A等五个不育系的选育与利用初报.福建稻麦科技,2005,23(3):6-9.
    [219]李梅芳,凌忠专等.RZ基因的导入及其应用效果.农业新技术,1986,1:7-8.
    [220]Hittalmani S, Parco A and Mew TV et al. Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theor Appl Genet,2000,100:1121-1128.
    [221]Liu SP, Li X and Wang CY et al. Improvement of resistance to rice Blast in Zhenshan 97 by molecular marker-aided selection. Acta Botanica Sinica,2003,45(11):1346-1350.
    [222]陈志伟,郑燕,吴为人等.抗稻瘟病基因Pi-2①紧密连锁的SSR标记的筛选与应用.分子植物育种,2004,3:321-325.
    [223]YAMAGUCHI H, TANAKAN. Inhibition of Prote in Synthesis by Fungicides. J Biochem,1966,60:632-642.
    [224]Misato T. Effect of Blasticidin S on the Respiration of Pyricularia oryzae. Ann Phytopathol Soc Jpn,1961, 26:19-24.
    [225]TANAKA N. Mechanism of Kasugamycin on Polypeptide Synthesis. J Biochem,1966,60:429-434.
    [226]YAMAGUCHI I, SEKIDO S, TOMOMASA M. Inhibition of Appressorial Melanization in Pyricularia oryzae by Non-fungicidal Anti-blast Chemicals. Jpn J Pestic Sci,1983,8:229-232.
    [227]KATAGIR IM, UESUGI Y. Similarities between the Fungicidal Action of Isoprothiolane and Organophosphosphorus Thiolate Fungicides. Phytopathology,1977,67:1415-1417.
    [228]NAOKI M, MICHIAKI I. Cloning and Characterization of a Probenazole-induced Gene for an Intracellula r Pathogensis-ralated Protein in Rice. Plant Cell Physio,1996,37:9218.
    [229]SHIMONO M, YAZAKI J and NAKAMURA K et al. cDNA Microarray Analysis of Gene Expression in Rice Plants Treated with Probenazole, a Chemical Induce r of Disease Resistance. J Gener Plant Pathol,2003,69 (1):76-82.
    [230]NAKASHITA H, YOSHIOKA K and YASUDA M et al. Probenazole Induces Systemic Acquired Resistance in Tobacco through Salicylic Acid Accumulation. Physiol Mole Plant Pathol,2002,61(4):197-203.
    [231]SHIMURA M, IWATA M and TASHIRO N et al. Anti-conidial Germination Factors Induced in the Presence of Probenazole in Infected Host Leaves 1. Isolation and Properties of 4 Active Substances. Agric Biol Chem,1981, 45(6):1431-1436.
    [232]CHARLES PW, SISLER HD and CHRYSAYI TM et al. Melanin Biosynthesis in Pyricularia oryzae:Site of Tricyclazole Inhibition and Pathogenicity of Melanin-deficient Mutants. Pestic Biochem Physiol,1980,14:256-264.
    [233]TSUNEAKI C, SISLER HD. Restoration of Appressorial Penetration Ability by Melanin Precursors in Pyricularia oryzae Treated with Anti-penetrants and in Melanin-deficient Mutants. Jpn J Pestic Sci,1987,12:49-55.
    [234]CLEMENS B, KART-FRIIDERICH G and MARTIN S et al. Optical Measurements of Invasive Forces Exerted by Appressoria of a Plant Pathogenic Fungus. Science,1999,258:1896-1899.
    [235]SATORU I, TOSHIRO K. Inhibition of Appressoria 1 of Pyricularia oryzae to Barley Leaves by Fungicides. Pestic Sci,1987,19:145-152.
    [236]SISLER HD. Control of Fungal Disease by Compounds Acting as Antipenetrants. Crop protect,1986, 5(5):306-313.
    [237]YAMAGUCHI I, SHIGEKO S, HARUO S. Cytotoxic Effect of 2-Hydrojuglone, a Metabolite in the Branched Pathway of Biosynthesis in Pyricularia oryzae. Jpn J Pestic Sci,1983,8:545-550.
    [238]张传清,周明国.三环唑对稻瘟病再侵染的研究初探.农药学学报,2004,6(4):23-27.
    [239]TAKANO Y, KUBO Y and KAWAMURA C et al. The Alternaria alternata Melanin Biosynthesis Gene Restores Appressorial Melanization and Penetration of Cellulose Membranes in the Melanin-deficient Albino Mutants of Colletotrichum lagenarium. Fung Gene & Bio,1997,21:131-140.
    [240]KUBO Y, SUZUKI K and FURUSAWA I et al. Relation of Appressorium Pigmentation and Penetration of Nitrocellulose Membranes by Colletotrichum lagenarium. Phytopathology,1982,72:498-501.
    [241]HOPWOOD DA, SHERMAN DH. Molecular Genetics of Polyketides and its Comparison to Acid Biosynthesis. Ann Rev Gene,1990,24:37-66.
    [242]BRICH AJ. Biosynthesis of Polyketides and Related Compounds. Science,1967,156:202-206.
    [243]OKAMOTO S, SAKURADA M and KUBO Y et al. Inhibitory Effect of Aflastatin A on Melanin Biosynthesis by Colletotrichum lagenarium. Microbiology,2001,147:2623-2628.
    [244]NIKOLAEV ON, ANDREY AA and LAPIKOVA VP et al. Possible Involvement of Oxygen Species in Action of Some Anti-blast Fungicides. Pestic Biochem Physiol,1994,50:219-228.
    [245]JORDAN DB, LIVING RS and BISAHA JJ et al. Mode of Action of Famoxadone. Jpn J Pestic Sci,1999, 55:105-118.
    [246]YAMAGUCHI T. Resistant Strains of Rice Blast Fungus (Pyricularia oryzae Cav.) against Fungicides in Japan. Jpn Agric Res,1988,21(4):257-263.
    [247]KATAGIRI M, U ESUGI Y. A Survey for C ross-resistance among Protein Biosynthesis Inhibitors in Pyricularia oryzae. ISPP Chem Con Newsl,1986,7:12-13.
    [248]KATAGIRIM. Development of Resistance to Organophosphorus Fungicides in Pyricularia oryzae in the Field. Jpn J Pestic Sci,1980,5:417-421.
    [249]彭云良,刘经芬,叶钟音.稻瘟病菌对异稻瘟净的抗药性研究.南京农业大学学报,1990,13(14):45-48.
    [250]彭云良,刘经芬,叶钟音等.稻瘟病菌对稻瘟灵的耐药性研究.植物保护学报,1993,20(1):77-81.
    [251]张传清,周明国,邵振润等.稻瘟病菌对异稻瘟净、多菌灵和三环唑的敏感性检测及抗药性变异研究.中国水稻科学,2004,18(5):455-461.
