用户名: 密码: 验证码:
有机半导体晶体光电特性及其激光器件应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光晶体材料在现代激光物理、量子电子学、光电子学领域发挥了极其重要的作用。激光材料的每一次革新都会带来新技术的产生和器件的发展。上个世纪90年代,人们有机半导体中实现了激光,使有机激光研究获得飞速发展。在过去十多年的科学研究过程中,研究者们一直致力于发展具有高载流子迁移率和高受激发射截面的有机半导体材料以应用于光电器件。晶体无疑是有机半导体中性能最优良的形式。有机晶体具有规则的分子排布、较高的热导率和较少的杂质含量,相比于无定形材料,可以实现高两个数量级以上的载流子迁移率。通过晶体材料的组成和结构调控,可以制备出既具有高荧光量子效率,又具有良好载流子迁移率的晶体材料,也可以实现极高的非线性光学响应。然而,由于有机晶体生长制备技术的不成熟和晶体器件精细加工工艺的欠缺,以及对晶体材料光电特性与结构的关系了解尚不深入系统等原因,限制了有机半导体晶体在激光器等光电子器件方面的应用。本论文以高性能的有机晶体激光器研制为目标,从晶体材料制备-晶体光物理性质-晶体加工和器件制备工艺创新为主线,进行系列研究,取得了以下创新研究成果:
     1.发展了担体辅助缓释调控、温度梯度液相外延等多种晶体生长技术,实现了高质量有机晶体的制备。针对物理气相传输法结晶过程中晶核数目控制难、晶体生长尺寸小的问题,采用担体辅助缓释调控技术成功对晶体成核过程进行了有效控制,大大提高了具有高质量光学性质、大尺寸、光滑表面的有机单晶材料的产率;利用共混源物理气相传输法实现了均匀掺杂的高荧光效率的有机晶体,发现了晶体中存在有效的F rster能量转移过程,实现了晶体的发光颜色从蓝色、绿色到红色的调控;另外我们还发展了温度梯度液相外延生长技术,成功在硅衬底上外延制备了规则形貌的有机单晶。高质量的有机晶体制备为其光物理性质的研究和器件制备奠定了物质基础。
     2.首次在有机晶体中观察到双光子激发的上转换放大自发辐射现象,并对相关的光电物理过程进行了深入探索,为设计新型无相位匹配条件的频率上转换激光器件提供了新的思路。在高性能双光子有机晶体的材料探索上取得突破,在多种有机晶体(比如9,10-二苯乙烯基蒽衍生物晶体、氰基取代苯乙烯齐聚物有机单晶)中明确观察到了双光子上转换荧光和放大自发辐射现象。对有机晶体中的双光子吸收和上转换放大自发辐射性质以及与晶体结构的关系进行深入探索。在氰基取代苯乙烯齐聚物有机晶体(CNDPASDB)中观察到具有极高偏振度(~0.93)和方向性的频率上转换放大自发辐射,与晶体中单轴取向的分子排列具有密切联系。对比研究了双光子泵浦和单光子泵浦放大自发辐射特性,在实验上发现了晶体中单光子和双光子泵浦的荧光发射具有相同的偏振,而有机晶体中双光子吸收和单光子吸收具有不同的规律,证明了双光子吸收诱导的荧光光强与泵浦光之间的角度依赖关系满足cos4θ关系,而单光子吸收满足cos2θ,且具有不同的晶向依赖关系。在CNDPASDB单晶中观察到了自发放大辐射中的类似于受激拉曼散射的峰位漂移现象:随着泵浦激光波长的移动,出射光峰位波长也相应移动,提出了受激辐射与振动弛豫竞争的模型对该现象进行解释。利用飞秒荧光上转换技术,从时间特性角度对有机晶体在双光子激发下的放大自发辐射的动力学进行了深入研究和探讨,发现双光子上转换放大自发辐射具有一定的诱导形成时间,放大自发辐射形成后其发射脉冲宽度大大减小。
     3.针对有机晶体对有机溶剂敏感,质软,性脆,加工困难等问题,提出了激光加工等系列工艺技术,实现了有机晶体器件精细微纳结构的制备。(1)利用双光束干涉刻蚀技术在有机晶体表面加工出了刻蚀深度大于200nm的光栅结构,对激光与有机晶体相互作用规律进行详细研究,并提出了高功率激光刻蚀-低功率激光清洁整形的技术,大大改善了光栅形貌。运用双光束干涉刻蚀技术,首次成功制备了基于有机晶体的分布式反馈(DFB)激光器件,实现了有机晶体DFB激光发射,证明了双光束干涉加工技术在晶体激光器件制备中的适用性。设计了基于有机晶体波导光栅结构的分布式反馈激光器,这种结构可以完好地保持了晶体波导的完整性,有利于器件的电注入。基于这种结构,在PET衬底上成功制备了可弯曲的柔性有机晶体DFB激光器件。此外,为了解决有机晶体复杂结构的设计加工难题,采用飞秒激光直写技术在有机晶体中加工微纳结构。这种方法采用逐点扫描的方式,可以在晶体中任意位置进行加工。我们在有机晶体中成功设计加工了多种微米尺寸的复杂图形,证明了飞秒激光直写技术在有机晶体微纳光学器件制备方面潜在的应用价值。(2)利用光刻和反应离子刻蚀技术,制备了回音廊激光器。结合光刻和反应离子刻蚀技术,以PVA为保护层,光刻胶为自掩模牺牲层,我们成功改进了半导体加工工艺,使其适用于有机晶体的高精度、图案化的阵列微加工。成功制备了大面积高产率的有机晶体微盘阵列,并在包括圆形、多边形在内的多种形状晶体微盘中实现了低阈值和高品质因子的回音廊模式激射。这种加工技术不仅在有机晶体微腔激光器中具有良好的应用,在其他有机晶体光电集成器件中也具有潜在的应用前景。(3)利用DPAVB良好的热稳定,以及较低熔点的特性,采用了熔融固化的方法制备了基于分布布拉格反射镜的双光子上转换微腔激光器,该方法高效可靠。制备的器件可以实现长波长激光泵浦,短波长激光输出。在红外飞秒激光泵浦条件下激射阈值仅为150μJpulse-1cm-2,并且可以实现从多模输出到单模输出的频率上转换激光,激光波长可以从514nm到523nm调谐,同时可以实现大约为23ps的超短脉冲激光输出。因而这种紧凑高效的新型频率上转换器件在光电子领域具有重要的应用。
Laser crystal materials play fundamental roles in modern laser physics, quantum electronicsand optoelectronics. Understanding and ingenious utilization of these activated crystals haveled to a veritable revolution in the progress of photonic technology and devices. Since the firstdemonstration of lasing in the solid state organic semiconductors in1990s, great progresseshave been achieved. Over the past decade, researchers have been always looking for the organicsemiconductors with both higher stimulated emission cross section and higher carrier mobilities,for optoelectronic devices. Single crystals of conjugated organic molecules are, undoubtedly,the materials with the highest degree of order and purity among the variety of different forms oforganic semiconductors, which make their carrier mobility much higher (at least2order) thantheir amorphous counterparts. It has been reported that organic crystals with combination ofrelative high carrier mobility and high quantum efficiency. These features make them amazingfor optoelectronic applications. However, the reseach of organic single crystal-based devicesare advancing behind, the technology on growth of high quality organic single-crystals is notmature, the knowledge on relationship between optoelectronic properties and structures is notdeeply understood, and many challenges still exist in fabrication of crystal device. This thesisdescribes a number of studies on organic semiconductors crystal growth, properties andfabrication techniques, focused around using them for laser devices. The main reseaches arelisted as follows:
     1. Novel growth methods, such as tam-assisted release regulation, temperature gradientliquid phase epitaxy, have been developed for preparation of high quality organic crystalgrowth. With the tam-assisted release regulation physical vapor transport technique, we havesuccessfully prepared large size single crystals, with molecule-level smooth surface and opticalquality. We have further prepared organic crystals with tunable color emission, form blue, togreen and red with high quantum yield by change doping. High efficient F rster energy transferfrom donor molecules to acceptor molecules is demonstrated. Moreover, we have successfullyproduced well-defined polygon microsize thin crystals directly grown onto a substrate with temperature gradient liquid phase epitaxy.
