用户名: 密码: 验证码:
蚓粪基质对辣椒幼苗生长的促进效应及作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基质是幼苗生存的场所,也是幼苗所需水分、养分、温度等的介质,有支撑、营养作物的基本功能。当前在世界范围内农、林、花卉业生产所需的育苗基质中,以泥炭为原料的基质产品始终占主导地位。然而泥炭地是全球重要的聚碳系统,赋存条件改变和资源化利用会导致泥炭释放出大量的CO2、CH4、N2O等温室气体,泥炭资源有限,大量开采会破坏湿地生态系统,随着人们对生态环境的关注,探求既环保又经济的新型基质己成为重要课题。
     蚓粪是蚯蚓通过体腔消化道消解有机固废的产物,具有很好的孔性、通气性、排水性和高的持水量,有很大的表面积,使得许多有益微生物得以生存并具有良好的吸收和保持营养物质的能力,可以为植物生长发育提供一个良好的生境,作为有机代用基质具备了产业化发展的前提条件,但有关这方面的具体研究还不多。
     本研究在分析通过蚯蚓过腹处理牛粪而得到的蚓粪的基本性质和不同蚓粪基质配方的基础上,以辣椒幼苗为作为植物材料,研究蚓粪基质对辣椒幼苗生长过程的影响,并探讨蚓粪基质培育辣椒壮苗的机理。结果表明,蚓粪基质对辣椒幼苗生长有明显促进作用,有利于形成壮苗,主要结果如下:
     蚓粪的结构性好,具有较多的微空隙、层状和颗粒状结构。蚓粪中含有大量促使蚓粪形成良好微结构的风干后呈凝胶状的物质,这些物质可被正丁醇充分淋洗、从而导致蚓粪团聚体结构性变劣,而水无法淋洗出这类物质,因此育苗过程中的频繁浇水不会破坏蚓粪基质的优良结构。蚯蚓过腹促进了牛粪中木质素、纤维素、半纤维素、糖类及其他碳水化合物的分解,增加了化合物Ⅰ(HPLC保留值为35.12-35.27min)的含量。蚓粪中的微生物区系丰富,真菌、细菌和放线菌的数量显著高于牛粪。有机固废经蚯蚓消解后,细菌群落多样性及结构发生明显变化,随着消解时间的延长,蚓粪细菌群落多样性及结构逐渐趋于稳定;蚓粪细菌群落结构的形成受饵料影响,并且在特定饵料间存在一定程度的趋同现象。蚯蚓过腹处理还增加了过氧化氢酶活性。蚓粪中大量的GA3和IAA能够对植物生长产生较大的刺激作用,而脲酶活性的降低在一定程度上有利于蚓粪的氮元素缓释。
     与市售对照基质和蛭石(以泥炭为主要原料,氮磷钾总养分为2.5-5.0%,下同)相比,蚓粪的容重、总孔隙度、通气孔隙度、气/水大于前者,而持水孔隙度、最大持水量、水分截留量、田间持水量小于前者。蚓粪的酸缓冲容量与对照基质基本相当,而碱缓冲容量明显大于对照基质。粉碎和高温灭菌处理降低了蚓粪的酸缓冲容量,增加了碱缓冲容量,高温灭菌处理效果比粉碎处理更为明显。
     蚓粪基质的pH值小于对照基质,比对照基质的EC值高2-3倍、全氮含量高3-4倍、有效氮含量高2倍左右、全磷含量高1.6-2.0倍、有效磷含量高5-7倍、有机质含量高1.5-2.5倍。随着辣椒幼苗生育期的推延,基质pH值呈逐步上升的趋势,EC呈逐步下降的趋势,基质有效磷含量和钾含量呈逐步下降的趋势。
     结果显示,蚓粪基质比对照基质更有利于辣椒幼苗的成苗率、展宽、株高、茎粗、叶片数、茎叶鲜(干)重、根表面积、根粗、根体积、根鲜重等指标的增大,但在苗初期对辣椒幼苗叶片叶绿素、根尖数、根鲜(干)重、总鲜(干)重、G值和壮苗指数等无明显影响,在苗中期和成苗期则明显提高了这些壮苗评价指标。即蚓粪基质对辣椒幼苗各指标的提升效果随着生育期的推延逐步明显,其主要原因在于中后期辣椒幼苗的根系已经充分发育,物质吸收能力和抵抗环境能力不断增强。
     以小粒径蚓粪(蚓粪粉碎后)配制的基质比对照基质更有利于辣椒幼苗成苗率、茎粗、株高、展宽、叶片数、根长、根表面积、根体积、根尖数、根系活力、G值和壮苗指数的提高,但导致成苗率、叶绿素含量、根粗发生不同程度下降。蚓粪粉碎后与蛭石按8~16:1体积比均匀混合后有利于辣椒幼苗形成壮苗。蚓粪粉碎后基质促进辣椒幼苗大部分形态和生理指标增大的主要原因在于:粉碎处理增加了蚓粪的容重、持水孔隙度和成坨性。在蚓粪中添加相同量的蛭石(蚓粪:蛭石=4:1,V/V,)时,粉碎处理会增加蚓粪基质的容重、总孔隙度、持水孔隙度、基质含水量和成坨性。
     蚓粪中添加适量蛭石有利于辣椒幼苗的展宽、叶片数、根长、根表面积、根体积和根尖数的增加。蚓粪与蛭石按体积比4:1混合后会导致基质在辣椒幼苗整个生育期的pH值增大,全氮、有效氮、全磷、有效磷、水溶性钾、有机质含量和EC值下降。尽管添加蛭石对蚓粪性质的改变更有利于辣椒幼苗的生长,但考虑到成本和壮苗育苗效果,基质中的蚓粪与蛭石体积比与8:1为宜。
     蚓粪基质经过高温灭菌处理后比未灭菌的新鲜蚓粪基质更有利于辣椒幼苗的叶绿素、茎粗、株高、展宽、叶片数、鲜(干)重、根长、根粗、根表面积、根体积、根冠比、幼苗G值等壮苗指标的增加。高温灭菌在使有益微生物失活的同时也使蚓粪中的对植物幼苗生长不利的微生物失活。高温灭菌过程导致了蚓粪中化合物Ⅰ(HPLC保留值为35.12-35.27min)发生去饱和、最终衍生出了极性更大的化合物Ⅱ-Ⅴ(HPLC保留值分别为3.09、11.35、17.55、19.07min),这类极性更大的衍生物水溶性更强,更利于植物的吸收和利用。高温灭菌也会导致GA3和IAA的增加,GA3增加量尤为明显。
     蚓粪基质中加入适当氮肥可提高辣椒幼苗叶片的叶绿素含量、株高、叶片数、茎叶鲜(干)重、总鲜(干)重、根表面积,初期根尖数、中后期的根鲜(干)重、G值、壮苗指数苗。蚓粪基质中添加1.0kg·m-3尿素比添加0.5kg·m-3尿素更有利于辣椒幼苗叶片叶绿素含量、株高、茎粗、叶片数、茎叶鲜(干)重、根鲜(干)重、总鲜(干)重、G值、根冠比和壮苗指数苗的增加,但氮肥添加量与辣椒幼苗成苗率呈反比,即过量的尿素氮会导致幼苗的中毒现象。
     添加氮肥会降低蚓粪基质在辣椒幼苗生育期间的pH值,增大基质的EC值。1.0kg·m-3尿素添加量比0.5kg·m-3尿素添加量更有利于基质有效氮含量保持在较高水平。添加磷钾肥也会导致基质在辣椒幼苗整个生育期的pH值减小,EC值增大,可提高辣椒幼苗的成苗率、展宽、茎叶鲜(干)重、根粗、根体积、总鲜(干)重、G值等壮苗指数,但对叶绿素含量、株高、茎粗、叶片、根长、根表面积、根鲜(干)重等无明显影响。
     研究结果显示,蚓粪基质能明显促进辣椒根、茎和叶等各器官的系统发育,有利于培育壮苗,其有益效果在中后期更为明显。蚓粪促进辣椒壮苗形成是综合因素作用下的结果,包括孔性、结构性、酸碱缓冲性、盐缓冲性的增加,较高的植物营养物质含量和较强的养分缓释性能,丰富的有益微生物,大量的活性氨基酸、有益酶、植物激素等,这些有机活性物质的存在也是蚓粪促进辣椒壮苗形成的重要原因。
     蚓粪中含有大量使蚓粪保持良好微结构的胶状物质,这类物质不会被水淋洗损失,保证了育苗过程中浇水措施不会使基质的结构性劣变。
     在具体应用方面,蚓粪基质配方以蚓粪与蛭石体积比为8:1、添加0.5-1.0kg·m-3尿素、添加10.0kg·m-3过磷酸钙和1.0kg·m-3硫酸钾为宜。在蚓粪基质生产过程中,蚓粪采收后应该首先进行好氧高温堆置后熟,这有利于杀灭蚓粪中有害生物、促进更多的植物活性有机物产生,同时尽可能多的保持有益活性微生物数量。蚓粪后熟后无需风干粉碎,直接过筛使蚓粪具有较好的商品感官即可,这有利于节约生产成本和充分发挥蚓粪的有益作用。
Current nursery substrates for raising seedlings in agriculture, forestry and flower production are mostly derived from peat which is one of the important natural resources. Peat acts as a carbon sink and can release CO2, CH4and other greenhouse gases during its utilization as resource and due to the change of its storage condition. Massive mining of peat may destroy wetland. It is necessary to develop new materials for nursery substrates to replace peat, from the viewpoint of resource preservation and environmental protection. Organic solid wastes can be transformed to vermicompost through earthworm digestion. Vermicompost is characterized by its porosity, permeability of air and water and water holding capacity. The larger surface area of vermicompost can adsorb nutrients required by plants and provide habitats for microbes. Therefore, vermicompost-based substrate can provide seedlings the ideal growth conditions and is becoming a promising substitute for peat. However, information and investigations on this aspect have been in scarce yet.
     In this study, earthworm was used to digest cow manure, then vermicompost was obtained. Based on the analysis of the basic properties of vermicompost, different formulas of vermicompost-based substrates were designed. With capsicum seedling as material, the effects of the substrates on seedling growth were investigated and the mechanisms pertaining to vermicompost-formulated substrate strengthening capsicum seedling were analyzed. Results obtained in this study were summarized as follows.