    [252]UESUGI Y, SISLER HD. Metabolism of a Phosphoramidate by Pyricularia oryzae in Relation to Tolerance and Synergism by a Phosphorothiolate and Isoprothiolane. Pestic Biochem Physiol,1978,9(3):247-254.
    [253]ISHII H, FUAAIJE BA and SUGIYAMA T et al. Occurrence and Molecular Characterization of Strobilurin Resistance in Cucumber Powdery Mildew and Downy Mildew. Phytopathology,2001,12:1166-1171.
    [254]MA ZH, MICHA JL, IDEA TJ. Advances in Understanding Molecular Mechanisms of Fungicide Resistance and Molecular Detection of Resistant Genotypes in Phytopathogenic Fungi. Crop Protect,2005,24:853-863.
    [255]郭梅,黄春艳,商世吉等.稻瘟病菌抗药性的初步研究.黑龙江农业科学,1997,6:21-22.
    [256]YAMAGUCHI J, KUCHIKI F and HIRAYAE K et al. Decreased Effect of Carpripamid for Rice Blast Control in the West North Area of Saga Prefecture in 2001. Ann Phytopathol Soc Jpn,2002,68:261.
    [257]胡新文,郭建春,郑学勤.抗真菌蛋白Rs-AFPs生物学特性的研究.热带作物学报,1998,19(2):36-42.
    [258]Amadioha AC. Controlling rice blast in vitro and in vivo with extracts of Azadirachta indica. Crop Protection,2000, 19(5):287-290.
    [259]Rajappan K, Ushamalini C and Subramanian N et al. Management of grain discoloration of rice with solvent-free. EC formulations of neem and pungam oils. Phytoparasitica,2001,29(2):171-174.
    [260]Lee SE, Park BS and Kim MK et al. Fungicidal activity of pipernonaline, a piperidine alkaloid derived from long pepper against phytopathogenic fungi. Crop Protection,2001,20(6):523-528.
    [261]Hu K, Dong AJ and Sun QS et al. Bioactivity of 247 traditional Chinese medicines against Pyricularia oryzae. Pharmaceutical Biology,2001,39(1):47-53.
    [262]许煜泉,张彦,俞吉安等.一株拮抗稻瘟病菌的产荧光假单胞杆菌.上海交通大学学报,1998,32(3):111-115.
    [263]许煜泉,高虹,童耕雷等.假单胞菌株JKD-2分泌铁载体抑制稻瘟病菌.微生物学通报,1999,26(3):180-183.
    [264]Kumar LP, Niranjana SR and Prakash HS el al. Effect of Pseudomonas fluorescens Formulation against Pyricularia grisea in rice. Crop Improvement,2000,27(2):159-166.
    [265]Hong SO, Yong HL. A Target-site-specific screening system for antifungal compounds on appressorium formation in Magnaporthe grisea. Phytopathology,2000,90(10):1162-1168.
    [266]Yoshida S, Hiradate ST and Sukamoto T et al. Antimicrobial activity of culture filtrate of Bacillus amyloliquefanciens RC-2 isolated from mulberry leaves. Phytopathology,2001,91(2):181-187.
    [267]Kuo TM, Kim Kim, Hou CT. Production of a novel compound,7,10,12-Trihydroxy8 (E)-Octadecenoic acid from ricinoleic acid by Pseudomonas aeruginosa PR3. Current Microbiology,2001,43(3):198-203.
    [268]彭化贤,刘波微,陈小娟等.水稻稻瘟病拮抗细菌的筛选与防治初探.中国生物防治,2002,18(1):25-27.
    [269]Ouazzani TA, Mouria A and Douira A et al.In vitro effect of pH and temperature on the Ability of Tri-choderma spp, to reduce the growth of Pyricularia oryzae. AI Awamia,1997,96:19-24.
    [270]Mouria A, Ouazzani TA and Douira A et al. Antagonism in vitro of Trichoderma species against Pyricularia oryzae. Advances in Applied Microbiology,1998,96:9-17.
    [271]黄云等.植物病害生物防治学.北京,科学出版社,2010,1-190.
    [272]Baker KF. Evolving concepts of biocontrol of plant pathogens. Annu Rev Phytopathol,1987,25:67-85.
    [273]鲁素芸等.植物病害生物防治学.北京,北京农业大学出版社,1993,1-88.
    [274]谢联辉等.普通植物病理学.北京,科学出版社,2006,281-368.
    [275]Howarth FG. Enviromental impacts of classical biological control. Annu Rev Entomol,1991,36:485-509.
    [276]Gilbert G S, Parke JL and Clayton MK et al. Effects of an introduced bacterium on bacterial communities on roots. Ecology,1993,74:840-854.
    [277]Osbum RM, Milner JL and Oplinger ES et al. Effect of Bacillus cereus UW85 on the yield of soybean at two field sites in Wisconsin. Plant Dis,1995,79:551-556.
    [278]Baker K, Cook RJ. Biological control of plant pathogens. W. H., Freeman and Company USA,1974.
    [279]Newhook FJ. Microbiological Control of Botrytis cinerea pers. Ⅱ. Antagonism by Fungi and Actionomycetes. Annals of Applied Biology,38:185-202.
    [280]Arima K., Kakinuma A, Tamura G. Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochemical and Biophysical Research Communications,31:488-494.
    [281]Kerr A, Roberts WP. Agrobacterium:Correlations between and transfer of pathogenicity, octopine and nopaline metabolism and bacteriocin 84 sensitivity. Physiol Plant Pathol,9:205-211.
    [282]Papavizas GC. Trichoderma and Gliocladium:biology, ecology, and potential for biocontrol. Ann Rev Phytopathol, 23:23-54.
    [283]Hwang SF, Chakravarty P. Potential for integrated control of Rhizoctonia root-rot of Pisum sativum using Bacillus subtilis and a fungicide. Journal of Plant Diseases and Protection,1992,99(6):626-636.
    [284]Knox OGG, Killham K, Leifert C. Effects of increased nitrate availability on the control of plant pathogenic fungi by the soil bacterium Bacillus subtilis. Applied Soil Ecology,2000,15(2):227-231.
    [285]孔建,王安超.生物药剂防治苹果树腐烂病的田间试验.生物防治通报,1991,27(1):27-29.
    [286]王雅平,刘伊强.枯草芽孢杆菌A014菌株防治小麦赤霉病的初步研究.生物防治通报,1992,8(2):54-57
    [287]张中鸽,彭于发.多粘芽孢菌B48菌株抑菌作用.生物防治通报,1994,10(2):85-86.
    [288]陈志谊,许志刚,陆凡等.拮抗细菌B-916对水稻植株的抗性诱导作用.西南农业学报,2001,14(2):44-47.
    [289]范玲.微生物农药研究进展及产业发展对策.中国生物工程杂志,2002,22(5):83-86.