     2. The two-photon excited stimulated emission is a frequency upconversion process, withwhich one can achieve laser frequency upconversion without phase matching condition. Andthe lasing wavelength is tunable. We have firstly observed two-photon excited amplifiedspontaneous emission in organic crystals, which shows great potentials for novel compactminiaturized all-solid-state laser devices, two-photon pumped (TPP) laser. Furthermore,two-photon absorption and frequency upconverted stimulated emission are undoubtly observedin other organic crystals, such as9,10-distyryl anthracene derivative crystals andcyano-substituted styrene oligomers organic crystals. The relationship between the two photonabsorption, upconverted amplified spontaneous emission (ASE) and crystal structures havebeen systemically studied. Highly polarized and directional ASE under both of the single-andtwo-photon pumping condition is realized in crystals of CNDPASDB. Its polarization contrastwas estimated to be~0.93. This large ratio is due to the unified unidirectional configuration ofthe molecular long axis in crystal, beneficial to the stimulated emission with a low threshold.The relationship of two-photon absorption, upconverted emission and the crystal structure issystemly studied. Futhermore, characteristics of single-and two-photon amplified spontaneousemission are comparatively studied. The polarization distribution between the two-photon andone-photon excitation in CNDPASDB crystal are investigated. Very different behaviors areobserved that the former generates a cos4θ distribution, while the later gives rise to cos2θdistribution in different orientation. A phenomenon, similar as stimulated resonance Ramanscattering (SRRS), is observed in CNDPASDB crystal. However, a pronounced difference withSRRS is, here the Stokes shift is not fixed, but decreased as the excitation wavelength increaseand the FWHM is much broader. A model describing competition between the stimulatedemission and vibration relaxations has been proposed to interpret the underlying mechanism.Finally, ultrafast dynamics of two-photon-pumped ASE from a single crystal is studied by thetime-resolved fluorescence upconversion technique. Formation and kinetic behavior oftwo-photon excitation of amplified spontaneous emission is discussed.
     3. To address the problem that the crystals are difficult to process because of their friable,delicate properties, we have proposed thechniques, such as laser processing and improved photolithography, to microfabricate structures in organic crystals.(1) Laser interferenceablation technology is employed to fabricate micro-nano structures in organic crystals. Withthis method, high quality grating structure on organic crystals are successfully prepared.Distributed feedback (DFB) structures have been designed and fabricated on the organic singlecrystalline thin film materials. DFB lasing is demonstrated from the organic single crystals forthe first time. We adopt a double-layered laser configuration and demonstrate lasing both fromone-and two-dimensional distributed feedback. The thin single crystals are further extendedonto mechanically bendable poly(ethylene terephthalate)(PET) substrates and presented aproof-of-concept “flexible’’ organic single-crystal DFB laser. Femtosecond lasers machining isproposed to fabricate complex structures in organic crystal. We present the preparation ofnanometer-size organic crystals using femtosecond laser induced forward transfer (Fs-LIFT)method.(2) We have improved semiconductor processes to fabricated organic crystal structures.We introduced polyvinyl alcohol (PVA) as protector and SU-8resist as an etch mask during theetching process. Whispering-gallery mode (WGM) resonators of BP1T and BP2T crystallinematerials have been fabricated through a combination method with improved lithography anddry etching. Crystalline microresonators with different geometries over a large area aretop-down fabricated with submicrometer spatial resolution. WGM lasing oscillation isdefinitively observed from circular, hexagonal, pentagonal and square organic single crystallineresonators.(3) A simple, melt-processed route to the development of two-photon upconversionlaser is presented. We have fabricated surface emitting lasers, consisting melt-processedDPAVB glass film as active media and two designed distributed Bragg reflectors.Wavelength-tunable upconversion lasing with a threshold as low as of150μJpulse-1cm-2isachieved upon pumped with near-IR (800nm) radiation. Lasing from multimode tosingle-mode oscillation is demonstrated. Continuously tunable single mode oscillation wasobtained at wavelength from514nm to523nm. Ultrafast pulse emission with23ps is achievedin this device. Our system offers a versatile candidate for the future application of photonicdevices.
引文
[1]周炳琨.我国光电子技术发展十年回顾[J].科学中国人,1996,2:002
    [2]周炳琨.激光,令人激动的光——纪念激光器发明50周年[J].中国激光,2010,37:0258
    [3]闵乃本.光电功能晶体:结构性能,分子设计,微结构设计与制备过程的研究[J].中国基础科学,2001,6:4-8
    [4]王启明.光子·光电子·光谷——光子学技术——新世纪信息高科技的佼佼者[J].科学中国人,2003,9:18-21
    [5]陈创天,俞琳华.新型非线性光学晶体.晶体生长科学与技术第2版北京:科学出版社;1997.
    [6] KAMINSKII A A. Laser crystals and ceramics: recent advances[J]. Laser&PhotonicsReviews,2007,1:93-177
    [7] SHIROTA Y. Organic materials for electronic and optoelectronic devices[J]. J Mater Chem,2000,10:1-25
    [8] FRIEND R H, Gymer R W, Holmes A B, et al. Electroluminescence in conjugatedpolymers[J]. Nature,1999,397:121-128
    [9] HUNG L S, Chen C H. Recent progress of molecular organic electroluminescent materialsand devices[J]. Materials Science&Engineering R-Reports,2002,39:143-222
    [10]KRANZELBINDER G, LEISING G. Organic solid-state lasers[J]. Reports on Progress inPhysics,2000,63:729-762
    [11] GRIVAS C, POLLNAU M. Organic solid-state integrated amplifiers and lasers[J]. Laser&Photonics Reviews,2012,6:419-480
    [12]CHENAIS S, FORGET S. Recent advances in solid-state organic lasers[J]. PolymerInternational,2012,61:390-406
    [13]DE BOER R W I, Gershenson M E, Morpurgo A F, et al. Organic single-crystal field-effecttransistors[J]. Phys Status Solidi A,2004,201:1302-1332
    [14]NAKANOTANI H, SAITO M, Nakamura H, et al. Tuning of threshold voltage byinterfacial carrier doping in organic single crystal ambipolar light-emitting transistors and theirbright electroluminescence[J]. Applied Physics Letters,2009,95,103307
    [15]HOPPE H, SARICIFTCI N S. Organic solar cells: An overview[J]. Journal of MaterialsResearch,2004,19:1924-45
    [16]PODZOROV V. Organic single crystals: Addressing the fundamentals of organicelectronics[J]. Mrs Bull,2013,38:15-24
    [17]LI R J, HU W P, LIU Y Q, et al. Micro-and Nanocrystals of Organic Semiconductors[J].Accounts Chem Res,2010,43:529-40
    [18]胡文平.有机场效应晶体管[M].北京:科学出版社;2011.