     Under scanning electron microscope, vermicompost showed granular and bedded structure and had higher microporosity. The vermicompost contained the gelatinous substance(s) after air-drying which helped vermicompost maintain good structure. N-butyl alcohol could washed out the substance(s) and destroyed aggregate structure of the vermicompost, while water had no influence on the substance(s) which indicated that the ideal structure of vermicompost-formulated substrate was not affected by frequent watering during seedling growth. Far-infrared spectrum analysis showed that after earthworm digestion, lignin, cellulose, hemicellulose, sugar and other carbohydrates in cow manure were gradually decomposed and converted to humus substances, while water soluble organic silicon compounds changed to inorganic silicon oxides. An unknown substance in cow manure (Substance I, with retention time35.12-35.27min. detected by HPLC) increased after earthworm digestion. The number of fungi, bacteria and actinomycetes in vermicompost was higher than that in cow manure. After earthworm digestion, hydrogen peroxidase activity increased. The bacterial communities diversity and structure changes significantly between waste organic solid and vermicompost. The latter bacterial community diversity and structure is gradually stabilizing with the extension of digestion time. The bacterial community structure of vermicompost from the same bait is in a certain degree of convergence. Large amount of GA3and IAA was detected in vermicompost, which could stimulate seedling growth, while decline of urease activity in vermicompost helped to delay nitrogen release during seedling growth. Compared with current commercial substrate (CK, peat-based, with total N, P and K of2.5-5.0%), the bulk density, total porosity and aerial porosity and air/water ratio of vermicompost were higher, while water-holding porosity, water-holding and retention capacity was lower. The acid buffer capacity of vermicompost was similar to that of CK, but the buffer capacity of alkalinity and salt was higher than that of CK. High temperature sterilization and grinding, especially the former, decreased the capacity of acid and salt but increased the alkaline capacity.
     The pH value of vermicompost was lower than that of CK but EC value, total N, available N, total P, available P and organic matter content of vermicompost was2-3,3-4,2,1.6-2.0,5-7and1.5-2.5times higher than those of CK, respectively. During seedling growth, pH value of vermicompost-formulated substrate increased, while EC and available P and K decreased.
     The growth index values of the seedlings grown in vermicompost-based substrate, including survival rate, plant broadening, plant height, stem diameter, number of leafs, fresh weight of leaf and stem, root surface area, root diameter, root volume and fresh weight of root, were higher than those of the seedlings grown in CK. However, such promoting effects mainly appeared in middle and late stages, rather than early stage, of seedling development, due to the gradual enhancement of nutrient absorption and environmental resistance by the vermicompost.
     The substrate derived from grinded vermicompost was more advantageous in promoting the increase of survival rate, stem diameter, plant height, plant broadening, number of leafs, root length, root surface area, root volume, root number, root vigor, G value and seedling index, but caused the decline in overall planting rate, chlorophyll content and root diameter. The substrate formulated by mixing grinded vermicompost and vermiculite with the ratio of8-16:1(v:v) was beneficial to the strengthening of the seedlings, due to the increase of bulk density, water holding capacity and lump or granular structure. When vermicompost was mixed with vermiculite (4:1, v:v), grinding increased bulk density, total porosity, water-holding porosity, water content and lump or granular structure of the substrate.
     Addition of vermiculite helped the substrate enhance plant broadening, number of leafs, root length, root surface area, root volume and root tips of the seedlings. During seedling growth, pH value in the substrate (4vermicompost:1vermiculite, v:v) was higher, but total N, available N, total P, available P, water soluble K, organic matter content and EC was lower. Although addition of vermiculite was beneficial to seedling growth, the suitable ratio of vermicompost to vermiculite was4:1(v:v), considering the cost factor in preparing substrate.
     After high temperature sterilization, the vermicompost-formulated substrate, compared with fresh one, showed better promoting effect on seedling growth. Substance Ⅰ (retention time:35.12-35.27min. in HPLC) was desatured under high temperature sterilization and more polar substances Ⅱ-Ⅴ (with retention time3.09,11.35,17.55and19.07min., respectively) were derived. These substances were more water soluble and easier to be absorbed by seedlings. Meanwhile, high temperature sterilization caused the increase of GA3and IAA (esp. the former) in the substrate.
     Moderate addition of urea to the substrate was helpful in enhancing seedling growth. The seedling grown in the substrate added with urea with the rate of1.0kg.m-3had higher leaf chlorophyll content, plant height, number of leafs, fresh weight of seedlings, number of root tips, root surface area, root/shoot ratio, G value and seedling index, compared with those in the substrate with0.5kg.m-3urea added. Over-rate urea added to substrate was toxic to the seedlings and caused decline of survival rate.