    [290]林福呈,李德葆.枯草芽孢杆菌(Bacillus subtilis)S9对植物病原真菌的溶菌作用.植物病理学报,2003,33(2):174-177.
    [291]胡小加,江木兰,张银波等.枯草芽胞杆菌Tu-100对几种作物的促生效果.中国油料作物学报,2005,27(4):92-94.
    [294]游春平,肖爱萍等.稻瘟病生防菌对四种作物土传病害病原菌的抑制作用.江西农业大学学报,2006,28(6):860-863.
    [293]穆常青,潘玮等.枯草芽孢杆菌对稻瘟病的防治效果评价及机制初探.中国生物防治,2006,22(2):158-160.
    [294]陈雪丽,王光华,金剑等.多粘类芽孢杆菌BRF-1和枯草芽孢杆菌BRF-2对黄瓜和番茄枯萎病的防治效果.中国生态农业学报,2008,16(2):446-450.
    [295]Burr TJ, Schroth MN, Suslow T. Increased potato yields by treatment of seed pieces with specific strain of Pseudomonas fluorescens and P. putida. Phytopathology,1978,68:1377-1383.
    [296]Weller DM. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annual Review of Phytopathology,1988,26:379-407.
    [297]Thomashow LS, Weller DM and Bonsall RF. Production of the antibiotic phenazine-1-carboxylic acid by fluorescent pseudomonas in the rhizosphere of wheat. Appl Environ Microbiol,1990,56:908-912.
    [298]王远山,王平等.绿针假单胞菌PL9菌株对烟草疫霉的拮抗作用研究.华中农业大学学报,2002,21(3):248-251.
    [299]Howel CR, Stipanovic RD. Suppress of Pythium ultimum induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic pyoluteorin. Phytopatholo,1980,70:710-715.
    [300]邱晓,裴炎.棉花体内的假单胞菌及其对棉苗根病的防效.植物保护学报,1990,17(4):303-306.
    [301]Maurhofer M, Hase C and Meuwly P et al. Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHAO.Phytopathology,1994,84:139-146.
    [302]Hendson M, Askjaer L and Thomson JA et al. Broad-Host-Range Agrocin of Agrobactehum tumefaciens. Appl Environ Microbiol,1983,45(5):1526-1532.
    [303]Staphorst JL, Vanzyl FGH and Strjidom BW et al. Agrocin-producing pathogenic and nonpathogenic biotype-3 strains of Agrobacterium tumefaciens active against biotype-3 pathogens. Curr. Microbiol,1985,12:45-52.
    [304]Webster J, Dos SM, Thomson JA. Agrocin-producing Agrobacterium tumefaciens strains active against grapevine isolates. Appl Environ Microbiol,1986,52:217-219.
    [305]陈晓英,相望年.放射土壤杆菌HLB-2菌株抑制葡萄根癌土壤杆菌生长和冠瘿形成的研究.微生物学报,1986,26:193-199.
    [306]游积峰,谢雪梅,陈培民等.葡萄根癌土壤杆菌的不同生化型对葡萄及其它植物致病性的初步研究.植物病理学报,1985,2:73-81.
    [307]梁亚杰,狄原.应用生物3型放射土壤杆菌防治葡萄冠瘿瘤形成的研究.微生物学报,1990,30(3):165-171.
    [308]http://www.weizmann.ac.il/Biological_Chemistry/scientist/Chet/Chet.html.
    [309]Siddiqui IA, Shaukat SS. Non-pathogenic Fusarium solani represses the biosynthesis of nematicidal compounds in vitro and reduces the biocontrol of Meloidogyne javanica by Pseudomonas fluorescens in tomato. Letters in Applied Microbiology,2003,37,109-114.
    [310]Howell, CR, DeVay JE and Garber RH et al. Field control of cotton seedling diseases with Trichoderma virens in combination with fungicide seed'treatments. J Cotton Sci,1997,1:15-20.
    [311]Yedidia I, Benhamou N, Chet I. Induction of defense responses in cucumber plants (Cucumeris sativus L.) by the biocontrol agent Trichoderma harzianum. Appl Environ Microbiol,1999,65:1061-1070.
    [312]梁志怀,魏林,罗赫荣等.哈茨木霉发酵产物对豇豆萌发及苗期生长的影响.湖南农业科学,2004,1:18-20.
    [313]朱双杰,董丽丽.哈茨木霉T23对辣椒生长的影响及其和土壤有益微生物的相互作用.滁州学院学报,2008,10(3):92-95.
    [314]Domsch KH, Gams W, Anderson TH. Compendium of soil fungi, vol.1. London, Academic Press,1980,368-377.
    [315]董锦艳,李铷,张克勤.粘帚霉属真菌代谢物的研究进展.微生物学通报,2006,33(2):124-131.
    [316]张拥华,李世东,王桂琴等.粘帚霉可湿性粉剂防治大豆菌核病试验.植物保护,2007,33(5):141-142.
    [317]Martin T, Moore MB. Isolate of Chaetomium that protest oats from Helminthosporium Victoriae. Phytopathology, 1954,44:686-689.
    [318]陈利军,史洪中,陈月华.油菜内生球毛壳菌抑菌作用初步测定.河南农业科学,2005.7:54-56.
    [319]何邦令,李超,王庆华等.木霉菌和毛壳菌对板栗疫病的抗生作用.中国森林病虫,2006,25(3):4-7.
    [320]Jana B. Exploitation of the Mycoparasitic Fungus Pythium oligandrum in Plant Protection. Plant Protection Science, 2002,38:29-35.
    [321]Smith SN, Armstrong RA and Barker M. Determination of Coniothyrium minitans conidial and germling lectin avidity by flow cytometry and digital microscopy. Mycological Research,1999,103:1533-1539.
    [322]李智.5406抗生菌肥特性及使用方法.生物加工过程,2003,1(2):50-52.
    [323]Dumroses RK, Robert L and James et al. Interactions among Streptomyces griseoviridis, Fusarium root disease, and Douglas-fir seedings. New Forsets,1998,15:181-191.
    [324]叶亚军,张敏,汤志良.抗稻瘟病菌株—诺卡氏菌A11的诱变育种.植物保护,2007,33(1):33-36.
    [325]龙中儿,朱跃进,黄运红等.炭样小单孢菌JXNU-1广谱抗生素产物的分离及其理化性质.微生物学通报,2008,35(9):1450-1454.
    [326]陆群,陆永乐,吴林森.新抗生素H4750-D2的研究—发酵、分离、结构鉴定和生物活性.中国抗生素杂志, 1998,23(5):326-330.
    [327]张波,吴文君,宗兆锋.放线菌Z139菌株的分离、鉴定及其生物活性.西北农林科技大学学报:自然科学版,2005,8:69-72.
    [328]Hiremath S, L'Hostis B and Ghabrial SA et al. Terminal structure of hypovirulence-associated dsRNAs in the chestnut blight fungus Endothia parasitica. Nucleic Acids Res,1986,14(24):9877-9896.