    [19]解增旗.苯基取代二苯乙烯基苯衍生物的晶体结构与光电性能.长春:吉林大学;2007.
    [20]BROCK E, CSAVINSZKY P, HORMATS E, et al. Coherent Stimulated Emission fromOrganic Molecular Crystals[J]. The Journal of Chemical Physics,1961,35:759-60
    [21]POPE M, KALLMANN H, MAGNANTE P. Electroluminescence in organic crystals[J].The Journal of Chemical Physics,1963,38:2042-2044
    [22]KARL N. Laser emission from an organic molecular crystal[J]. physica status solidi (a),1972,13:651-655
    [23]AVANESJAN O, BENDERSKII V, BRIKENSTEIN V K, et al. Anthracene crystals underintensive optical pumping[J]. Molecular Crystals and Liquid Crystals,1974,29:165-174
    [24]LEE S S, KIM C S, GOMEZ E D, et al. Controlling Nucleation and Crystallization inSolution-Processed Organic Semiconductors for Thin-Film Transistors[J]. Advanced Materials,2009,21:3605-3609
    [25]SHIRAKAWA H, LOUIS E J, MACDIARMID A G, et al. Synthesis of electricallyconducting organic polymers: halogen derivatives of polyacetylene,(CH) x[J]. J Chem Soc,Chemical Communications,1977:578-580
    [26]TANG C, VANSLYKE S. Organic electroluminescent diodes[J]. Applied Physics Letters,1987,51:913-915
    [27]黄维,密保秀,高志强.有机电子学[M].北京:科学出版社.
    [28]吴世康.有机电子学概论[M]:化学工业出版社;2010.
    [29]POPE M, SWENBERG C E. Electronic processes in organic crystals and polymers[M]:Oxford University Press;1999.
    [30]MINDER N A, ONO S, CHEN Z, et al. Band-Like Electron Transport in OrganicTransistors and Implication of the Molecular Structure for Performance Optimization[J].Advanced Materials,2012,24:503-508
    [31]BISRI S Z, TAKAHASHI T, TAKENOBU T, et al. Ambipolar field-effect transistor of highphotoluminescent material tetraphenylpyrene (TPPy) single crystal[J]. Japanese Journal ofApplied Physics2,2007,46:L596-L598
    [32]PODZOROV V, MENARD E, BORISSOV A, et al. Intrinsic charge transport on thesurface of organic semiconductors[J]. Physical Review Letters,2004,93:86602
    [33]MOLINARI A S, ALVES H, CHEN Z, et al. High electron mobility in vacuum andambient for PDIF-CN2single-crystal transistors[J]. Journal of the American Chemical Society,2009,131:2462-2463
    [34]ISLAM M M, POLA S, TAO Y-T. High mobility n-channel single-crystal field-effecttransistors based on5,7,12,14-tetrachloro-6,13-diazapentacene[J]. ChemicalCommunications,2011,47:6356-63588
    [35]SUNDAR V C, ZAUMSEIL J, PODZOROV V, et al. Elastomeric transistor stamps:Reversible probing of charge transport in organic crystals[J]. Science,2004,303:1644-1646
    [36]YANAGI H, MORIKAWA T, HOTTA S. Electroluminescence from low-dimensionallyconfined crystals of thiophene/p-phenylene co-oligomers[J]. Applied Physics Letters,2002,81:1512-1514
    [37]ICHIKAWA M, NAKAMURA K, INOUE M, et al. Photopumped laser oscillation andcharge-injected luminescence from organic semiconductor single crystals of athiophene/phenylene co-oligomer[J]. Applied Physics Letters,2005,87:221113
    [38]SAWABE K, IMAKAWA M, NAKANO M, et al. Current-Confinement Structure andExtremely High Current Density in Organic Light-Emitting Transistors[J]. Advanced Materials,2012,24:6141-6146
    [39]MUCCINI M, KOOPMAN W, TOFFANIN S. The photonic perspective of organiclight-emitting transistors[J]. Laser&Photonics Reviews,2012,6:258-275
    [40]TAKENOBU T, BISRI S Z, TAKAHASHI T, et al. High current density in light-emittingtransistors of organic single crystals[J]. Physical Review Letters,2008,100:066601
    [41]YAMAO T, SHIMIZU Y, TERASAKI K, et al. Organic Light-Emitting Field-EffectTransistors Operated by Alternating-Current Gate Voltages[J]. Advanced Materials,2008,20:4109-4112
    [42]KAJIWARA K, TERASAKI K, YAMAO T, et al. Light-Emitting Field-Effect TransistorsConsisting of Bilayer-Crystal Organic Semiconductors[J]. Advanced Functional Materials,2011,21:2854-2860
    [43]YAMAO T, SAKURAI Y, TERASAKI K, et al. Current-Injected Spectrally-NarrowedEmissions from an Organic Transistor[J]. Advanced Materials,2010,22:3708-3712
    [44]SOROKIN P P, LANKARD J. Stimulated emission observed from an organic dye,chloro-aluminum phthalocyanine[J]. IBM Journal of Research and Development,1966,10:162-163
    [45]SOFFER B, MCFARLAND B. Continuously Tunable, Narrow-Band Organic Dye Lasers[J]. Applied Physics Letters,1967,10:266-267
    [46]SCH FER F P, DREXHAGE K H. Dye lasers[M]: Springer-Verlag;1990.
    [47]HIDE F, SCHWARTZ B J, DíAZ-GARCíA M A, et al. Laser emission from solutions andfilms containing semiconducting polymer and titanium dioxide nanocrystals[J]. Chemicalphysics letters,1996,256:424-430
    [48]HIDE F, DIAZ-GARCIA M A, SCHWARTZ B J. Semiconducting polymers: a new classof solid-state laser materials[J]. Science,1996,273:1833-1836
    [49]TESSLER N, DENTON G, FRIEND R. Lasing from conjugated-polymer microcavities[J].Nature,1996,382:695-7
    [50]SAMUEL I D W, TURNBULL G A. Organic semiconductor lasers[J]. Chemical Reviews,2007,107:1272-1295
    [51]BISRI S Z, TAKENOBU T, YOMOGIDA Y, et al. High Mobility and LuminescentEfficiency in Organic Single-Crystal Light-Emitting Transistors[J]. Advanced FunctionalMaterials,2009,19:1728-1735
    [52]SILFVAST W T. Laser Fundamentals[M]: Cambridge University Press;2008.
    [53]TESSLER N. Lasers based on semiconducting organic materials[J]. Advanced Materials,1999,11:363-370
    [54]MCGEHEE M D, HEEGER A J. Semiconducting (conjugated) polymers as materials forsolid-state lasers[J]. Advanced Materials,2000,12:1655-1668
    [55]DEMTR DER W. Laser Spectroscopy: Basic Concepts and Instrumentation[M]: SpringerVerlag;2003.