     Addition of urea reduced pH and increased EC value of the substrate during seedling growth. Higher available N level was maintained in the substrate with1.0kg.m-3urea added than in the substrate with0.5kg.m-3urea added. Addition of P and K to the substrate also urea reduced pH and increased EC value, and had promoting effect on survival rate, plant broadening, fresh weight of seedling plant, root diameter, root volume and G value. But P and K addition had no apparent effect on leaf chlorophyll content, plant height, stem diameter, leaf number, root length, root surface area and root fresh weight.
     In summary, vermicompost-formulated substrate could promote the development of root, leaf and stem of capsicum seedling and was beneficial to the raising of sound seedlings. Such promoting effect displayed more apparently during the middle and late growth stages of the seedlings. The promoting effect was comprehensive and resulted from many aspects pertaining to the properties of the vermicompost, including high porosity, ideal structure, high buffer capacity to acid, alkaline and slat, high nutrient content, slow release of nutrients, abundant microbial flora, high content of active AA, beneficial enzymes and plant hormones. The gelatinous substance(s) in the vermicompost was not affected by frequent watering and helped the substrate maintain good structure during seedling growth.
     In application, the optimum formula of the substrate for raising capsicum seedling was:8vermicompost:1vermiculite (v:v)+0.5-1.0kg.m-3urea+10.0kg.m-3calcium superphosphate+1.0kg.m-3potassium sulfate. After collection from earthworm bed, high temperature and aerobic composting was recommended to kill the pest, to speed up the formation of active organic substance and to maintain beneficial microbes. After composting, the sieved vermicompost (without air-drying) can be directly used to formulate the substrate, to save the production cost, as well as to preserve the beneficial effect of the vermicompost.
引文
[1]毛羽,张无敌.无土栽培基质的研究进展[J].农业与技术,2004,(3),83-88.
    [2]Arancon, N., Edwards, C. A., Yardim, F. e. a. In Management of Plant Parasitic Nematodes by Use of Vermicomposts[M], Proceedings of Brighton Crop Protection Conference Pests and Diseases,2002; pp 705-710.
    [3]郑光华,汪浩,李文田.蔬菜花卉无土栽培技术[M].上海科学技术出版社:上海,1990.
    [4]陈殿奎.我国蔬菜育苗的现状问题及发展趋势[J].中国蔬菜,2000,(6),1-3.
    [5]闫杰,罗庆熙,韩丽萍.工厂化育苗基质研究进展[J].中国蔬菜,2006,(2),34-37.
    [6]晋建勇,孟宪民,刘静.欧洲园艺泥炭的开发与环境问题[J].腐植酸,2006,(06),17-21+48.
    [7]Raviv, M., Chen, Y., Inbar, Y. The Use of Peat and Composts as Growth Media for Container-Grown Plants. In The Role of Organic Matter in Modern Agriculture[M], Chen, Y.; Avnimelech, Y., Eds. Martinus NijhoffPubl.:Dordrecht,1986; pp 257-287.
    [8]杜林峰,孙向阳,沈彦.泥炭作为园艺基质的研究进展[J].北方园艺,2007,(10),68-70.
    [9]Robertson, R. A. Peat, Horticulture and Environment[J]. Biodiversity and conservation,1993,2(5), 541-547.
    [10]Carlile, W. R. The Effects of the Environment Lobby on the Selection End Use of Growing Media[J]. Acta Horticulturae,1999, (2),587-596.
    [11]麦德恩,林怡如,叶德铭.蚯蚓之理化性质与应用潜力[J].台湾花卉园艺,2002,(4),14-17.
    [12]Riviere, L. M., Caron, J. In Research on Substrates:State of the Art and Need for the Coming 10 Years[M],1999; pp 29-42.
    [13]Hashemimajd, K., Kalbasi, M., Goichin, A., et al. Comparison of Vermicompost and Composts as Potting Media for Growth of Tomatoes[J]. Plant Nutr,2004,27,1107-1123.
    [14]Eklind, Y., Raemert, B., Wivstad, M. Evaluation of Growing Media Containing Farmyard Manure Compost, Household Waste Compost or Chicken Manure for the Propagation of Lettuce (Lactuca Sativa L.) Transplants[J]. Biological agriculture & horticulture,2001,19(2),157-181.
    [15]Beeson, R. C. J. Composted Yard Waste as a Component of Container Substrates[J]. Environ. Hortic, 1996,14(3),115-121.
    [16]Bugbee, G. J., Frink, C. R. Composted Waste as a Peat Substitute in Peatlite Media[J]. HortScience,1989, 24(4),625-627.
    [17]Buckland, P. Peatland Archaeology:A Conservation Resource on the Edge of Extinction[J]. Biodiversity and conservation,1993,2(5),513-527.
    [18]Herrera, F., Castillo, J. E., Lopez-Bellido, R. J., et al. Replacement of a Peat-Lite Medium with Municipal Solid Waste Compost for Growing Melon (Cucumis Melo L.) Transplant Seedlings[J]. Compost Science & Utilization,2009,17(1),31-39.
    [19]Vavrina, C. S. In Municipal Solid Waste Materials as Soilless Media for Tomato Transplant Production[M], Proceedings of the Florida State Horticulture Society:1995; pp 118-120.
    [20]Chaney, R. L., Munns, J. B., Cathey, H. M. Effectiveness of Digested Sewage Sludge Compost in Supplying Nutrients for Soilless Potting Media[J]. Journal of the American Society for Horticultural Science,1980,105(4),485-492.
    [21]Handreck, K. A. Properties of Coir Dust, and Its Use in the Formulation of Soilless Potting Media[J]. Communications in Soil Science and Plant Analysis,1993,24(3),349-363.
    [22]Meerow, A. W. Growth of Two Subtropical Ornamentals Using Coir (Coconut Mesocarp Pith) as a Peat Substitute[J]. HortScience,1994,29(12),1484-1486.
    [23]Ribeiro, H. M., Romero, A. M., Pereira, H., et al. Evaluation of a Compost Obtained from Forestry Wastes and Solid Phase of Pig Slurry as a Substrate for Seedlings Production[J]. Bioresource Technology,2007,98(17),3294-3297.
    [24]王生菊,史永利.基质发酵是有机生态型无土栽培成功的关键[J].农业科技与信息,2009,(05),28.
    [25]郭世荣.固体栽培基质研究、开发现状及发展趋势[J].农业工程学报,2005,21(S2),1-4.
    [26]Suthar, S. Vermicomposting of Vegetable-Market Solid Waste Using Eisenia Fetida:Impact of Bulking Material on Earthworm Growth and Decomposition Rate[J]. Ecological Engineering,2009,35(5), 914-920.
    [27]Domi'nguez, J., Edwards, C. A., Subler, S. A Comparison of Vermicomposting and Composting Methods to Process Animal Wastes[J]. Biocycle,1997,38,57-59.
    [28]Subler, S., Edwards, C. A., Metzger, J. D. Comparing Composts and Vermicomposts[J]. Biocycle,1998, 39,63-66.
    [29]Garg, P., Gupta, A., Satya, S. Vermicomposting of Different Types of Waste Using Eisenia Foetida:A Comparative Study[J]. Bioresource Technology,2006,97(3),391-395.
    [30]Mitchell, M. J., Hornor, S. G., Abrams, B. I. Decomposition of Sewage Sludge in Drying Beds and the Potential Role of the Earthworm Eisenia Foetida[J]. Environ. Qual,1980,9(3),373-378.
