用户名: 密码: 验证码:
海底热液探测的电化学传感器制备与海上试验应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,化学传感器应用于海洋领域的在线测量越来越受到重视。本课题研究主要针对pH传感器的改进和实验室性能测试,以及课题组研制的包括改进后的pH电极的多参数化学传感器系统在深海、浅海多个热液系统的海试研究结果。研究结果对如何结合化学传感器的实验室研究成果,与化学传感器在海洋在线测量领域的应用研究方面,具有重要实践意义。
     pH值作为表征深海热液环境以及扩散流区域溶液化学性能的基本参数,是实现化学传感器在线测量的基础问题,受到海洋科学研究者的广泛关注。以前试制的电化学原位传感器,在实际海试中虽然对海底异常信号有响应,但由于电极信号的不稳定因素,限制了电极在海洋领域的应用范围。本研究基于熔融碳酸锂氧化金属原理,提出了改进传统熔融碳酸锂法制备IrOx电极的方法。对改进后IrOx电极的性能测试与相应的表面扫描电镜测试发现,改进方法后电极保持了原电极的优点,并在各响应性能方面都有显著提高。特别是熔融碳酸锂混合过氧化钠制备的IrOx电极,具备重复性好,在大跨度pH溶液之间的响应快速稳定,长时问连续监测的漂移小于5mV,同一批次所制备电极性能几乎相同,使用寿命长等优点。实验室测试研究发现,熔融碳酸锂混合过氧化钠方法制备的IrOx电极不仅在常温常压和高压,室温到90℃条件下,可作为可靠的pH电极使用,在高压、100~150℃条件下,也具备成为可靠pH电极的可能性。
     基于电极在实验室的测试研究成果,集成了实验室自行开发的Eh、Ag/Ag2S和pH电极,组成了多参数化学传感器,在深海和浅海热液地区寻找活动热液喷口和对热液羽状流三维结构分布调查等领域进行了海上试验研究。在寻找热液喷口的海上试验研究中,集成了Eh、Ag/Ag2S和pH电极的多参数化学传感器首次在大洋一号20航次的洋中脊地区热液调查中,在东太平洋中脊(EPR)赤道区域和西南印度洋中脊(SWIR)的60条测线中投入使用,其中有效测线55条,共在29条测线上发现存在或可能存在的热液异常,获得了一批珍贵数据。在台湾龟山岛地区寻找新热液口过程中,多参数化学传感器组成的传感器链在拖曳航线中获得了一系列与热液活动相对应的化学异常信号,确定了几处可能存在热液口的地区,获得了一批有效数据,并确定了下一步进行再拖曳的几个目标位置。海试研究表明,应用多参数化学传感器探测化学异常进行海底热液探测,是一种有效的方法。电极可灵敏地检测出由热液异常引起的化学量变化,并在长达半年的多次使用中表现出其稳定性好、寿命长的特点。多参数化学传感器系统已作为大洋一号的常规设备使用。
     集成了Eh和pH电极的多参数化学传感器在对龟山岛地区对浅海型热液口典型羽状流的三维结构分布调查应用中,第一次比较完整地获得了典型的黄泉口和白泉口羽状流结构的pH与Eh的三维等值线图。通过对黄泉口和白泉口上方羽状流区域拖曳数据的处理分析发现,热液对周边海域的影响不仅局限在热液口附近的底层水域,更多地是附近海域海水的表层。这项工作,为进一步开展该地区生态、化学环境等研究工作,提供了重要的基础资料。
In recent years, application of chemical sensors in in-situ measurement has attracted more and more attentions in marine science. This study is focused on the preparation improvement, lab-test of pH electrode, and application of lab-developed multi-parameter chemical sensors in in-situ measurements in deep-sea and shallow water hydrothermal systems.