    [329]Ursula H, Stephanie S, Daniel R. Hypovirus and mitochondria transfer between Cryphonectria parasitica strains. For Snow Landsc Res,2001,76(3):397-401.
    [330]田波,李卫,周世力.关于噬菌体在防治水稻白叶枯病上的研究.福建稻麦科技,2004,2:24-26.
    [331]Voisard C, Keel C and Haas D et al. Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J,1989,8:351-358.
    [332]Mauola M, Cook RJ and Thomashow LS. Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Appl Environ Microbiol,1992,58:2616-2624.
    [333]Milner JL, Stohl EA., Handelsman J. Zwittermicin A resistance gene from Bacillus cereus. J Bacteriol.1996,178: 4266-4272.
    [334]Milner JL, Silo-Suh, LA and Lee JC et al. Production of kanosamine by Bacillus cereus UW85. Appl Environ Microbiol,1996,62:3061-3065.
    [335]Duijff BJ, Kogel and Bakker WJ et al. Influence of pseudobactin 358 on the iron nutrition of barley. Soil Biol Biochem,1994,26:1681-1688.
    [336]Buysens S, Heungens K and Poppe J. Involvement of pyochelin and pyoverdin in suppression of Pythium-induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Appl Environ Microbiol,1996,62:865-871.
    [337]Chet I, Inbar J. Biological Control of Fungal Pathogens. Applied biochemistry and Biotechnology,1994, 48(1):37-43.
    [338]Muller G, Raymond KN. Iron transport in Streptomyces pilosus mediated by ferrichrome siderophores, rhodotorulic acid, and enantio-rhodotorulic acid. J Bacteriol,1984,160(I):313-318.
    [339]Lasik J, Stanek M and Vancura V et al. Effect of bacterial polysaccharides on the growth of Gaeumannomyces graminis var. tritici and wheat roots. Folia Microbiologica,1979,24(3):262-268.
    [340]何红,蔡学清,陈玉森等.辣椒内生枯草芽孢杆菌BS-2和BS-1防治香蕉炭疽病.福建农林大学学报(自然科学版),2002,31(4):442-444.
    [341]Rafaeli R, Daniela EDL and Cibelle E et al. Selection of Endophytic Fungi from Comfrey (Sclerotinia sclerotiorum L.) for In Vitro Biological Control of The Phytopathogen Sclerrotinia Sclerotiorum (LIB.). Brazilian Jounal of Microbiology,2009,40:73-78.
    [342]Ryan RP, Germaine K and Franks A et al. Bacterial endophytes:recent developments and applications. FEMS Microbiology Letters,2008,278:1-9.
    [343]Tim WY, Joseph A. History of orchid propagation:a mirror of the history of biotechnology. Plant Biotechnol Rep, 2009,3:1-56.
    [344]Ross AF. Systemic acquired resistance induced by localized virus infections in plants. Virology,1961,14:340-358.
    [345]Wei ZM, Laby RJ and Zumoff CH et al. Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science,1992,257:85-88.
    [346]Kuc J. Expression of latent genetic information for disease resistance in plants. In:Cellular and Molecular Biology of Plant Stress. J. Key and T. Kosuge, eds. New York, Alan R. Liss,1985,302-318.
    [347]Mcleod AR, Rey A and Newsham KK et al. Effects of elevated ultraviolet radiation and endophytic fungi on plant growth and insect feeding in Lolium perenne, Festuca rubra, F arundinacea and F. pratensis. Journal of Photochemistry and Photobiology B:Biology,2001,62:97-107.
    [348]张集慧,王春兰,郭顺星等.兰科药用植物的5种内生真菌产生的植物激素.中国医学科学院学报,1999, 21(6):460-465.
    [349]Yoo ID, Fuji T and Komagata K et al. Dinitrogen fixation by rice-Kliebsiella associations. Crop Sci,1986, 26:297-301.
    [350]蔡学清,林彩萍,何红等.内生枯草芽孢杆菌BS-2对水稻苗生长的效应.福建农林大学学报(自然科学版),2005,34(2):189-194.
    [351]Benson DR, Silvester WB. Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol Rev,1993,57(2):293-319.
    [352]曲东明,王双.沙棘共生固氮根瘤及其内生弗兰克氏菌.西北植物学报,1998,1:60-65.
    [353]Kloepper JW, Lifshita R, Zablotowica RM. Free-living bacterial inoculation for enhancing crop productivity. Trends in Biotechn,1989,7:39-43.
    [354]Kloepper JW, Schroth.MN. Miller TD. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature,1980,286:885-886.
    [355]Korhonen TK, Nurmiaho-Lassila EL and Laakso T et al. Adhesion of fimbriated nitrogen-fixing enteric bacteria to roots of grasses and cereals. Plant and Soil,1986,90:59-69.
    [356]朱红惠,龙良坤,羊宋贞等.AM真菌对青枯菌和根际细菌群落结构的影响.菌物学报,2005,24(1):137-142.
    [357]陈云兰,姬广海,董坤.抗生素溶杆菌1 3-1对魔芋土壤微生物群落的影响.云南农业大学学报,2010,25(4):487-493.
    [358]Girlandad M, Perotto S and Moenne-Loccoz Y et al. Impact of biocontrol Pseudomonas fluorescens CHAO and a geneticaaly modified derivative on the diversity of culturable fungi in the cucumber rhizosphere. Applied and Environmental Microbiology,2001, 67:1851-1864.
    [359]Grosch R, Scherwinski K and Lottmann J et al. Fungal antagonists of the plant pathogen Rhizoctonia solani: selection, control efficacy and influence on the indigenous microbial community. Mycological Research,2006, 110:1464-1474.
    [360]Conn HJ. The Identity of Bacillus subtilis. The journal of Infectious Diseases.1930,46(4):341-350.
    [361]Soule MH, Arbor A, Mich. Identity of Bacillus subtilis, Cohn 1872. The journal of Infectious Diseases.1932, 51(2):191-215.
    [362]
    [363]刘国红,林乃铨,林营志等.芽孢杆菌分类与应用研究进展.福建农业学报,2008,23(1):92-99.
    [364]Boidin A, Effront J. Bacterial enzymes, U.S. Patent,1917,1-374.
    [365]Sehallmey M, Singh A, Ward OP. DeveloPments in the use of Bacillus species for industrial Produetion. Can J Mierobiol,2004,50:1-17.
    [367]Dartois V, Debarbouille M and Kunst F et al. Characterization of a novel member of the DegS-DegU regulon affected by salt stress in Baeillus subtilis. J Baeteriol,1998,180:1855-1861.
    [368]Shipra DAS, Surendra S and Vinni S et al. Biotechnological Applications of Industrially Important Amylase Enzyme. International Journal of Pharmaand Bio Sciennces,2011,2(1):486-496.