    [56]VARDENY Z V. Ultrafast Dynamics and Laser Action of Organic Semiconductors[M]:Taylor&Francis;2009.
    [57]XIE W J, LI Y P, LI F, et al. Amplified spontaneous emission from cyano substitutedoligo(p-phenylene vinylene) single crystal with very high photoluminescent efficiency[J].Applied Physics Letters,2007,90:141110
    [58]CORDELLA F, QUOCHI F, SABA M, et al. Optical gain performance of epitaxially grownpara-sexiphenyl films[J]. Advanced Materials,2007,19:2252–2256
    [59]KOZLOV V, BULOVIC V, BURROWS P, et al. Study of lasing action based on F rsterenergy transfer in optically pumped organic semiconductor thin films[J]. Journal of AppliedPhysics,1998,84:4096-4108
    [60]GUPTA R, STEVENSON M, HEEGER A. Low threshold distributed feedback lasersfabricated from blends of conjugated polymers: Reduced losses through F rster transfer[J].Journal of Applied Physics,2002,92:4874-4877
    [61]ICHIKAWA M, HIBINO R, INOUE M, et al. Laser oscillation in monolithic molecularsingle crystals[J]. Advanced Materials,2005,17:2073-2077
    [62]GARGAS D J, MOORE M C, NI A, et al. Whispering gallery mode lasing from zinc oxidehexagonal nanodisks[J]. Acs Nano,2010,4:3270-3276
    [63]NAMDAS E B, TONG M, LEDOCHOWITSCH P, et al. Low Thresholds in PolymerLasers on Conductive Substrates by Distributed Feedback Nanoimprinting: Progress TowardElectrically Pumped Plastic Lasers[J]. Advanced Materials,2009,21:799-802
    [64]WARD J, BENSON O. WGM microresonators: sensing, lasing and fundamental opticswith microspheres[J]. Laser&Photonics Reviews,2011,5:553-570
    [65]HE L, ZDEMIR K, YANG L. Whispering gallery microcavity lasers[J]. Laser&Photonics Reviews,2013,7:60-82
    [66]VAHALA K J. Optical microcavities[J]. Nature,2003,424:839-846
    [67]VAHALA K. Optical microcavities[M]: World Scientific Publishing CompanyIncorporated;2004.
    [68]VOLLMER F, ARNOLD S. Whispering-gallery-mode biosensing: label-free detectiondown to single molecules[J]. Nature methods,2008,5:591-596
    [69]MALEKI L, MATSKO A, Savchenkov A, et al. Tunable delay line with interactingwhispering-gallery-mode resonators[J]. Optics Letters,2004,29:626-628
    [70]ROKHSARI H, VAHALA K. Ultralow loss, high Q, four port resonant couplers forquantum optics and photonics[J]. Physical Review Letters,2004,92:253905
    [71]KOZYREFF G, DOMINGUEZ-JUAREZ J L, Martorell J. Nonlinear optics in spheres:from second harmonic scattering to quasi-phase matched generation in whispering gallerymodes[J]. Laser&Photonics Reviews,2011,5:737-749
    [72]邹长铃,董春华,崔金明, et al.回音壁模式光学微腔:基础与应用[J].中国科学:物理学,力学,天文学,2012,42:1155-1175
    [73]BOGAERTS W, DE HEYN P, VAN VAERENBERGH T, et al. Silicon microringresonators[J]. Laser&Photonics Reviews,2012,6:47-73
    [74]YANG Y-D, HUANG Y-Z, CHE K-J, et al. Equilateral-triangle and square resonatorsemiconductor microlasers[J]. Selected Topics in Quantum Electronics, IEEE Journal of,2009,15:879-884
    [75]YANG Y-D, HUANG Y-Z, GUO W-H, et al. Enhancement of quality factor for TEwhispering-gallery modes in microcylinder resonators[J]. Opt Express,2010,18:13057-13062
    [76]ARMANI D, KIPPENBERG T, SPILLANE S, et al. Ultra-high-Q toroid microcavity on achip[J]. Nature,2003,421:925-928
    [77]OSTBY E P, VAHALA K J. Yb-doped glass microcavity laser operation in water[J]. OpticsLetters,2009,34:1153-1155
    [78]TAVERNIER H, SALZENSTEIN P, VOLYANSKIY K, et al. Magnesium fluoridewhispering gallery mode disk-resonators for microwave photonics applications[J]. PhotonicsTechnology Letters, IEEE,2010,22:1629-1631
    [79]SALZENSTEIN P, VOLYANSKIY K, TAVERNIER H, et al. Compact optoelectronicoscillators using WGM modes on fused silica and MgF2mini-disks resonators. SPIEPhotonics Europe: International Society for Optics and Photonics;2010. p.77162C-C-9.
    [80]TULEK A, AKBULUT D, BAYINDIR M. Ultralow threshold laser action from toroidalpolymer microcavity[J]. Applied Physics Letters,2009,94:203302
    [81]ANDREA M, SRINIVASAN A, VAHALA K J. Soft lithographic fabrication of high Qpolymer microcavity arrays[J]. Nano Letters,2007,7:1823-1826
    [82]KOGELNIK H, SHANK C. Coupled‐Wave Theory of Distributed Feedback Lasers[J].Journal of Applied Physics,1972,43:2327-2335
    [83]TSIMINIS G. One-and two-photon pumped organic semiconductor lasers: University of StAndrews;2010.
    [84]HELIOTIS G, XIA R D, TURNBULL G A, et al. Emission characteristics and performancecomparison of polyfluorene lasers with one-and two-dimensional distributed feedback[J].Advanced Functional Materials,2004,14:91-97
    [85]RIECHEL S. Organic semiconductor lasers with two-dimensional distributed feedback:Ludwig-Maximilians-Universit t München;2002.