     pH is a fundamental parameter in understanding the chemical processes in hydrothermal vents and diffuse flow systems. Hence, accurate access of in-situ pH is a common concern of marine scientists. Although signals have been acquired by the former pH electrodes, the drifting problem greatly constrain the application of them. Improvements on preparation of IrOx electrode have been proposed based on the mechanism of molten alkali metal carbonate. Results of lab-experiments and SEM surface analysis indicate that the response characteristics of the improved IrOx electrode are better, including good reproducibility and sensitivity, small OCP(open circuit potential) drift (<5mV) of7-day continuous measurement, long life time and remarkable agreement with respect to potential/pH slopes and apparent standard electrode potentials of electrodes from the same batch. Good results of lab-test permit IrOx electrode prepared by molten mixed carbonate lithium with sodium peroxide be suitable for in-situ pH measurement at pressures up to50MPa and temperatures up to90℃. Furthermore, the IrOx electrode could be potentially used at temperatures up to150℃.
     Based on the good results of lab-test, multi-parameter chemical sensor, which integrates Eh, Ag/Ag2S and pH electrode, has been applied in several marine investigations, including hydrothermal detection in deep-sea and shallow water systems. During applications in DY115-20Cruise, Dayangyihao Research Vessel, multi-parameter chemical sensor has measured60times in both East Pacific Ridge (EPR) and Southwest Indian Ridge (SWIR). Among the60measurements,55groups of valid data were gained, in which29records indicate potential active hydrothermal vents. Besides, the electrodes exhibit good sensitivity, stability and long lifetime during the six-month measurements. Multi-parameter chemical sensor system has become a common instrument in Dayangyihao Research Vessel. During the investigation on detecting hydrothermal vents in Kueishan Tao area, batches of valid chemical data, which are in good agreement with anomalies caused by hydrothermal vent fluids, were acquired by the multi-parameter sensor chain. Potential spots of new hydrothermal vents have been inferred according to the in-situ chemical measurements. It has been proved by sea trial results on many occasions that the multi-parameter chemical sensor can help detecting the chemical anomalies of the plumes. The chemical sensor system is an effective tool in hydrothermal activity detection.
     Chemical sensor system integrating Eh and pH electrodes was used to measure the structure of hydrothermal plume at shallow-water hydrothermal vents in Kueishan Tao area, Taiwan. Three dimensional distributions of pH and Eh were firstly acquired at two typical types of hydrothermal plumes. Investigation reveals that the influence of hydrothermal is not limited in vicinity of hydrothermal vents, but on the total water column with most pronounced layers at the surface.
引文
[1]汪品先,海洋科学和技术协同发展的回顾,地球科学进展.26(2011)644-649.
    [2]曾宪军,伍忠良,郝小柱,海洋地质调查方法与设备综述,气象水文海洋仪器.3(2009)111-120.
    [3]阮锐,海洋调查作业模式的研究与发展,中国测绘学会海洋测绘专业委员会第二十一届海洋测绘综合性海洋学术研讨会,成都,(2009)614-616.
    [4]屈新岳,海洋调查工作的发展与现实问题分析及对策,气象水文海洋仪器.(2011)100-102.
    [5]杨洪贵,詹姆斯·库克远航述评,渝西学院学报.3(2004)42-46.
    [6]李娜,乘“贝格尔”号再出发,科学导报.27(2009)9.
    [7]W. Munk, The Evolution of Physical Oceanography in the Last Hundred Years, Oceanography.15(2002) 135-141.
    [8]易晓蕾,我国海洋资料浮标网的运行和发展,海洋技术.12(1993)50-57.
    [9]M.S. Taylor, Transformative ocean science through the VENUS and NEPTUNE Canada ocean observing systems, Nuclear Instruments and Methods in Physics Research A.602 (2009) 63-67.
    [10]彭晓彤,周怀阳,吴邦春,吕枫,吴正伟,杨灿军,李培良,李德俊,金波,冯正平,李德平,美国MARS海底观测网络中国节点试验,地球科学进展.26(2011)991-996.
    [11]范振刚,潘依雯,深海魅惑,生命世界.(2005)1-33.
    [12]探海深潜器发展史料,海洋世界.(2010)32-33.