    [369]杨俊豪,胡学智.地衣芽孢杆菌A.404耐高温a-淀粉酶的研究.微生物学报,1990,17(4):286-289.
    [370]金志雄,吴文琴,张珍.盾叶薯蓣淀粉对枯草芽孢杆菌α-淀粉酶活性的影响.微生物学杂志,2004,24(4):23-24.
    [371]Hannay L, Frrz-James C. The protein crystals of Bacillus thuringiensis Berliner. Canadian Journal of Microbiology, 1955,1:694-710.
    [372]Kumar S, Chandra A, Pandey KC. Bacillus thuringiensis (Bt) transgenic crop:an environment friendly insect-pest management strategy. J Environ Biol,2008,29(5):641-653.
    [373]Turner JT, Backman PA. Factors relating to peanut yield increases after seed treatment with Bacillus subtilis. Plant Dis,1991,75:347-353.
    [374]Vasantha D, Malar TV and Vizhi R et al. Biological control of sheath blight of rice in India with antagonistic bacteria. Plant and Soil,1989,119:325-330.
    [375]Handelsman J, Raffel S and Mester EH et al. Biological control of damping-off of alfalfa seedlings with Bacillus cereus UW85. Appl Environ Microbiol,1990,56:713-718.
    [376]Elad Y. Reduced sensitivity of Botrytis cinerea to two sterol-biosynthesis-inhibiting fungicides:fenetrazole and fenethanil. Plant Pathol,1992,41:47-54.
    [377]Algam AS, Xie GL and Li B et al. Biological control of bacterial wilt of tomato by Bacillus spp. under greenhouse environment. Acla Phytopathologica sinica,2006,36(l):80-85.
    [378]林毅,陈金辉,黄志鹏.芽孢杆菌几丁质酶及其在植物病虫害生物防治中的应用.福建农业科技.1998,S1:32-33.
    [379]穆常青,刘雪,陆庆光等.枯草芽孢杆菌B-332菌株对稻瘟病的防治效果及定殖作用.植物保护学报,2007,2:123-128.
    [380]黄海婵,裘娟萍.枯草芽孢杆菌防治植物病害的研究进展.浙江农业科学,2005,3:213-219.
    [381]路福平,戚薇.凝结芽孢杆菌TQ33所产抗菌物质及特性.中国乳品工业,1997,25(4):15-17.
    [382]Wang C, Du M and Zheng D et al. Purification and Characterization of Nattokinase from Bacillus subtilis Natto B-12. J Agric Food Chem,2009,57(20):9722-9729.
    [383]Ma JS, Zhang ZM and Wang BJ et al. Overexpression and characterization of a lipase from Bacillus subtilis. Protein Expression and Purification,2006,45:22-29.
    [384]Monica LE, Elizabeth ADJ and Willian EBJ et al. Viability and stability of control compounds on contton and snap bean seeds. Pest Manag Sci,2001,57(8):695-706.
    [385]Loon LC, Bakker HM, Pieterse CMJ. Systemic resistance induced by rhizosphere bacteria. Ann Rev Phylopathol, 1998,36:453-483.
    [386]董汉松等.植物诱导抗病性—原理和研究.北京,科学出版社,1995,20-89.
    [387]Bacon CW, Yates IE and Hinton DM et al. Biological control of Fusarium moniliforme in Maize. Environmental Health Perspectives,2001,109(2):325-332.
    [388]林福呈,李德葆.枯草芽孢杆菌{Bacillus subtilis)S9对植物病原真菌的溶菌作用.植物病理学报,2003,33(2):174-177.
    [389]罗秀针,施碧红,郑虹.枯草芽胞杆菌FB123细菌素的理化性质及抑菌谱的研究.微生物学杂志,2008,28(1):64-67.
    [390]陈志谊,许志刚,陆凡等.拮抗细菌B-916对水稻植株的抗性诱导作用.西南农业学报,2001,14(2):44-47.
    [391]邱思鑫,何红,阮宏椿等.内生芽孢杆菌TB2防治辣椒疫病效果及其机理初探.植物病理学报,2004,2:173-179.
    [392]Natthiya B, Dusit A and Tiyakhon C ea al. Extracellular Proteome of Bacillus amyloliquefaciens KPS46 and Its Effect on Enhanced Growth Promotion and Induced Resistance Against Bacterial Pustule on Soybean Plant. Kasetsart J (Nat Sci),2008,42:13-26.
    [393]何红,蔡学清,关雄等.辣椒内生枯草芽孢杆菌(Bacillus subtilis) BS-2和BS-1防治辣椒炭疽病研究.植物病理学报,2003,2:170-173.
    [394]Kilian M, Steiner U and Krebs B et al. FZB24(R) Bacillus subtilis-mode of action of a microbial agent enhancing plant vitality. Pflanzemchutz-Nachrichten Bayer,2000,53(1):72-93.
    [395]Tamehiro N, Yoshiko O. Bacilysocin, a novelphospbOlipid antibiotic produced by Bacillus subtilus 168. Antimicrobial Compounds and Chemotherapy,2002,46:315-320.
    [396]何青芳,陈卫良,马志超.枯草芽孢杆菌A30菌株产生的拮抗肤的分离纯化与理化性质研究.中国水稻科学,2002,16(4):361-365.
    [397]刘焕利,潘小玫,张学军等.产抗菌蛋白芽孢杆菌的筛选及抗菌蛋白性质.中国生物防治,1995,11(4):160-164.
    [398]Maget-Dana R, Peypoux F. Iturins, a special class of spore-forming lipopeptides:biological and physicochemical properties. Toxicology,1994,87:151-174.
    [399]Peypoux F, Bonmatin JM and Labbe H et al. [Ala4] surfactin, a novel isoform from Bacillus subtilis studied by mass and NMR spectroscopies. Eur J Biochem,1994,224:89-96.
    [400]Peypoux F, Bonmatin JM. Recent trends in the biochemistry of surfactin. Applied Microbiology and Bioteehnology, 1999,51(5):553-563.
    [401]Zheng GL, Yan LZ and Vederas JC et al. Genes of the sbo-alb locus of Bacillus subtilis are required for production of the antilisterial bacteriocin subtiloson. Bacteriology,1999,181(23):7346-7355.
    [402]童有仁,马志超,陈卫怠等.枯草芽孢杆菌B034拮抗蛋白的分离纯化及特性分析.微生物学报.1999,39(4):339-343.
    [403]谢栋,彭憬,王津红等.枯草芽孢杆菌抗菌蛋白X98的纯化和性质.微生物学报,1998,38(1):13-19.
    [404]刘进元.抗菌蛋白LCⅢ的分离纯化及其部分特性,生物工程学报,1992, 8(3):266-270.
    [405]YU GY, Sinclair JB and Hartman GL et al. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biology&Biochemisty,2002,34:955-963.