    [86]PAWLICKI M, COLLINS H A, DENNING R G, et al. Two-Photon Absorption and theDesign of Two-Photon Dyes[J]. Angewandte Chemie International Edition,2009,48:3244-3266
    [87]KAISER W, GARRETT C. Two-photon excitation in CaF2: Eu2[J]. Physical ReviewLetters,1961,7:229-31
    [88]HE G S, TAN L S, ZHENG Q, et al. Multiphoton absorbing materials: Molecular designs,characterizations, and applications[J]. Chemical Reviews,2008,108:1245
    [89]DENK W, STRICKLER J, WEBB W. Two-photon laser scanning fluorescencemicroscopy[J]. Science,1990,248:73-76
    [90]BUNNING T, NATARAJAN L, SCHMITT M, et al. Optical limiting in solutions ofdiphenyl polyenes[J]. Applied optics,1991,30:4341-4349
    [91]WANG X M, ZHOU Y F, YU W T, et al. Two-photon pumped lasing stilbene-typechromophores containing various terminal donor groups: relationship between lasing efficiencyand intramolecular charge transfer[J]. J Mater Chem,2000,10:2698-2703
    [92]ZHENG Q D, GUPTA S K, HE G S, et al. Synthesis, Characterization, Two-PhotonAbsorption, and Optical Limiting Properties of Ladder-Type Oligo-p-phenylene-CoredChromophores[J]. Advanced Functional Materials,2008,18:2770-2779
    [93]PARK S H, YANG D Y, LEE K S. Two-photon stereolithography for realizing ultraprecisethree-dimensional nano/microdevices[J]. Laser&Photonics Reviews,2009,3:1-11
    [94]CUMPSTON B H, ANANTHAVEL S P, BARLOW S, et al. Two-photon polymerizationinitiators for three-dimensional optical data storage and microfabrication[J]. Nature,1999,398:51-54
    [95]BAUER C, SCHNABEL B, KLEY E B, et al. Two-photon pumped lasing from atwo-dimensional photonic bandgap structure with polymeric gain material[J]. AdvancedMaterials,2002,14:673-676
    [96]HE G S, LIN T C, HSIAO V K S, et al. Tunable two-photon pumped lasing using aholographic polymer-dispersed liquid-crystal grating as a distributed feedback element[J].Applied Physics Letters,2003,83:2733-2735
    [97]SHIROTA K, SUN H B, KAWATA S. Two-photon lasing of dye-doped photonic crystallasers[J]. Applied Physics Letters,2004,84:1632-1624
    [98]SCOTOGNELLA F, PUZZO D P, ZAVELANI-ROSSI M, et al. Two-PhotonPoly(phenylenevinylene) DFB Laser[J]. Chemistry of Materials,2011,23:805-809
    [99]赫光生,刘颂豪.强光光学[M].北京:科学出版社;2011.
    [100] MUKHERJEE A. Two‐photon pumped upconverted lasing in dye doped polymerwaveguides[J]. Applied Physics Letters,1993,62:3423
    [101] HE G S, BHAWALKAR J D, ZHAO C F, et al. Two-photon-pumped cavity lasing in adye-solution-filled hollow-fiber system[J]. Optics Letters,1995,20:2393
    [102] XIA H, YANG J, FANG H H, et al. Efficient Two-Photon Excited AmplifiedSpontaneous Emission from Organic Single Crystals[J]. Chemphyschem,2010,11:1871-1875
    [103] CHEN Q D, FANG H H, XU B, et al. Two-photon induced amplified spontaneousemission from needlelike triphenylamine-containing derivative crystals with low threshold[J].Applied Physics Letters,2009,94,201113
    [104] FANG H H, CHEN Q D, DING R, et al. Temporal dynamics of two-photon-pumpedamplified spontaneous emission in slab organic crystals[J]. Optics Letters,2010,35:2561-2563
    [105] FANG H H, CHEN Q D, YANG J, et al. Two-Photon Pumped Amplified SpontaneousEmission from Cyano-Substituted Oligo(p-phenylenevinylene) Crystals withAggregation-Induced Emission Enhancement[J]. The Journal of Physical Chemistry C,2010,114:11958-11961
    [106] FANG H H, CHEN Q D, YANG J, et al. Two-photon excited highly polarized anddirectional upconversion emission from slab organic crystals[J]. Optics Letters,2010,35:441-443
    [107] FANG H H, XU B, CHEN Q D, et al. Two-Photon Absorption and Spectral-NarrowedLight Source[J]. Ieee Journal of Quantum Electronics,2010,46:1775-1781
    [108] YANAGI H, MORIKAWA T. Self-waveguided blue light emission in p-sexiphenylcrystals epitaxially grown by mask-shadowing vapor deposition[J]. Applied Physics Letters,1999,75:187-189
    [109] YAMADA Y, YANAGI H. Polarized blue light-emission from epitaxially orientedbis(phenyloxazolyl)benzene crystals[J]. Applied Physics Letters,2000,76:3406-3408
    [110] PODZOROV V, SYSOEV S E, LOGINOVA E, et al. Single-crystal organic field effecttransistors with the hole mobility similar to8cm(2)/V s[J]. Applied Physics Letters,2003,83:3504-3506
    [111] FICHOU D, DELYSSE S, NUNZI J M. First evidence of stimulated emission from amonolithic organic single crystal: α-Octithiophene[J]. Advanced Materials,1997,9:1178
    [112] HOROWITZ G, VALAT P, GARNIER F, et al. Photoinduced spontaneous andstimulated emission in sexithiophene single crystals[J]. Optical Materials,1998,9:46-52
    [113] ZHU X H, GINDRE D, MERCIER N, et al. Stimulated emission from a needle-likesingle crystal of an end-capped fluorene/phenylene co-oligomer[J]. Advanced Materials,2003,15:906
    [114] XIE Z, WANG H, LI F, et al. Crystal structure of a highly luminescent slice crystalgrown in the vapor phase: A new polymorph of2,5-diphenyl-1,4-distyrylbenzene[J]. CrystalGrowth&Design,2007,7:2512-2516
    [115] POLO M, CAMPOSEO A, TAVAZZI S, et al. Amplified spontaneous emission inquaterthiophene single crystals[J]. Applied Physics Letters,2008,92:083311
    [116] FANG H H, CHEN Q D, YANG J, et al. Amplified spontaneous emission in thecyano-substituted oligo(p-phenylenevinylene) organic crystals: Effect of excitationwavelength[J]. Applied Physics Letters,2010,96,103508
    [117] GAO F, LIAO Q, XU Z-Z, et al. Strong Two-Photon Excited Fluorescence andStimulated Emission from an Organic Single Crystal of an Oligo(Phenylene Vinylene)[J].Angewandte Chemie International Edition,2010,49:732-735
    [118] YOON S M, LEE J, JE J H, et al. Optical Waveguiding and Lasing Action inPorphyrin Rectangular Microtube with Subwavelength Wall Thicknesses[J]. Acs Nano,2011,5:2923-2929
    [119] HOTTA S, LEE S, TAMAKI T. Synthesis of thiophene/phenylene co‐oligomers. I.Phenyl‐capped oligothiophenes[J]. Journal of Heterocyclic Chemistry,2009,37:25-29
    [120] HOTTA S, KIMURA H, LEE S A, et al. Synthesis of thiophene/phenyleneco-oligomers. II. Block and alternating co-oligomers[J]. Journal of Heterocyclic Chemistry,2000,37:281-286
    [121] HOTTA S. Synthesis of thiophene/phenylene co‐oligomers. III. thienyl‐cappedoligophenylenes[J]. Journal of Heterocyclic Chemistry,2009,38:923-927
    [122] HOTTA S, KATAGIRI T. Synthesis of thiophene/phenylene co‐oligomers. IV.6‐to8‐ring molecules[J]. Journal of Heterocyclic Chemistry,2009,40:845-850
    [123] KATAGIRI T, OTA S, OHIRA T, et al. Synthesis of thiophene/phenylene co-oligomers.V. Functionalization at molecular terminals toward optoelectronic device applications[J].Journal of Heterocyclic Chemistry,2007,44:853-862
    [124] FICHOU D, DUMARCHER V, NUNZI J-M. Oneand two-photon stimulated emissionin oligothiophenes single crystals[J]. Synthetic Met,1999,101:610-613
    [125] KUMAR N D, BHAWALKAR J D, PRASAD P N, et al. Solid-state tunable cavitylasing in a poly (para-phenylene vinylene) derivative alternating block co-polymer[J]. AppliedPhysics Letters,1997,71:999-1001
    [126] QUOCHI F, ANDREEV A, CORDELLA F, et al. Low-threshold blue lasing inepitaxially grown para-sexiphenyl nanofibers.6th International Conference on ExcitonicProcesses in Condensed Matter (EXCON04). Cracow, POLAND2004. p.321-324.