    [13]J.B. Corliss, J. Dymond, L.I. Gordon, J.M. Edmond, R.P. von Herzen, R.D. Ballard, et al., Submarine thermal sprirngs on the Galapagos rift., Science.203 (1979) 1073-1083.
    [14]F.N. Spiess, K.C. Macdonald, T. Atwater, R. Ballard, J. Francheteau, J. Guerrero, East Pacific Rise:hot springs and geophysical experiments, Science.207 (1980) 1421-1433.
    [15]R.M. Haymon, K.C. Macdonald, The geology of deep-sea hot springs, American Scientist.73 (1985)441-449.
    [16]刘伟勇,郑连福,陶春辉,李怀明,窦炳珺,大洋中脊海底热液系统的演化特征及其成矿意义,海洋学研究.29(2011)25-34.
    [17]S.E. Humphris, P.. Herzig, D.J. Miller, J.C. Alt, The internal structure of an active sea-floor massive sulfide deposit, Letters to Nature.377 (1995) 713-716.
    [18]李粹中,海底热液成矿活动研究的进展、热点及展望,地球科学进展.9(1994)14-19.
    [19]H.P. Johnson, M. Hutnak, R.P. Dziak, C.G. Fox, I. Urcuyo, J.P. Cowen, et al., Earthquake-induced changes in a hydrothermal system on the Juan de Fuca mid-ocean ridge, Nature.407 (2000) 174-177.
    [20]M.D. Lilley, D.A. Butterfield, J.E. Lupton, E.J. Olson, Magmatic events can produce rapid changes in hydrothermal vent chemistry, Nature.422 (2003) 878-881.
    [21]杨作升,范德江,李云海,王厚杰,热液羽状流研究进展,地球科学进展.21(2006)999-1007.
    [22]R.R. Cave, C.R. German, J. Thomson, R.W. Nesbitt, Fluxes to sediments underlying the Rainbow hydrothermal plume at 36° 14'N on the Mid-Atlantic Ridge, Geochimica Et Cosmochimica Acta.66 (2002) 1905-1923.
    [23]刘玉山,吴必豪,海底金属矿产资源的开发—回顾与未来展望,矿产地质.24(2005)81-84.
    [24]莫杰,国际海底区域矿产资源勘查概况,海洋信息之窗.(2000)25-27.
    [25]韩喜球,沈华悌,陈建林,钱江初,张富生,林乘毅,边立曾,太平洋多金属结合的生物成因与生物-化学二元成矿机制初探,中国科学(d辑).27(1997)349-353.
    [26]史斗,郑军卫,世界天然气水合物研究开发现状和前景,地球科学进展.14(1999)1-13.
    [27]奇特的海底热液矿(一),http://uzone.univs.cn/news2_2008_130763.html.
    [28]刘长华,股学博,关于现代浅海型海底热液活动的研究进展,地球科学进展.21(2006)1373-1378.
    [29]V.G. Tarasov, A.V. Gebruk, A.N. Mironov, L.I. Moskalev, Deep-sea and shallow-water hydrothermal vent communities:Two different phenomena? Chemical Geology.224 (2005)5-39.
    [30]冯军,李江海,陈征,牛向龙,海底黑烟囱与生命起源述评,北京大学学报.40(2004)318-325.
    [31]S. Biologique, V. Dover, Specific and genetic diversity at deep-sea hydrothermal vents:an overview, Biodiversity and Conservation.5 (1996) 1619-1653.
    [32]冯军,李江海,牛向龙,现代海底热液为生物群落及其地质意义,地球科学进展.20(2005)732-739.
    [33]李江海,初凤友,冯军,深海底热液微生物成矿与深部生物圈研究进展,自然科学进展.15(2005)1416-1425.
    [34]徐恒平,张树政,嗜极菌的极端酶,生物工程进展.17(1997)2-5.
    [35]肖湘,王风平,深海微生物的研究开发,中国抗生素杂志.31(2006)87-90.