    [406]许曼琳,谢宏峰,迟玉成.芽孢杆菌A3抑菌蛋白TasA基因的克隆和表达.中国植物病理学会2011年学术年会论文集,2011.
    [407]Landy MW, Roseman GH and Colio LG. Bacillomycin, an antibiotic from Bacillus subtilis active against pathogenic fungi. Proc Soc Exp Biol Med,1948,67:539-541.
    [408]Mulligan CN. Environmental applications for biosurfaetants. Envkon Pollut,2005,133(2):183-198.
    [409]陈中义,张杰,黄大坊.植物病害生防芽孢杆菌抗菌机制与遗传改良研究.植物病理学报,2003,33(2):97-103.
    [410]顾真荣,马承铸,韩长安.产几丁质酶芽孢杆菌对病原真菌的抑菌作用.上海农业学报,2001,17(4):88-92.
    [411]贺娟,陈正杰,吴恩国.新型抗真菌抗生素发酵工艺及动力学研究.化学工程,2010,10:181-184.
    [412]李八方等.海洋生物活性物质.青岛,中国海洋大学出版社,2007,345-394.
    [413]林永成,周世宁等.海洋微生物及其代谢产物.北京,化学工业出版社,2002,1-286.
    [414]David HA, Oskar RZ. Marine Biotechnology:Pharmaceutical and bioactive natural products. Volume 1. New York, A Division of Plenum Publishing Corporation,1993,436.
    [415]Fenical W. Chemical studies of marine bacteria:developing a new resource. Chem Rev,1993,93:1673-1683.
    [416]Richard HL, Roberto AB, Walther S. Bacteriorhodopsin:A Light-Driven Proton Pump in Halobacterium Halobium. Biophysical journal,1975,15:955-962.
    [417]郑天凌,鄢庆枇,林良牧等.海洋微生物对甲胺磷农药的降解作用.台湾海峡,1999,18(1):95-99.
    [418]Jaruchoktaweechai C, Suwanborirux K and Tanasupawatt S et al. New macrolactins from a marine Bacillus sp. Sc026. J Nat Prod,2002,65(10):1447-1451.
    [419]Magally RT, Rolf J and Marita S et al.7-O-Malonyl Macrolactin A, a New Macrolactin Antibiotic from Bacillus subtilis Active against Methicillin-Resistant Staphylococcus aureus, Vancomycin-Resistant Enterococci, and a Small-Colony Variant of Burkholderia cepacia. Antimicrobial Compounds and Chemotherapy,2006,50(5):1701-1709.
    [420]Davidson BS. New dimensions in natural products research:cultured marine microorganisms. Curr Opin Biotechnol,1995,6:284-291.
    [421]Afonso A, Hon F and Brambilla R. Structure elucidation of Sch 20562, a glucosidic cyclic dehydropeptide lactone-the major component of W-10 antifungal antibiotic. J Antibiot (Tokyo),1999,52(4):383-397.
    [422]Gil-Turnes MS, Hay ME, Fenical W. Symbiotic marine bacteria chemically defend crustacean embryos from a pathogenic fungus. Science,1989,246:116-118.
    [423]Imamura N, Nishijima M and Takadera T et al. New anticancer antibiotics pelagiomicins, produced by a new marine bacterium Pelagiobacter variabilis. J Antibiot (Tokyo),1997,50(1):8-12.
    [424]Singh MP, Menendez AT and Petersen PJ et al. Biological and mechanistic activities of phenazine antibiotics produced by culture LL-14I352. J Antibiot (Tokyo),1997,50(9):785-787.
    [425]Faulkner DJ. Highlights on marine natural products chemistry (1972-1999). New York, Nat Prod Rep,2000.
    [426]Yoshikawa K, Takadera T and Adachi K et al. Korormicin, a novel antibiotic specifically active against marine Gram-negative bacteria, produced by a marine bacterium. J Antibiot,1997,50:949-953.
    [427]Kobayashi J, Ishibashi M. Bioactive metabolites of symbiotic marine micro-organisms. Chem Rev,1993, 93:1753-1769.
    [428]张海龙,傅红伟,田黎等.海洋细菌Bacillus sp,发酵液中化学成分的研究.中国海洋药物,2005,24(2):9-12.
    [429]田黎,张久明,孙照斌等.2个海洋生境微生物菌株产生的次生代谢产物协同抗菌作用初探.植物病理学报,2006,4:366-368.
    [430]Alphonse K. Secondary metabolites from marine microorganisms. Annals of the Brazilian Academy of Sciences, 2002,74(1):151-170.
    [431]Tan LT, Okino T, Gerwick WH. Hermitamides A and B, toxic malyngamide-type natural products from the marine cyanobacterium Lyngbya majuscula. Journal of Natural Products,2000,63(7):952-955.
    [432]Yukiko K, Tsuyoshi F and Hiroshi N et al. Malyngamides M and N from the Hawaiian Red Alga Gracilaria coronopifolia. J Nat Prod,1998,61(1):152-155.
    [433]Sitachitta N, Gerwick WH. Grenadadiene and grenadamide, cyclopropyl-containing fatty acid metabolites from the marine cyanobacterium Lyngbya majuscula. Journal of Natural Products,1998,61(5):681-684.
    [434]Moore RE. In:Marine Natural Products:Chemical and Biological Perspectives. New York, Academic Press,1981, 1-52.
    [435]Hendrik L, Wesley YY and Richard EM et al. Isolation, Structure Determination, and Biological Activity of Lyngbyabellin A from the Marine Cyanobacterium Lyngbya majuscule. J Nat Prod,2000,63(5):611-615.
    [436]Sitachitta N, Williamson RT, Gerwick WH. Yanucamides A and B, two new depsipeptides from an assemblage of the marine cyanobacteria Lyngbya majuscula and Schizothrix species. Journal of Natural Products,2000,63(2):197-200.
    [437]Daniel CC, Richard EM and Jon SM et al. Structure of majusculamide C, a cyclic depsipeptide from Lyngbya majuscule. Journal of Natural Products,1984,49(2):236-241.
    [438]Sergey D, Max T and Ali A et al. Malyngolide from the cyanobacterium Lyngbya majuscula interferes with quorum sensing circuitry. Environmental Microbiology Reports,2010,2(6):739-744.
    [439]Graber MA, Gerwick WH. Kalkipyrone, a toxic gamma-pyrone from an assemblage of the marine cyanobacteria Lyngbya majuscula and Tolypothrix sp. Journal of Natural Products,1998,61(5):677-680.
    [440]Pour M, Negishi E. An efficient and selective synthesis of nakienone a Involving a novel protocol for a-alkenylation of ketones via palladium-catalyzed alkenyl-alkenyl coupling. Tetrahedron Letters,1997,38(4):525-528.
    [441]Okami Y, Okazaki T and Kitahara T et al. Studies on marine microorganisms V. A new antibiotic, aplasmomycin, produced by a streplomycete isolated from shallow sea mud. J Antibiot,1976,29:1019-1025.