    [31]Domi'nguez, J., Edwards, C. A., Webster, M. Vermicomposting of Sewage Sludge:Effect of Bulking Materials on the Growth and Reproduction of the Earthworm Eisenia Andrei.[J]. Pedobiologia,2000, 44(1),24-32.
    [32]Atiyeh, R. M., Domi'nguez, J., Subler, S., et al. Changes in Biochemical Properties of Cow Manure During Processing by Earthworms (Eisenia Andrei. Bouche) and the Effects on Seedling Growth[J]. Pedobiologia,2000,44(6),709-724.
    [33]Chan, P. L. S., Griffiths, D. A. The Vermicomposting of Pre-Treated Pig Manure[J]. Biological wastes 1988,24(1),57-69.
    [34]Edwards, C. A., Burrows, I., Fletcher, K. E., et al. He Use of Earthworms for Composting Farm Wastes. In Composting Agricultural and Otherwastes[M], Gasser, J. K. R., Ed. Elsevier:London and New York,,1985; pp 229-241.
    [35]Wilson, D. P., Carlile, W. R. In Plant Growth in Potting Media Containing Worm-Worked Duck Waste[M], Acta Hortic,1989; pp 205-220.
    [36]Mba, C. C. Treated-Cassava Peel Vermicomposts Enhanced Earthworm Activities and Cowpea Growth in Field Plots[J]. Resources, conservation and recycling 1996.,17(3),219-226.
    [37]Orozco, F., Cegarra, J., Trujillo, L., et al. Vermicomposting of Coffee Pulp Using the Earthworm Eisenia Fetida:Effects on C and N Contents and the Availability of Nutrients [J]. Biology and Fertility of Soils, 1996,22(1),162-166.
    [38]Shanthi, N. R., Bhoyar, R. V., Bhide, A. D. Vermicomposting of Vegetable Waste[J]. Compost. Sci. Util, 1993,1,27-30.
    [39]Maboeta, M. S., van Rensburg, L. Vermicomposting of Industrially Produced Woodchips and Sewage Sludge Utilizing Eisenia Fetida[J]. Ecotoxicology and environmental safety,2003,56(2),265-270.
    [40]Albanell, E., Plaixats, J., Cabrero, T. Chemical Changes During Vermicomposting (Eisenia Fetida) of Sheep Manure Mixed with Cotton Industrial Wastes[J]. Biology and Fertility of Soils,1988,6(3), 266-269.
    [41]Edwards, C. A., Burrows, I. The Potential of Earthworm Compost as Plant Growth Media. In Earthworms in Waste and Environmental Management[M], Neuhauser, E. F., Ed. SPB Academic Edwards, C.A,1988; pp 21-32.
    [42]Jongmans, A. G., Pulleman, M. M., Balabane, M., et al. Soil Structure and Characteristics of Organic Matter in Two Orchards Differing in Earthworm Activity[J]. Applied Soil Ecology,2003,24,219-232.
    [43]Ndegwa, P. M., Thompson, S. A., Das, K. C. Effects of Stocking Density and Feeding Rate on Vermicomposting of Biosolids [J]. Bioresource Technology,2000,71(1),5-12.
    [44]Suthar, S., Singh, S. Feasibility of Vermicomposting in Biostabilization of Sludge from a Distillery lndustry[J]. Science of The Total Environment,2008,394(2-3),237-243.
    [45]Elvira, C., Goicoechea, M., Sampedro, L., et al. Bioconversion of Solid Paper Pulp Mill Sludge Earthworms[J]. Bioresource Technology,1996,57(2),173-177.
    [46]Aria, M. M., Lakzian, A., Haghnia, G. H., et al. Effect of Thiobacillus, Sulfur, and Vermicompost on the Water-Soluble Phosphorus of Hard Rock Phosphate[J]. Bioresource Technology,2010,101(2), 551-554.
    [47]Shi-wei, Z., Fu-zhen, H. The Nitrogen Uptake Efficiency from 15n Labeled Chemical Fertilizer in the Presence of Earthworm Manure (Cast). In Advances in Management and Conservation of Soil Fauna[M], Vereresh, G. K.; Rajagopal, D.; Viraktamath, C. A., Eds. Oxford and IBH:New Delhi, India, 1991; pp 539-542.
    [48]Urdaneta, C., Parra, L.-M. M., Matute, S., et al. Evaluation of Vermicompost as Bioadsorbent Substrate of Pb, Ni, V and Cr for Waste Waters Remediation Using Total Reflection X-Ray Fluorescence[J]. Spectrochimica Acta Part B:Atomic Spectroscopy,2008,63(12),1455-1460.
    [49]Tomati, U., Grappelli, A., Galli, E. Fertility Factors in Earthworm//Tomai U.Prospects in Earthworm Farming[M]. Publication Ministro della Ricerca Scientifica Technologia:Rome,1983.
    [50]Krishnamoorthy, R. V., Vajranabhaiah, S. N. Biological Activity of Earthworm Casts:An Assessment of Plant Growth Promoter Levels in the Casts[J]. Proc. Indian Acad. Sci,1986,95,341-351.
    [51]Tomati, U., Grappelli, A., Galli, E. The Hormone-Like Effect of Earthworm Casts on Plant Growth[J]. Biology and Fertility of Soils 1988,5(4),288-294.
    [52]Arancon, N. Q., Edwards, C. A., Bierman, P. e. a. Influences of Vermicomposts on Field Strawberries: 1.Effects on Growth Andyields[J]. Bioresource Technology,2004,93(2),145-153.
    [53]Edwards, C. A., Norman, Q. A. Vermicomposts Suppress Plant Pest and Disease Attacks[J]. Pro Quest Agriculture Journals,2004,45(3),51-54.
    [54]Sahni, S., Sarma, B. K., Singh, D. P., et al. Vermicompost Enhances Performance of Plant Growth-Promoting Rhizobacteria in Cicer Arietinum Rhizosphere against Sclerotium Rolfsii[J]. Crop Protection,2008,27(3-5),369-376.
    [55]Bachman, G R., Metzger, J. D. Growth of Bedding Plants in Commercial Potting Substrate Amended with Vermicompost[J]. Bioresource Technology,2008,99(8),3155-3161.
    [56]Atiyeh, R. M., Arancon, N. Q., Edeards, C. A. e. a. The Influence of Earthworm Processed Pig Manure on the Growth and Productivity of Marigolds[J]. Bioresource Tecnology,2002,81(2), 103-108.
    [57]Atiyeh, R. M., Edwards, C. A., Subler, S. Pig Manure Vermicompost as a Component of a Horticultural Bedding Plant Medium:Effects on Physicochemical Properties and Plant Growth[J]. Bioresource Tecnology,2001,78(1),11-19.
    [58]Atiyeh, R., Lee, S., Edwards, C. A. e. a. The Influence of Humic Acids Derived from Earthworm-Rocessed Organic Wastes on Plant Growth[J]. Bioresource Technology,2002,84(1),7-14.
    [59]Arancon, N. Q., Edwards, C. A., Bierman, P. Influences of Vermicomposts on Field Strawberries:Part 2.Effects on Soilmicrobiological and Chemical Properties[J]. Bioresource Technology,2006,97(6), 831-840.
    [60]Singh, R., Gupta, R. K., Patil, R. T., et al. Sequential Foliar Application of Vermicompost Leachates Improves Marketable Fruit Yield and Quality of Strawberry (Fragaria × Ananassa Duch.)[J]. Scientia Horticulturae,2010,124(1),34-39.
    [61]孙越鸿,吴永胜,干大木,等.施用蚯蚓粪对草莓果实中重金属残留的影响[J].现代农业科技,2011,(11),23+29.