    [127] NAGAWA M, HIBINO R, HOTTA S, et al. Emission gain narrowing from singlecrystals of a thiophene/phenylene co-oligomer[J]. ApplPhysLett,2002,80:544-546
    [128] SHIMIZU K, HOSHINO D, HOTTA S. Unusually narrowed emission lines from asingle crystal of thiophene/phenylene co-oligomer[J]. Applied Physics Letters,2003,83:4494-4496
    [129] YANAGI H, YOSHIKI A, HOTTA S, et al. Stimulated resonance Raman scatteringfrom single crystals of a thiophene/phenylene co-oligomer[J]. Applied Physics Letters,2003,83:1941-1943
    [130] KOBAYASHI S, SASAKI F, YANAGI H, et al. Spectrally narrowed emissions in2,5-bis(4-biphenylyl) thiophene crystals pumped by fs laser pulse[J]. Journal of Luminescence,2005,112:325-328
    [131] BANDO K, NAKAMURA T, FUJIWARA S, et al. Optical selection rule for the lowerDavydov excitons in co-oligomer single crystals[J]. Physical Review B,2008,77,045205
    [132] TAVAZZI S, MIOZZO L, SILVESTRI L, et al. Crystal Structure and OpticalProperties of N-Pyrrole End-Capped Thiophene/Phenyl Co-Oligomer: Strong H-type ExcitonicCoupling and Emission Self-Waveguiding[J]. Crystal Growth&Design,2010,10:2342-2349
    [133] HOTTA S, YAMAO T. The thiophene/phenylene co-oligomers: exotic molecularsemiconductors integrating high-performance electronic and optical functionalities[J]. J MaterChem,2011,21:1295-1304
    [134] MIZUNO H, HAKU U, MARUTANI Y, et al. Single Crystals of5,5′-Bis(4′-methoxybiphenyl-4-yl)-2,2′-bithiophene for Organic Laser Media[J]. AdvancedMaterials,2012,24:5744-5749
    [135] ICHIKAWA M, HIBINO R, INOUE M, et al. Improved crystal-growth and emissiongain-narrowing of thiophene/phenylene co-oligomers[J]. Advanced Materials,2003,15:213-217
    [136] YANAGI H, YOSHIKI A, HOTTA S, et al. Stimulated resonance Raman scatteringfrom single crystals of a thiophene/phenylene co-oligomer[J]. Applied Physics Letters,2003,83:1941
    [137] YANAGI H, YOSHIKI A, HOTTA S, et al. Mirrorless lasing fromthiophene/phenylene co-oligomer crystals based on stimulated resonance Raman scattering[J].Journal of Applied Physics,2004,96:4240-4244
    [138] ICHIKAWA M, HIBINO R, INOUE M, et al. Laser oscillation in monolithicmolecular single crystals[J]. Advanced Materials,2005,17:2073
    [139] SHIMIZU K, MORI Y, HOTTA S. Laser oscillation from hexagonal crystals of athiophene/phenylene co-oligomer[J]. Journal of Applied Physics,2006,99:063505
    [140] YAMAO T, OTA S, MIKI T, et al. Improved sublimation growth of single crystals ofthiophene/phenylene co-oligomers.7th International Conference on Nano-MolecularElectronics (ICNME2006). Kobe, JAPAN: Elsevier Science Sa;2006. p.2527-31.
    [141] YAMAO T, YAMAMOTO K, TANIGUCHI Y, et al. Laser oscillation in a highlyanisotropic organic crystal with a refractive index of4.0[J]. Journal of Applied Physics,2008,103,093115
    [142] YAMAO T, TANIGUCHI Y, YAMAMOTO K, et al. Polarized emissions from singlecrystals of thiophene/phenylene co-oligomers measured by microspectroscopy[J]. JapaneseJournal of Applied Physics,2008,47:4719-4723
    [143] YAMAO T, YAMAMOTO K, TANIGUCHI Y, et al. Spectrally narrowed emissionsoccurring near an interface between a single crystal thiophene/phenylene co-oligomer and aglass substrate[J]. Applied Physic Letters,2007,91:201117
    [144] BANDO K, NAKAMURA T, MASUMOTO Y, et al. Origin of the amplifiedspontaneous emission from thiophene/phenylene co-oligomer single crystals: Towardsco-oligomer lasers[J]. Journal of Applied Physics,2006,99:013518
    [145] KABE R, NAKANOTANI H, SAKANOUE T, et al. Effect of Molecular Morphologyon Amplified Spontaneous Emission of Bis-Styrylbenzene Derivatives[J]. Advanced Materials,2009,21:4034-4038
    [146] WANG H, LI F, GAO B, et al. Doped Organic Crystals with High Efficiency,Color-Tunable Emission toward Laser Application[J]. Crystal Growth&Design,2009,9:4945-4950
    [147] VARGHESE S, YOON S J, CALZADO E M, et al. Stimulated Resonance RamanScattering and Laser Oscillation in Highly Emissive Distyrylbenzene-Based MolecularCrystals[J]. Advanced Materials,2012,24:6473-6478
    [148] YOON S J, VARGHESE S, PARK S K, et al. Color‐Tuned, Highly EmissiveDicyanodistyrylbenzene Single Crystals: Manipulating Intermolecular Stacking Interactions forSpontaneous and Stimulated Emission Characteristics[J]. Advanced Optical Materials,2013,1,232–237
    [149] XIE W J, LI Y P, LI F, et al. Amplified spontaneous emission from cyano substitutedoligo(p-phenylene vinylene) single crystal with very high photoluminescent efficiency[J].ApplPhysLett,2007,90:141110
    [150] FANG H H, CHEN Q D, YANG J, et al. Amplified spontaneous emission in thecyano-substituted oligo(p-phenylenevinylene) organic crystals: Effect of excitationwavelength[J]. ApplPhysLett,2010,96:103508
    [151] FANG H, CHEN Q, YANG J, et al. Two-Photon Pumped Amplified SpontaneousEmission from Cyano-Substituted Oligo (p-phenylenevinylene) Crystals withAggregation-Induced Emission Enhancement[J]. The Journal of Physical Chemistry C:2010,114:11958–11961
    [152] YANAGI H, OHARA T, MORIKAWA T. Self-waveguided gain-narrowing of bluelight emission from epitaxially oriented p-sexiphenyl crystals[J]. Advanced Materials,2001,13:1452
    [153] PEREPICHKA I F, PEREPICHKA D F. Handbook of Thiophene-Based Materials:Applications in Organic Electronics and Photonics,2Volume Set[M]: Wiley;2009.
    [154] PARK S, KWON O-H, KIM S, et al. Imidazole-based excited-state intramolecularproton-transfer materials: synthesis and amplified spontaneous emission from a large singlecrystal[J]. Journal of the American Chemical Society,2005,127:10070-10074
    [155] SHIMIZU K, MORI Y, HOTTA S. Laser oscillation from hexagonal crystals of athiophene/phenylene co-oligomer[J]. Journal of Applied Physics,2006,99:063505
    [156] YAMAO T, YAMAMOTO K, MIKI T, et al. Polarized laser oscillation from polygoncrystals of thiophene/phenylene co-oligomers grown by liquid-phase growth. In: Hirayama YST,editor.34th International Symposium on Compound Semiconductors. Kyoto, JAPAN2007. p.3194-3196.