    [442]Imamara N, Nishijima M and Adachi K et al. Novel antimycin antibiotics, urauchimycins A and B, produced by marine actinomycete. J Antibiot,1993,46:241-246.
    [443]Fernandez-Chimeno RI, Canedo L and Espliego F et al. IB-96212, a novel cytotoxic macrolide produced by a marine Micromonospora. I. Taxonomy, fermentation, isolation and biological activities. J Antibiot,2000,53(5):474-478.
    [444]Asolka RN, Maskey RP and Helmke E et al. Chalcomycin B, a new macrolide antibiotic from the marine isolate Streptomyces sp. B7064. J Antibiot,2002,55(10):893-898.
    [445]Lundgren P, Andersson MO and Lindel T et al. Lagunapyrones A-C:cytotoxic acetogenins of a new skeletal class from a marine sediment bacterium. Tetrahedron Letters,1996,37(9):1327-1330.
    [446]Okazaki T, Kitahara T, Okami Y. Studies on marine microorganisms. IV. A new antibiotic SS-228 Y produced by Chainia isolated from shallow sea mud. J Antibiot (Tokyo),1975,28:176-184.
    [447]Pathirana C, Jensen PR, Fenical W. Marinone and debromomarinone, two phenylated napthoquinones from a marine actinomycete. Tetrahedron Lett.1992,33:7663-7666.
    [448]Hardt IH. Jensen PR, Fenical W. Neomarinone, and new cytotoxic marinone derivatives, produced by a marine filamentous bacterium (actinomycetales). Tetrahedron Lett,2000,41:2073-2076.
    [449]Pathirana C, Jensen PR and Ryan D et al. Rare phenazine L-quinovose esters from a marine actinomycete. The Journal of Organic Chemistry,1992,57(2):740-742.
    [450]Bernan VS. Montenegro DA and Korshalla JD et al. Bioxalomycins, new antibiotics produced by the marine Streptomyces sp. LL-31F508:taxonomy and fermentation.. J Antibiot,1994,47(12):1417-1424.
    [451]Schumacher RW, Harrigan BL, Davidson BS. Kahakamides A and B, new neosidomycin metabolites from a marine-derived actinomycete. Tetrahedron Letters,2001,42:5133-5135.
    [452]Trischman JA, Jensen PR., Fenical W. Halobacillin:A cytotoxic cyclic acylpeptide of the iturin class produced by a marine Bacillus. Tetrahedron Letters,1994,35(13):5571-5574.
    [453]周世宁,林永成.海洋真菌与细菌发酵物中的环二肽.微生物学通报,2002,3:59-62.
    [454]Biabani MA, Baake M and Lovisetto B et al. Anthranilamides:new antimicroalgal active substances from a marine Streptomyces sp. J Antibiot,1998,51(3):333-340.
    [455]Capon RJ, Skene C and Lacey E et al. Lorneamides A and B:two new aromatic amides from a southern Australian marine actinomycete. J Nat Prod,2000,63(12):1682-1683.
    [456]Thomas JS, Jon C. Aplasmomycinc:Structural studies of a marine antibiotic. Tetrahedron,1991,47(22):3511-3520.
    [457]郑志成,周美英.海洋链霉菌产生的抗生素S-111-9的研究.厦门大学学报(自然科学版),1993,32(5):647-652.
    [4581方金瑞,黄维真,苏国成.海洋放线菌产生的抗菌物质2B-B的分离和鉴别.中国抗生素杂志,1991,4:
    [459]Yusuke H, Shinji O, Shosuke K. Distamycin A, a minor groove binder, changes enediyneinduced DNA cleavage sites and enhances apoptosis. Nucleic Acids Research Supplement,2002,2:95-96.
    [460]Chen XC, Varoglu M and Abrell L et al. Chloriolins A-C, Chlorinated Sesquiterpenes Produced by Fungal Cultures Separated from a Jaspis Marine Sponge. J Ory Chem,1994,59:6344-6348.
    [461]Rahbaek L, Christophersen C, Friswald J. Insulicolide A:a new nitrobenzoyloxy-substituted sesquiterpene from the marine Fungus Aspergillus insulicola. Journal of natural products,1997,60(8):811-813.
    [462]Afiyatullov SS, Kalinovsky AI and Kuznetsova TA et al. New diterpene glycosides of the fungus Acremonium striatisporum isolated from a sea cucumber. Journal of Natural Products,2002,67(6):1047-1051.
    [463]宋晓虹,刘晓红,林永成.红树林真菌K23代谢产物及咔啉与DNA的作用研究.热带海洋学报,2004,3(3):66-70.
    [464]Jensen PR. Jenkins KMand Porter D et al. Evidence that a New Antibiotic Flavone Glycoside Chemically Defends the Sea Grass Thalassia testudinum against Zoosporic Fungi. Appl Environ Microbiol,1998,64(4):1490-1496.
    [465]Gilbert NB, Paul RJ, William F. ChemInform Abstract:Sansalvamide:A New Cytotoxic Cyclic Depsipeptide Produced by a Marine Fungus of the Genus Fusarium. Tetrahedron Letters,1999,40(15):2913-2916.
    [466]Xu XM, Florecita SDG and James BG et al. Stachybotrins A and B:Novel Bioactive Metabolites from a Brackish Water Isolate of the Fungus Stachybotrys sp. J Org Chem,1992,57(25):6700-6703.
    [467]Osterhage C, Kaminsky R and Konig GM et al. Ascosalipyrrolidinone A, an antimicrobial alkaloid, from the obligate marine fungus Ascochyta salicorniae. J Org Chem,2000,65(20):6414-6417.
    [468]Poch GK, Gloer JB. Auranticins A and B:two new depsidones from a mangrove isolate of the fungus Preussia aurantiaca. J Nat Prod,1991,54(1):213-217.
    [469]Shigemori H, Komatsu K and Mikamia Y et al. Seragakinone A, a new pentacyclic metabolite from a marine-derived fungus. Tetrahedron,1999,55(52):14925-14930.
    [470]Daferner M, Anke T, Sterner O. Zopfiellamides A and B, antimicrobial pyrrolidinone derivatives from the marine fungus Zopfiella latipes. Tetrahedron,2002,58(39):7781-7784.
    [471]Kupka J, Anke T and Steqlich W et al. Antibiotics from basidiomycetes. XI. The biological activity of siccayne, isolated from the marine fungus Halocyphina villosa J. & E. Kohlmeyer. J Antibiot 1981,34(3):298-304.
    [472]Grimley JS, Sawayama AM and Tanaka H et al. The Enantioselective Synthesis of Phomopsin B. Natural Product Synthesis,2007,46:8157-8159.