    [62]刘军,刘春生,史庆华,等.新型富硒肥料对韭菜生长及品质的影响[J].中国农学通报,2011,27(16),164-167.
    [63]吴彤东,王海候,陆长婴,等.蚓粪复合基质氮肥施用量对番茄穴盘幼苗生长的影响[J].江苏农业科学,2010,(04),191-192.
    [64]周修任,杨鹏鸣.不同施肥处理对南瓜呼吸速率和壮苗指数的影响[J].广东农业科学,2009,(11),79-81.
    [65]杨旭,殷朝珍.不同氮磷钾配比及其含量对番茄穴盘苗生长的影响[J].长江蔬菜,2008,(20),40-41.
    [66]张慎好,赵振忠,武春成,等.Pbo对培育番茄壮苗应用效果的研究[J].长江蔬菜,2009,(06),37-39.
    [67]杨红丽,王子崇,张慎璞,等.多效唑对番茄穴盘育苗质量的影响[J].河南农业科学,2009,(11),101-104.
    [68]宋朝玉,孙兆法,张淑霞.A-萘乙酸浸种对黄瓜幼苗影响的初步研究[J].山东农业科学,2009,(04),90-91.
    [69]师建华,肖佩刚.糖在番茄幼苗生长过程中的影响表现[J].北方园艺,2009,(10),153-155.
    [70]李海云,韩国徽,任秋萍,等.不同光周期对黄瓜幼苗生长的影响[J].西北农业学报,2009,18(03),201-203.
    [71]金丽华,何道根.不同穴盘规格对青花菜幼苗生长发育的影响[J].上海农业科技,2009,(01),87-89.
    [72]Wasaki, J., Rothe, A., Kania, A., et al. Root Exudation, Phosphorus Acquisition, and Microbial Diversity in the Rhizosphere of White Lupine as Affected by Phosphorus Supply and Atmospheric Carbon Dioxide Concentration[J]. Journal of Environmental Quality,2005,34(6),2157-2166.
    [73]朱毅勇,曾后清,董彩霞,等.缺磷条件下白羽扇豆排根发育与生长素及mirl64的关系[J].西北植物学报,2010,30(02),317-322.
    [74]Jia, Z. H., Yi, J. H., Su, Y. R., et al. Autotoxic Substances in the Root Exudates from Continuous Tobacco Cropping[J]. Allelopathy Journal,2011,27(1),87-96.
    [75]Leach, K. A., Hejlek, L. G., Hearne, L. B., et al. Primary Root Elongation Rate and Abscisic Acid Levels of Maize in Response to Water Stress[J]. Crop Science,2011,51(1),157-172.
    [76]She, X. P., Huang, A. X., Ren, Y. Hydrogen Peroxide Generated by Copper Amine Oxidase Involved in Adventitious Root Formation in Mung Bean Hypocotyl Cuttings[J]. Australian Journal of Botany,2010, 58(8),656-662.
    [77]崔瑾,马志虎,徐志刚,等.不同光质补光对黄瓜、辣椒和番茄幼苗生长及生理特性的影响[J].园艺学报,2009,36(05),663-670.
    [78]A., W. R. Root Medium Physical Properties[J]. HortTechnology (USA),1998,8(4),481-485.
    [79]杨振华.蝴蝶兰栽培基质的研究[D].硕士,北京林业大学,2008.
    [80]刘庆超.三种重要盆栽花卉的有机代用基质研究[D].博士,北京林业大学,2006.
    [81]张莹莹,张勇,宁志利.蚯蚓粪的作用及其在鸡生产中的应用[J].饲料博览,2010,(11),12-13.
    [82]于建光,胡锋,李辉信,等.接种蚯蚓对土壤团聚体分布、稳定性及有机碳赋存的影响[J].水土保持学报,2010,24(03),175-179+184.
    [83]中国科学院南京土壤研究室微生物室.土壤微生物研究法[M].科学出版社:北京,1985.
    [84]关松荫.土壤酶及其活性研究法[M].农业出版社:北京,1986.
    [85]郑洪元,张德生.土壤动态生物化学研究法[M].科学出版社:北京,1982.
    [86]刘庆华,刘庆超,王奎玲,等.几种无土栽培代用基质缓冲性研究初报[J].中国农学通报,2008,24(02),272-275.
    [87]李天林,沈兵,李红霞.无土栽培中基质培选料的参考因素与发展趋势(综述)[J].石河子大学学报(自然科学版),1999,3(03),250-258.
    [88]Kale, R. D., Mallesh, B., Kubra, B., et al. Influence of vermicompost application on the available macronutrients and selected microbial populations in a paddy field[J]. Soil Biology and Biochemistry, 1992,24(12),1317-1320.
    [89]Arancon, N. Q., Edwards, C. A., Bierman, P., et al. Effects of vermicomposts produced from cattle manure, food waste and paper waste on the growth and yield of peppers in the field[J]. Pedobiologia, 2005,49 (4),297-306.
    [90]Arancon, N. Q., Galvis, P. A., Edwards, C. A.. Suppression of insect pest populations and damage to plants by vermicomposts. Bioresource Technology,2005,96 (10),1137-1142.
    [91]Szczech, M., Suppressiveness of vermicompost against Fusarium wilt of tomato[J]. Journal of Phytopathology,1999,147(3),155-161.
    [92]Delgado-Moreno, L., Pena, A. Compost and vermicompost of olive cake to bioremediate triazines-contaminated soil[J]. Science of The Total Environment,2009,407 (5),1489-1495.
    [93]Moreno, B., Vivas, A., Nogales, R., et al. Masciandaro, G., Benitez, E., Restoring biochemical activity and bacterial diversity in a trichloroethylene-contaminated soil:the reclamation effect of vermicomposted olive wastes[J]. Environmental Science and Pollution Research,2009,16 (3), 253-264.
    [94]Moon, K. E., Lee, S. Y., Lee, S. H., et al. Earthworm cast as a promising filter bed material and its methanotrophic contribution to methane removal[J]. Journal of Hazardous Materials,2010,176 (1-3), 131-138.
    [95]Fu, Y., Shao, L., Liu, H., et al. Ethylene removal evaluation and bacterial community analysis of vermicompost as biofilter material[J]. Journal of Hazardous Materials,2011,192 (2),658-666.
    [96]Yasir, M., Aslam, Z., Kim, S. et al. Bacterial community composition and chitinase gene diversity of vermicompost with antifungal activity[J]. Bioresource Technology,2009,100 (19),4396-4403.
    [97]Zambare, V., Nilegaonkar, S., Kanekar, P. A novel extracellular protease from Pseudomonas aeruginosa MCM B-327:enzyme production and its partial characterization[J]. New Biotechnology,2011,28 (2), 173-181.
    [98]胡艳霞,孙振钧,王东辉,等.蚓粪中拮抗微生物分析[J].应用与环境生物学报,2004,10(01),99-103.
    [99]Fernandez-Gomez, M. J., Nogales, R., Insam, H., et al. Use of DGGE and COMPOCHIP for investigating bacterial communities of various vermicomposts produced from different wastes under dissimilar conditions[J]. Science of The Total Environment,2011.(414),664-671
    [100]Fernandez-Gomez, M. J., Romero, E., Nogales, R. Feasibility of vermicomposting for vegetable greenhouse waste recycling[J]. Bioresource Technology,2010,101 (24),9654-9660.
    [101]郑金伟,李辉信,胡锋.不同处理方式对奶牛粪细菌群落多样性及群落结构的影响[J].农业环境科学学报,2009,(03),555-558.