    [157] BISRI S Z, SAWABE K, IMAKAWA M, et al. Organic Single-Crystal Light-EmittingTransistor Coupling with Optical Feedback Resonators[J]. Scientific Reports,2012,2:985
    [158] BAJONI D. Polariton lasers. Hybrid light-matter lasers without inversion[J]. Journal ofPhysics D: Applied Physics,2012,45:313001
    [159] BUTOV L V. Solid-state physics-A polariton laser[J]. Nature,2007,447:540-541
    [160] DENG H, WEIHS G, SNOKE D, et al. Polariton lasing vs. photon lasing in asemiconductor microcavity[J]. Proceedings of the National Academy of Sciences,2003,100:15318-15323
    [161] KENA-COHEN S, DAVANCO M, FORREST S R. Strong exciton-photon coupling inan organic single crystal microcavity[J]. Physical Review Letters,2008,101:116401
    [162] KENA-COHEN S, FORREST S R. Room-temperature polariton lasing in an organicsingle-crystal microcavity[J]. Nat Photonics,2010,4:371-375
    [163] ZHAO Y S, PENG A, FU H, et al. Nanowire waveguides and ultraviolet lasers basedon small organic molecules[J]. Advanced Materials,2008,20:1661-1665
    [164] MIZUNO H, OHNISHI I, YANAGI H, et al. Lasing from Epitaxially Oriented NeedleCrystals of a Thiophene/Phenylene Co-Oligomer[J]. Advanced Materials,2012,24:2404-2408
    [165] QUOCHI F, CORDELLA F, MURA A, et al. Gain amplification and lasing propertiesof individual organic nanofibers[J]. Applied Physics Letters,2006,88:041106
    [166] ZHANG C, ZOU C L, YAN Y L, et al. Two-Photon Pumped Lasing in Single-CrystalOrganic Nanowire Exciton Polariton Resonators[J]. Journal of the American Chemical Society,2011,133:7276-7279
    [167] QUOCHI F, CORDELLA F, ORRU R, et al. Random laser action in self-organizedpara-sexiphenyl nanofibers grown by hot-wall epitaxy[J]. Applied Physics Letters,2004,84:4454-4456
    [168] KWON S J, HUNZIKER C, KWON O P, et al. Large-Area Organic Electro-opticSingle Crystalline Thin Films Grown by Evaporation-Induced Local Supersaturation withSurface Interactions[J]. Crystal Growth&Design,2009,9:2512-2516
    [169] SHANG H, WANG H, GAO N, et al. Large organic single crystal sheets grown fromthe gas-liquid and gas-liquid-solid interface[J]. Crystengcomm,2012,14:869-874
    [170] TONG Y H, TANG Q X, LEMKE H T, et al. Solution-Based Fabrication ofSingle-Crystalline Arrays of Organic Nanowires[J]. Langmuir,2010,26:1130-1136
    [171] ZAITSEVA N, CARMAN L, GLENN A, et al. Application of solution techniques forrapid growth of organic crystals[J]. J Cryst Growth,2011,314:163-170
    [172] GOTO O, TOMIYA S, MURAKAMI Y, et al. Organic Single-Crystal Arrays fromSolution-Phase Growth Using Micropattern with Nucleation Control Region[J]. AdvancedMaterials,2012,24:1117-1122
    [173] LIU C, MINARI T, LI Y, et al. Direct formation of organic semiconducting singlecrystals by solvent vapor annealing on a polymer base film[J]. J Mater Chem,2012,22:8462-9
    [174] MARKOV I. Crystal growth for beginners: fundamentals of nucleation, crystal growthand epitaxy[M]: World Scientific Pub Co Inc;2003.
    [175] FIGI H, JAZBINSEK M, HUNZIKER C, et al. Electro-optic single-crystalline organicwaveguides and nanowires grown from the melt[J]. Optics Express,2008,16:11310-11327
    [176] FIGI H, JAZBINSEK M, HUNZIKER C, et al. Electro-optic tuning and modulation ofsingle-crystalline organic microring resonators[J]. The Journal of the Optical Society ofAmerica B,2009,26:1103-1110
    [177] KWON O P, RUIZ B, CHOUBEY A, et al. Organic nonlinear optical crystals based onconfigurationally locked polyene for melt growth[J]. Chemistry of Materials,2006,18:4049-4054
    [178] KLOC C, SIMPKINS P, SIEGRIST T, et al. Physical vapor growth of centimeter-sizedcrystals of [alpha]-hexathiophene[J]. J Cryst Growth,1997,182:416-427
    [179] LAUDISE R, KLOC C, SIMPKINS P, et al. Physical vapor growth of organicsemiconductors[J]. J Cryst Growth,1998,187:449-454
    [180] ZHAO Y S, DI C A, YANG W S, et al. Photoluminescence and electroluminescencefrom tris(8-hydroxyquinoline)aluminum nanowires prepared by adsorbent-assisted physicalvapor deposition[J]. Advanced Functional Materials,2006,16:1985-1991
    [181] YAMAO T, OTA S, MIKI T, et al. Improved sublimation growth of single crystals ofthiophene/phenylene co-oligomers[J]. Thin Solid Films,2008,516:2527-2531
    [182] YAMAO T, JURI K, KAMOI A, et al. Field-effect transistors based on organic singlecrystals grown by an improved vapor phase method[J]. Organic Electronics,2009,10:1241-1247
    [183] CHOUBEY A, KWON O P, JAZBINSEK M, et al. High-quality organic singlecrystalline thin films for nonlinear optical applications by vapor growth[J]. Crystal Growth&Design,2007,7:402-405
    [184] WANG H, XIE Z Q, YANG B, et al. Several slice-like organic crystals grown by thephysical vapor transport method: combining atomic force microscopy and X-ray diffraction toexplore the characteristics of crystal formation[J]. Crystengcomm,2008,10:1252-1257
    [185] HUANG Y W, YUAN R J, ZHOU S M. Gas phase-based growth of highly sensitivesingle-crystal rectangular micro-and nanotubes[J]. Journal of Materials Chemistry,2012,22:883-888
    [186] ZHAO Y S, XIAO D B, YANG W S, et al.2,4,5-triphenylimidazole nanowires withfluorescence narrowing spectra prepared through the adsorbent-assisted physical vapordeposition method[J]. Chemistry of Materials,2006,18:2302-2306
    [187] HOTTA S, GOTO M, AZUMI R, et al. Crystal structures of thiophene/phenyleneco-oligomers with different molecular shapes[J]. Chemistry of Materials,2004,16:237-241
    [188] FANG H H, DING R, LU S Y, et al. Direct laser interference ablating nanostructureson organic crystals[J]. Optics Letters,2012,37:686-688
    [189] XIAO F, CHEN R, SHEN Y Q, et al. Efficient Energy Transfer and Enhanced InfraredEmission in Er-Doped ZnO-SiO2Composites[J]. The Journal of Physical Chemistry C,2012,116:13458-13462
    [190] WU J H, GUAN Z P, XU T Z, et al. Tetracene-Doped Anthracene Nanowire Arrays:Preparation and Doping Effects[J]. Langmuir,2011,27:6374-6380
    [191] LI X P, QIAN Y, WANG S Q, et al. Tunable Fluorescence Emission and EfficientEnergy Transfer in Doped Organic Nanoparticles[J]. The Journal of Physical Chemistry C,2009,113:3862-3868
    [192] LI W, ZHANG C F, CHEN Q, et al. Two-photon-pumped optical gain in dye-polymercomposite materials[J]. Applied Physics Letters,2012,100:133305
    [193] PENG A D, XIAO D B, MA Y, et al. Tunable emission from doped1,3,5-triphenyl-2-pyrazoline organic nanoparticles[J]. Advanced Materials,2005,17:2070-2073
    [194] ZHANG C, ZHAO Y S, YAO J N. Organic composite nanomaterials: energy transfersand tunable luminescent behaviors[J]. New J Chem,2011,35:973-978
    [195] WU C F, ZHENG Y L, SZYMANSKI C, et al. Energy transfer in a nanoscalemultichromophoric system: Fluorescent dye-doped conjugated polymer nanoparticles[J]. TheJournal of Physical Chemistry C,2008,112:1772-1781
    [196] LAKOWICZ J R. Principles of fluorescence spectroscopy[M].3rd ed. New York:Springer;2006.