    [473]Maneekarn C, Prasat K and Masahiko I et al. Antimalarial Halorosellinic Acid from the Marine Fungus Halorosellinia oceanica. Bioorganic & Medicinal Chemistry Letters,2001,11:1965-1969.
    [474]邓松之等.海洋天然产物的分离纯化与结构鉴定.北京,化学工业出版社,2007,6-79.
    [475]Zhao ZZ, Wang QS and Wang KM et al. Study of the antifungal activity of Bacillus vallismortis ZZ185 in vitro and identification of its antifungal components. Bioresource Technology,2010,101:292-297.
    [476]Zhang YL, Kong LC and Jiang DH et al. Phytotoxic and antifungal metabolites from Curvularia sp. FH01 isolated from the gut of Atractomorpha sinensis. Bioresource Technology,2011,102:3575-3577.
    [477]Liu CH, Zou WX. and Lu H et al. Antifungal activity of Artemisia annua endophyte cultures against phytopathogenic fungi. Journal of Biotechnology,2001,88:277-282.
    [478]Liu CH, Chen X and Liu TT.et al. Study of the antifunal activity of Acinetobacter baumannii LCH001 in vitro and indentification of its antifunal components. Aool Microbiol Biotechnol,2007,76:459-466.
    [479]Alain K, Querellou J. Cultivating the uncultured:limits advances and future challenges. Extremophiles,2009, 13:583-594
    [480]Lang S, Huners M, Lurtz V. Bioprocess engineering data on the cultivation of marine prokaryotes and fungi marine biotechnology II. Berlin, Springer-Verlag Berlin,2005,29-62.
    [481]Vartoukian SR, Palmer RM, Wade WG. Strategies for culture of'unculturable' bacteria. FEMS Microbiol Lett, 2010,309:1-7.
    [482]Chen LL, Wang N and Wang XM et al. Characterization of two antifungal lipopeptides produced by Bacillus amyloliquefaciens SH-B10. Bioresource Technology,2010,101:8822-8827.
    [483]Ravenschlg K, Sahm K, Amann R. Quantitative molecular analysis of the microbial community in marine Arctic sediments (Svalbard). Appl Environ Microbial,2001,67:4566-4572.
    [484]Bowman J P, Rea S M, McCammon S A. Diversity and community structure within anoxic Hilds, Eastern Antarctica. Environ Microbiol,2000,2:227-237.
    [485]Webster N S, Wilson K J, Blackall L L et al. Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Appl Environ Microbial,2001,67:434-444.
    [486]Wei G, Kloepper JW, Tuzun S. Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology,1991,81:1508-1512.
    [487]Van PR, Niemann R, Schippers B. Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS 417r. Phytopathology,1991,81:728-734.
    [488]Maurhofer M. Induction of systemic resistance of tobacco to Tobacco Necrosis Virus by the root-colonizing Pseudomonas fluorescens strain CHAO:Influence of the gacA gene and of pyoverdine production. Phytopathology,1994, 84:139-146.
    [489]Kloepper JW, Lifshitz R, Zablotowicz RM. Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol.,1989,7:39-43.
    [490]Glick BR. The enhancement of plant growth by free living bacteria. Can J Microbiol,1995,41:109-114.
    [491]Ryder MH, Stephens P M, Bowen GD et al. Improving Plant Productivity with Rhizosphere Bacteria:proceedings of the Third International Workshop on Plant Growth-Promoting Rhizobacteria. Adelaide, CSIRO Information Services Branch,1994.
    [492]Fuhrmann JJ, Wollum AG. Nodulation competition among Bradyrhizobium japonicum strains as influenced by rhizosphere bacteria and iron availability. Biol Fert Soils,1987,7:108-112.
    [493]Shivaji S, Chaturvedi P and Suresh K et al. Bacillus aerius sp. nov., Bacillus aerophilus sp. nov., Bacillus stratosphericus sp. nov. and Bacillus altitudinis sp. nov., isolated from cryogenic tubes used for collecting air samples from high altitudes. International Journal of Systematic and Evolutionary Microbiology.2006,56:1465-1473.
    [494]Marasabessy A, Moeis MR and Sanders JPM et al. Enhancing Jatropha oil extraction yield from the kernels assisted by a xylan-degrading bacterium to preserve protein structure. Appl Microbiol Biotechnol,2011,90:2027-2036.
    [495]Kumar EV, Srijana M and Lumar KK et al. A novel serine alkaline protease from Bacillus altitudinis GVC11 and its application as a dehairing agent. Bioprocess Biosyst Eng,2011,34:403-409.
    [496]Khaneja R, Fons LP and Fakhry S et al. Carotenoids found in Bacillus. Journal of Applied Microbiology,2010, 108:1889-1902.
    [497]Jin F, Ding YQ and Ding W et al. Genetic Diversity and Phylogeny of Antagonistic Bacteria against Phytophthora nicotianae Isolated from Tobacco Rhizosphere. International Journal of Molecular Sciences,2011,12:3055-3071.
    [498]姜凯.水稻纹枯病及稻瘟病拮抗菌的分离与抗性成分分析.[硕士学位论文].四川,四川农业大学,2010.
    [499]Performance Standards for Antimicrobial Suspetibility Testing; Informational Supplement.2010.
    [500]刘冬梅,李理,杨晓泉等.用牛津杯法测定益生菌的抑菌活力.食品研究与开发,2006,27(3):110-111.
    [501]刘志恒.现代微生物学.北京,科学出版社,2002.
    [502]张德.井冈霉素A诱导水稻防御纹枯病反应机理研究.[博士学位论文].北京,中国农业大学,2001.
    [503]Yamaguchi H, YAMAMOTO C, TANAKA N, Inhibition of Protein Synthesis by Blasticidin S. Journal of biochemistry,1965,57:667.
    [504]Okuyama A, Machiyama N, Kinoshita T, et al. Inhibition by kasugamycin of initiation complex formation on 30S ribosomes. Biochemical and Biophysical Research Communications,1971,43:196-199.
    [505]Behr J. Chitin synthase as an antifungal target:recent advances. CURRENT MEDICINAL CHEMISTRY ANTIINFECTIVE COMPOUNDS,2003,2:173-189.
    [506]Onishi J, Meinz M, Thompson J, et al., Discovery of novel antifungal (1,3)-P-D-glucan synthase inhibitors. Antimicrobial compounds and chemotherapy,2000,44:368-377.
    [507]Sanglard D, Ischer F, Parkinson T, et al. Candida albicans mutations in the ergosterol biosynthetic pathway and resistance to several antifungal compounds. Antimicrobial compounds and chemotherapy,2003,47:2404.
    [508]Groll AH, De Lucca AJ, Walsh TJ. Emerging targets for the development of novel antifungal therapeutics. Trends in Microbiology,1998,6:117-124.
    [509]余凤玉,李振华,曾会才.抗真菌农用抗生素的研究进展.热带农业科学,2005,25(1):60-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700