    [102]Jayasinghe, B., Parkinson, D. Earthworms as the vectors of actinomycetes antagonistic to litter decomposer fungi[J]. Applied Soil Ecology,2009,43 (1),1-10.
    [103]Muyzer, G., De Waal, E. C., Uitterlinden, A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J]. Applied and environmental microbiology,1993,59 (3),695-700.
    [104]Arancon, N. Q., Edwards, C. A., Bierman, P. Influences of Vermicomposts on Field Strawberries:Part 2.Effects on Soilmicrobiological and Chemical Properties[J]. Bioresource Technology,2006,97, 831-840.
    [105]胡佩,刘德辉,胡锋,等.蚯蚓粪中的植物激素及其对绿豆插条不定根发生的促进作用[J].生态学报,2002,22(8),1211-1214.
    [106]Johnson, W. P., Amy, G. L. Facilitated Transport and Enhanced Desorption of Polycyclic Aromatic Hydrocarbons by Natural Organic Matter in Aquifer Sediments[J]. Environmental science & technology,1995,29(3),807-817.
    [107]Gu, B., Schmitt, J., Chen, Z., et al. Adsorption and Desorption of Different Organic Matter Fractions on Iron Oxide[J]. Geochimica et Cosmochimica Acta,1995,59(2),219-229.
    [108]Kaiser, K., Zech, W. Competitive Sorption of Dissolved Organic Matter Fractions to Soils and Related Mineral Phases[J]. Soil Science Society of America Journal,1997,61(1),64-69.
    [109]Provenzano, M., Senesi, N., Piccone, G. Thermal and Spectroscopic Characterization of Composts from Municipal Solid Wastes[J]. Compost Science and Utilization,1998,6(3),67-73.
    [110]胡佩,杨红,刘德辉,等.高效液相色谱法测定蚓粪中的植物激素[J].分析试验室,2001,20(06),8-10.
    [111]Santos, E. B. H., Duarte, A. C. The Influence of Pulp and Paper Mill Effluents on the Composition of the Humic Fraction of Aquatic Organic Matter[J]. Water Research,1998,32(3),597-608.
    [112]占新华,周立祥,沈其荣,等.污泥堆肥过程中水溶性有机物光谱学变化特征[J].环境科学学报,2001,21(04),470-474.
    [113]陈振德,黄俊杰,翟光辉,等.西芹穴盘育苗复合基质的应用[J].中国蔬菜,1998,(2),12-15.
    [114]葛晓光.蔬菜育苗大全[M].中国农业出版社:北京,1995.
    [115]何圣米,陈新娟,徐明飞,等.辣椒秸杆有机基质对辣椒育苗的影响[J].浙江农业科学,2009,(03),457-459.
    [116]田吉林,汪寅虎.设施无土栽培基质的研究现状、存在问题与展望(综述)[J].上海农业学报,2000,16(04),87-92.
    [117]杨梅.几种瓜类蔬菜育苗基质及其施肥配方的研究[D].硕士,西北农林科技大学,2007.
    [118]田吉林,奚振邦,陈春宏.设施蔬菜无土栽培复合基质的理化性质及其应用效果[J].上海农业学报,2003,19(03),73-75.
    [119]朱雪志,董红霞,邹英.不同配比有机基质对辣椒苗质量的影响[J].长江蔬菜,2009,(10),50-52.
    [120]张秀丽,张晓明,尤长军.秸秆型基质在茄子育苗上的应用[J].吉林蔬菜,2007,(06),56-57.
    [121]张秀丽.秸秆型育苗基质理化性质的研究[J].安徽农业科学,2009,37(19),8967-8968.
    [122]赵青松,李萍萍,王纪章,等.不同配比醋糟基质应用于黄瓜穴盘育苗的效果[J].长江蔬菜,2009,(14),61-63.
    [123]宋丽芬,李海青.蚯蚓粪基质在番茄穴盘育苗中的应用研究[J].北方园艺,2011,(03),24-25.
    [124]张骁.自吸式供水及蚓粪复合基质对黄瓜幼苗生长的影响[D].硕士,山东农业大学,2011.
    [125]李辉信,胡锋,仓龙,等.蚯蚓堆制处理对牛粪性状的影响[J].农业环境科学学报,2004,23(3),588-593.
    [126]Vance, E. D., Brookes, P. C., Jenkinson, D. C. An Extraction Method for Measuring Soil Microbial Biomass[J]. Soil Biol,1996,18(2),268-273.
    [127]胡艳霞,孙振钧,王东辉,等.蚯蚓粪中拮抗微生物分析[J].应用与环境生物学报,2004,10(1),99-103.
    [128]柏彦超,钱晓晴,沈淮东,等.不同水、氮条件对水稻苗生长及伤流液的影响[J].植物营养与肥料学报,2009,15(1),76-81.
    [129]尚庆茂,张志刚.蚯蚓粪基质及肥料添加量对茄子穴盘育苗影响的试验研究[J].农业工程学报,2005,21(S2),129-132.
    [130]尚庆茂,张志刚,朱为民.蚯蚓粪基质与肥料添加量对辣椒穴盘育苗效果的研究[J].上海农业学报,2006,22(2),13-16.
    [131]李培军.有机肥在不同基质中的营养释放及其对番茄生长的影响[D].硕士,中国农业科学院,2008.
    [132]祖守先,尹道明,谢凤根,等.不同有机物料在浙东四明山区红壤园地上的分解速率及腐殖化系数[J].浙江农业科学,1990,(03),139-143.
    [133]赵明,赵征宇,蔡葵,等.畜禽有机肥料当季速效氮磷钾养分释放规律[J].山东农业科学,2004,(05),59-61.
    [134]张宁,任亚丽,史庆华,等.蚯蚓粪对西瓜品质和产量的影响[J].中国蔬菜,2011,(06),76-79.
    [135]苏晓红,高志岭,刘建玲,等.蚯蚓粪和磷肥配施对油菜生长和土壤性质的影响[J].河北农业大学学报,2010,33(3),8-12.
    [136]鲍士旦.土壤农化分析[M].中国农业出版社:北京,2000.
    [137]赵洪涛,丁国际,邹联沛,等.蚯蚓及蚓粪改良基质对高羊茅发芽·生长的影响[J].安徽农业科学,2008,36(16),6921-6923.
    [138]Xue, J., Lao, T., Zhang, F., et al Effects of Earthworm. In Soil and Young Orange Tree Fifteenth International Plant Nutrition Colloquium[M], Tsinhua University 2005; pp 846-847.
    [139]Xue, J. J., Wang, M., Yang, Q. Q. e. a. Long-Effect Biological Iron Fertilizer for Fruit Trees. Fertilization in the Third Millennium-Fertilizer, Food Security and Environmental Protection[J]. Porceedings 2003,3,1744-1750.
    [140]Canellas, L. P., Piccolo, A., Dobbss, L. B., et al. Chemical Composition and Bioactivity Properties of Size-Fractions Separated from a Vermicompost Humic Acid[J]. Chemosphere,2010,78(4),457-466.
    [141]王耀晶,王步宇,刘鸣达.药渣蚓粪对番茄幼苗生长发育的影响[J].北方园艺,2010,(10),48-49.
    [142]赵海涛,刘平,单玉华,等.蚓粪复合基质对茄子幼苗生长的影响[J].北方园艺,2010,(13),1-5.
    [143]RiviBre, L.-M., Canon, J. Research on Substrates:State of the Art and Need for the Coming 10 Years[J]. Acta Hort,2001,548,29-42.