    [197] ENGEL E, LEO K, HOFFMANN M. Ultrafast relaxation and exciton-excitonannihilation in PTCDA thin films at high excitation densities[J]. Chemical Physics,2006,325:170-177
    [198] DOAN V, TRAN V, SCHWARTZ B J. Ultrafast intensity-dependent stimulatedemission in conjugated polymers: The mechanism for line-narrowing[J]. Chemical PhysicsLetters,1998,288:576-584
    [199] LONG D L, BLAKE A J, CHAMPNESS N R, et al. Constructing Terbium Co‐ordination Polymers of4,4′‐Bipyridine‐N, N′‐dioxide by Means of Diffusion SolventMixtures[J]. Chemistry-A European Journal,2002,8:2026-2033
    [200] MAS-TORRENT M, DURKUT M, HADLEY P, et al. High mobility ofdithiophene-tetrathiafulvalene single-crystal organic field effect transistors[J]. Journal of theAmerican Chemical Society,2004,126:984-985
    [201] YAMAO T, MIKI T, AKAGAMI H, et al. Direct formation of thin single crystals oforganic semiconductors onto a substrate[J]. Chemistry of Materials,2007,19:3748-3753
    [202] HIBINO R, NAGAWA M, HOTTA S, et al. Emission gain-narrowing frommelt-recrystallized organic semiconductor[J]. Advanced Materials,2002,14:119
    [203] BANDO K, NAKAMURA T, MASUMOTO Y, et al. Origin of the amplifiedspontaneous emission from thiophene/phenylene co-oligomer single crystals: Towardsco-oligomer lasers[J]. Journal of Applied Physics,2006,99:013518
    [204] LI Y P, SHEN F Z, WANG H, et al. Supramolecular Network Conducting theFormation of Uniaxially Oriented Molecular Crystal of Cyano Substituted Oligo(p-phenylenevinylene) and Its Amplified Spontaneous Emission (ASE) Behavior[J]. Chemistry of Materials,2008,20:7312
    [205] WANG H, LI F, RAVIA I, et al. Cyano-Substituted Oligo(p-phenylene vinylene)Single Crystals: A Promising Laser Material[J]. Advanced Functional Materials,2011,21:3770-3777
    [206] MARUO S, FOURKAS J T. Recent progress in multiphoton microfabrication[J]. Laser&Photonics Reviews,2008,2:100-111
    [207] STRICKLER J H, WEBB W W. Three-dimensional optical data storage in refractivemedia by two-photon point excitation[J]. Optics Letters,1991,16:1780-1782
    [208] HE J T, XU B, CHEN F P, et al. Aggregation-Induced Emission in the Crystals of9,10-Distyrylanthracene Derivatives: The Essential Role of Restricted IntramolecularTorsion[J]. The Journal of Physical Chemistry C,2009,113:9892-9899
    [209] OLIVEIRA S L, CORREA D S, MISOGUTI L, et al. Perylene derivatives with largetwo-photon-absorption cross-sections for application in optical limiting and upconversionlasing[J]. Advanced Materials,2005,17:1890-1893
    [210] ALBOTA M A, XU C, WEBB W W. Two-photon fluorescence excitation crosssections of biomolecular probes from690to960nm[J]. Applied optics,1998,37:7352-7356
    [211] LUO J, XIE Z, LAM J W, et al. Aggregation-induced emission of1-methyl-1,2,3,4,5-pentaphenylsilole[J]. Chemical Communications,2001:1740-1741
    [212] HE G S, TAN L S, ZHENG Q D, et al. Multiphoton absorbing materials: Moleculardesigns, characterizations, and applications[J]. Chemical Reviews,2008,108:1245-1330
    [213] BORN M, WOLF E. Principles of Optics: Electromagnetic Theory of Propagation,Interference and Diffraction of Light[M]: Cambridge University Press;1999.
    [214] SHEN Y R. The principles of nonlinear optics[M]. New York: John Wiley&Sons;1984.
    [215] LEE H M, KIM J J, CHOI J H, et al. In Situ Patterning of High-Quality CrystallineRubrene Thin Films for High-Resolution Patterned Organic Field-Effect Transistors[J]. AcsNano,2011,5:8352-8356
    [216] SAWABE K, TAKENOBU T, BISRI S Z, et al. High current densities in a highlyphotoluminescent organic single-crystal light-emitting transistor[J]. Applied Physics Letters,2010,97:043307
    [217] TAKAZAWA K, MITSUISHI K, INOUE J. Direct electron beam writing of Bragggratings in exciton polariton waveguides of organic dye nanofibers[J]. Applied Physics Letters,2011,99:253302
    [218] MUTTER L, KOECHLIN M, JAZBINSEK M, et al. Direct electron beam writing ofchannel waveguides in nonlinear optical organic crystals[J]. Optics Express,2007,15:16828-38
    [219] GATTASS R R, MAZUR E. Femtosecond laser micromachining in transparentmaterials[J]. Nature Photonics,2008,2:219-225
    [220] VOLKOV V V, ASAHI T, MASUHARA H, et al. Size-dependent optical properties ofpolydiacetylene nanocrystal[J]. The Journal of Physical Chemistry B,2004,108:7674-7680
    [221] ASAHI T, MATSUNE H, YAMASHITA K, et al. Size-dependent fluorescence spectraof individual perylene nanocrystals studied by far-field fluorescence microspectroscopycoupled with atomic force microscope observation[J]. Polish Journal of Chemistry,2008,82:687-699
    [222] MCCALL S, LEVI A, SLUSHER R, et al. Whispering‐gallery mode microdisklasers[J]. Applied Physics Letters,1992,60:289
    [223] YAMAO T, OKUDA Y, MAKINO Y, et al. Dispersion of the refractive indices ofthiophene/phenylene co-oligomer single crystals[J]. Journal of Applied Physics,2011,110,053113

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700