    [144]Buckland, P. C. Peatland Archaeology:A Conservation Resource on the Edge of Extinction[J]. Biodiv. Conserv,1993, (2),513-527.
    [145]Cai, H., Chen, T., Liu, H., et al. The Effect of Salinity and Porosity of Sewage Sludge Compost on the Growth of Vegetable Seedlings[J]. Scientia Horticulturae,2010,124(3),381-386.
    [146]李建明,邹志荣,黄志.温光驱动甜瓜壮苗指数模型研究[J].西北农林科技大学学报(自然科学版),2008,36(01),149-152.
    [147]韩素芹,王秀峰,魏珉,等.甜椒穴盘苗壮苗指数及其与苗期性状的相关性研究[J].山东农业大学学报(自然科学版),2004,(02),187-190+195.
    [148]张菊平,张兴志.辣椒壮苗指数与苗期性状的关系分析[J].河南农业大学学报,1999,(S1),120-122.
    [149]郎莎莎,王爱礼,赵海涛,等.蚓粪在万寿菊穴盘育苗中的应用研究[J].北方园艺,2010,(23),75-78.
    [150]程世平,施江,史国安,等.不同配比蚯蚓粪对桂圆菊生长发育的影响[J].北方园艺,2010,(17),62-64.
    [151]刘和平,何业华,林剑波,等.也门铁及其嵌合体叶绿素合成特性研究[J].北方园艺,2011,(14),120-122.
    [152]Buchanan, B. B., Gruissem, W., Jones, R. L., et al. Biochemistry & Molecular Biology of Plants[M]. American Society of Plant Physiologists Rockville, MD:2000.
    [153]Masuda, T., Takabe, K., Ohta, H., et al. Enzymatic Activities for the Synthesis of Chlorophyll in Pigment-Deficient Variegated Leaves of Euonymus Japonicus[J]. Plant and cell physiology,1996, 37(4),481.
    [154]Quick, W., Schurr, U., Scheibe, R., et al. Decreased Ribulose-1,5-Bisphosphate Carboxylase-Oxygenase in Transgenic Tobacco Transformed with J°Antisensej± Rbcs[J]. Planta,1991, 183(4),542-554.
    [155]Wittenbach, V. A. Ribulose Bisphosphate Carboxylase and Proteolytic Activity in Wheat Leaves from Anthesis through Senescence[J]. Plant Physiology,1979,64(5),884.
    [156]Wood, J., Sibly, P. M. Carbonic Anhydrase Activity in Plants in Relation to Zinc Content[J]. Australian Journal of Biological Sciences,1952,5(2),244-255.
    [157]Evans, H. J., Sorger, G. J. Role of Mineral Elements with Emphasis on the Univalent Cations[J]. Annual review of plant physiology,1966,17(1),47-76.
    [158]蒋明义,杨文英,徐江,等.渗透胁迫下水稻幼苗中叶绿素降解的活性氧损伤作用[J].植物学报,1994,36(04),289-295.
    [159]马成仓,洪法水.汞对小麦种子萌发和幼苗生长作用机制初探[J].植物生态学报,1998,22(04),373-378.
    [160]Warren, C. R., Adams, M. A. Phosphorus Affects Growth and Partitioning of Nitrogen to Rubisco in Pinus Pinaster[J]. Tree physiology,2002,22(1),11.
    [161]吴楚,王政权,孙海龙,等.氮磷供给对长白落叶松叶绿素合成、叶绿素荧光和光合速率的影响[J].林业科学,2005,41(04),31-36.
    [162]Bustamante, M. A., Paredes, C., Moral, R., et al. Composts from Distillery Wastes as Peat Substitutes for Transplant Production[J]. Resources Conservation and Recycling,2008,52(5),792-799.
    [163]Herrera, F., Castillo, J. E., Chica, A. F., et al. Use of Municipal Solid Waste Compost (Mswc) as a Growing Medium in the Nursery Production of Tomato Plants[J]. Bioresource Technology,2008,99(2), 287-296.
    [164]乜兰春,郭彪,刘乾坤,等.芦笋壮苗指标研究[J].北方园艺,2009,(06),59-60.
    [165]金吉林,金吉芬,刘涛,等.不同营养土对雪莲果育苗质量的影响[J].贵州农业科学,2009,37(05),148-149.
    [166]郭继香,袁存光,郑参军,等.用蛭石吸附法脱除污水中的重金属[J].石油大学学报(自然科学版),1998,22(02),60-63+114-115.
    [167]刘福生,彭同江,张建洪.蛭石改性处理研究现状评述[J].矿产综合利用,2002,(02),24-28.
    [168]王东红,史庆华,王秀峰,等.蚯蚓粪对樱桃萝卜生长和品质的影响[J].山东农业科学,2010,(9),26-30.
    [169]王东红.蚯蚓粪对小白菜、樱桃萝卜生长和品质的影响[D].硕士,山东农业大学,2010.
    [170]刘磊.不同配比蚯蚓粪栽培基质对盆栽观赏向日葵形态与生理指标的影响研究[D].硕士,四川农业大学.2010.
    [171]赵明,李祥云,高峻岭,等.茄果类蔬菜育苗基质优化施肥技术研究[J].北方园艺,2002,(2),42-44.
    [172]尚庆茂,张志刚.不同浓度氮、钾肥对蚯蚓粪尚庆茂等基质西瓜穴盘苗的影响[J].中国瓜菜,2005,5(9-11).
    [173]Garton, R., Widders, I. Nitrogen and Phosphorus Preconditioning of Small-Plug Seedlings Influence Processing Tomato Productivity[J]. HortScience,1990,25(6),655-657.
    [174]尚庆茂,张志刚.黄瓜蚯蚓粪基质穴盘育苗肥料添加量的研究[J].长江蔬菜,2005,(11),41-43.
    [175]尚庆茂,张志刚.蚯蚓粪基质在茄子穴盘育苗中的应用[J].西南园艺,2006,34(01),5-7.
    [176]郭世荣.无土栽培学[M].中国农业出版社:北京,2003.
    [177]康红梅,张启翔,唐菁.栽培基质的研究进展[J].土壤通报,2005,36(01),124-127.
    [178]韦小丽,朱忠荣,尹小阳,等.湿地松轻基质容器苗育苗技术[J].南京林业大学学报(自然科学版),2003,27(05),55-58.
    [179]康红梅,张启翔.容器育苗中几项重要技术的研究进展[J].北京林业大学学报,2001,23(S2),71-74.
    [180]乌丽雅斯,刘勇,李瑞生,等.容器育苗质量调控技术研究评述[J].世界林业研究,2004,17(02),9-13.
    [181]Abad, M., Noguera, P., Bures, S. National Inventory of Organic Wastes for Use as Growing Media for Ornamental Potted Plant Production:Case Study in Spain[J]. Bioresource Technology,2001,77(2), 197-200.
    [182]尚庆茂,张志刚.蚯蚓粪在番茄育苗上的应用效果[J].中国蔬菜,2005,(09),10-12.
    [183]连兆煌.无土栽培技术与原理[M].中国农业出版社:北京,1994.
    [184]Hicklenton, P. R., Rodd, V., Warman, P. R. The Effectiveness and Consistency of Source-Separated Municipal Solid Waste and Bark Composts as Components of Container Growing Media[J]. Scientia Horticulturae (Amsterdam),2001,91(3-4),365-378.
    [185]张增强,孟昭福,薛澄泽,等.生物固体用作树木容器育苗基质的研究[J].农业环境保护,2000,19(01),18-20.
    [186]M, W. J. The Concept of Container Capacity and Its Application to Soil Moisture Fertility Regime in the Production for Container Crops[M]. pennsylvania state University park:USA,1964.
    [187]麦德恩,林怡如,叶德铭.椰纤之理化性质与应用潜力[J].台湾花卉园艺,2002,(4),14-17.
    [188]刘亚纳,田辉,司岸恒.赤子爱胜蚓处理猪粪的研究[J].安徽农业科学,2009,37(31),15282-15284,15287.
    [189]陈学民,王惠,伏小勇,等.赤子爱胜蚓处理污泥对其性质变化的影响[J].环境工程学报,2010,4(06),1421-1425.
    [190]Elvira, C., Sampedro, L., Benitez, E., et al. Vermicomposting of Sludges from Paper Mill and Dairy Industries with Eisenia Andrei:A Pilot-Scale Study[J]. Bioresource Technology,1998,63(3),205-211.
    [191]Hartenstein, R. H. Physicochemical Changes Effected in Activated Sludge by the Earthworm Eisenia Foetidal[J]. Journal of Environmental Quality,1981,10(3),377.
    [192]李春俭.高级植物营养学[M].中国农业出版社:北京,2008.
    [193]王清奎,张志国.白云石石粉调节育苗基质ph的试验研究[J].土壤,2003,35(03),262-263.
    [194]蒋卫杰.蔬菜无土栽培新技术[M].金盾出版社:北京,1998.
    [195]刑禹贤.新编无土栽培原理与技术[M].中国农业出版社:北京,2002.
    [196]Chen, Y., Gottesman, A., Aviad, T., et al. In The Use of Bottom-Ash Coal-Cinder Amended with Compost as a Container Medium in Horticulture[M],1990; pp 173-182.
    [197]Foster, W., Wright, R., Alley, M., et al. Ammonium Adsorption on a Pine-Bark Growing Medium[J]. J. Amer. Soc. Hort. Sci,1983,108(4),548-551.
    [198]Landis, T. D. The Container Tree Nursery Manual[J]. Agriculture handbook (USA),1989.
    [199]张宝贵.蚯蚓与微生物的相互作用[J].生态学报,1997,17(5),556-560.
    [200]Yasir, M., Aslam, Z., Kim, S. W., et al. Bacterial Community Composition and Chitinase Gene Diversity of Vermicompost with Antifungal Activity[J]. Bioresource Technology,2009,100(19), 4396-4403.
    [201]S, A. R. Bacteriostatic factor in the coelnmic fluid of Lumbricus terrestrial[J]. Developmental and Comparative Immunology,1988, (12),189-194.
    [202]Lassegues, M., Roch, P., Valembois, P. Antibacterial activity of Eisenia fetida andrei coelomic fluid: Evidence, induction, and animal protection[J]. Journal of Invertebrate Pathology,1989,53 (1),1-6.
    [203]Valembois, P., Seymour, J., Roch, P. Evidence and cellular localization of an oxidative activity in the coelomic fluid of the earthworm Eisenia fetida andrei[J]. Journal of Invertebrate Pathology,1991,57 (2),177-183.
    [204]Pedersen, J. C., Hendriksen, N. B. Effect of passage through the intestinal tract of detritivore earthworms (Lumbricus spp.) on the number of selected Gram-negative and total bacteria[J]. Biology and Fertility of Soils,1993,16 (3),227-232.
    [205]尚丽勤,白林,谭兵,等.采用PCR-SSCP技术分析蚯蚓粪便的微生物群落结构[J].家畜生态学报,2008,(02),25-29.
    [206]Sen, B., Chandra, T. Do earthworms affect dynamics of functional response and genetic structure of microbial community in a lab-scale composting system? [J] Bioresource Technology,2009,100 (2), 804-811.
    [207]胡艳霞,孙振钧,孙永明,等.蚯蚓粪对黄瓜炭疽病的系统诱导抗性作用[J].应用生态学报,2004,15(8),1358-1362.
    [208]胡艳霞,孙振钧,周法永,等.蚯蚓粪对黄瓜苗期土传病害的抑制作用[J].生态学报,2002,22(7),1106-1115.
    [209]柏彦超,周雄飞,赵学辉,等.蚓粪基质克服西瓜连作障碍的应用效果研究[J].中国农学通报,2011,27(08),212-216.
    [210]张俊英,许永利,刘志强.蚯蚓粪缓解大棚黄瓜连作障碍的研究[J].北方园艺,2010,(4),58-60.
    [211]王胜,郑仕军,沈丽,等.蚯蚓粪对油菜根肿病的控制效果评价[J].西南农业学报,2010,23(06),1910-1913.
    [212]陶军,张树杰,焦加国,等.蚯蚓对秸秆还田土壤细菌生理菌群数量和酶活性的影响[J].生态学报,2010,30(05),1306-1311.
    [213]胡亚林,汪思龙,黄宇,等.凋落物化学组成对土壤微生物学性状及土壤酶活性的影响[J].生态学报,2005,25(10),2662-2668.
    [214]Bansal, S., Kapoor, K. Vermicomposting of Crop Residues and Cattle Dung with Eisenia Foetida[J]. Bioresource Technology,2000,73(2),95-98.
    [215]Singh, K., Kumar, V., Hooda, J. The Effect of Inoculation with Eisenia Foetida and N-Fixing or P-Solubilizing Microorganisms on Decomposition of Cattle Dung and Crop Residues[J]. Biological agriculture & horticulture,2000,18(2),103-112.
    [216]朱维琴,贾秀英,王玉洁,等.农业有机废弃物蚯蚓堆制因素优化及堆制产物主要性状变化特征[J].生态与农村环境学报,2009,5(04),77-82.
    [217]李非.氨基酸液肥在水稻生产上应用效果试验[J].北方水稻,2011,41(03),65+69.
    [218]吴玉群,史振声,李荣华,等.植物氨基酸液肥对甜玉米产量及生理指标的影响[J].玉米科学,2006,14(5),130-133.
    [219]姜桂苗,何剑斌,马振乾,等.蚯蚓粪在畜牧生产中的应用[J].新农业,2011,(06),24.
    [220]孙振军,栾显群,李文立.不同饵料对蚯蚓生长及氨基酸含量的影响[J].莱阳农学院学报,1994,11(04),310-312.
    [221]Edwards, C. A., Arancon, N. Q., Vasko-Bennett, M., et al. Suppression of Green Peach Aphid (Myzus Persicae) (Sulz.), Citrus Mealybug (Planococcus Citri) (Risso), and Two Spotted Spider Mite (Tetranychus Urticae) (Koch.) Attacks on Tomatoes and Cucumbers by Aqueous Extracts from Vermicomposts[J]. Crop Protection,2010,29(1),80-93.
    [222]Edwards, C. A., Lofty, J. Biology of Earthworms[J]. Biology of Earthworms.,1977.
    [223]Brown, G. G How Do Earthworms Affect Microfloral and Faunal Community Diversity?[J]. Plant and Soil,1995,170(1),209-231.
    [224]胡佩,刘德辉,胡锋,等.蚓粪中的植物激素及其对绿豆插条不定根发生的促进作用[J].生态学报,2002,22(08),1211-1214.
    [225]Arshad, M., Frankenberger, W. Microbial Production of Plant Hormones[J]. Plant and Soil,1991, 133(1),1-8.
    [226]Frankenberger, W. T., Arshad, M. Phytohormones in Soils:Microbial Production and Function[M]. CRC:1995; Vol.43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700