    [36]J.S. Seewald, K.W. Doherty, T.R. Hammar, S.P. Liberatore, A new gas-tight isobaric sampler for hydrothermal fluids, Deep-Sea Research I.49 (2001) 189-196.
    [37]Y. Chen, S.J. Wu, Y.J. Xie, C.J. Yang, J.F. Zhang, A Novel Mechanical Gas-Tight sampler for Hydrothermal Fluids, IEEE Journal of Oceanic Engineering.32 (2007) 603-608.
    [38]S.J. Wu, C.J. Yang, N.J. Pester, Y. Chen, A New Hydraulically Acutated Titanium Sampling Valve for Deep-Sea Hydrothermal Fluid Samplers, IEEE Journal of Oceanic Engineering.36 (2011) 462-469.
    [39]谭春阳,基于流控技术的深海热液化学长期测量原位自校正平台研究[博士论文],浙江大学,2011.
    [40]黄阳玉,模拟深海环境下热液气体的拉曼光谱实验研究[硕士论文],中国海洋大学,2009.
    [41]K. Ding, W.E. Seyfried, Direct pH Measurement of NaCI-Bearing Fluid with an in Situ Sensor at 400 degrees C and 40 Megapascals, Science.272 (1996) 1634-1636.
    [42]K. Ding, Z. Zhang, W.E. Seyfried, A.M. Bradley, Y. Zhou, C.J. Yang, et al., Integrated in-situ chemical sensor system for submersible deployment at deep-sea hydrothermal vents, in:Oceans 2006 Conference,(2006) 951-956.
    [43]K. Ding, W.E. Seyfried, M.K. Tivey, A.M. Bradley, In situ measurement of dissolved H2 and H2S in high-temperature hydrothermal vent fluids at the Field, Main Endeavour Ridge, Juan De Fuca, Earth and Planetary Science Letters.186 (2001) 417-425.
    [44]K. Ding, W.E. Seyfried, In situ measurement of pH and dissolved H2 in mid-ocean ridge hydrothermal fluids at elevated temperatures and pressures., Chemical Reviews.107 (2007) 601-622.
    [45]N. Le Bris, B. Govenar, C. Le Gall, C.R. Fisher, Variability of physico-chemical conditions in 9°50'N EPR diffuse flow vent habitats, Marine Chemistry.98 (2006) 167-182.
    [46]N. Le Bris, P-M. Sarradin, S. Pennec, A new deep-sea probe for in situ pH measurement in the environment of hydrothermal vent biological communities, Deep Sea Research Part I:Oceanographic Research Papers.48 (2001) 1941-1951.
    [47]G.W. Luther, B.T. Glazer, S. Ma, R.E. Trouwborst, T.S. Moore, E. Metzger, et al., Use of voltammetric solid-state (micro)electrodes for studying biogeochemical processes:Laboratory measurements to real time measurements with an in situ electrochemical analyzer (ISEA), Marine Chemistry.108 (2008) 221-235.
    [48]B.T. Glazer, G.W. Luther, S.K. Konovalov, G.E. Friederich, D.B. Nuzzio, R.E. Trouwborst, et al., Documenting the suboxic zone of the Black Sea via high-resolution real-time redox profiling, Deep-Sea Research Part Ⅱ.53 (2006) 1740-1755.
    [49]G.W. Luther, C.E. Reimers, E. Oceanics, W. Redding, In Situ Deployment of Voltammetric, Potentiometric, and Amperometric Microelectrodes from a ROV To Determine Dissolved O2, Mn, Fe, S(-2), and pH in Porewaters, Environment Science and Technology.33(1999) 4352-4356.
    [50]李涛,韩亚东,师洪涛,李勃,油气管道在高pH值环境下的应力腐蚀开裂,管道技术与设备.(2009)11-13.
    [51]吴玉琪,吕功煊,李树本,无氧条件下Pt/TiO2光催化重整降解一乙醇胺水溶液制氢,物理化学学报.20(2004)755-758.
    [52]徐先荣,崔丽杰,张家元,羟胺-环己酮法肟化反应效率的影响因素及改进措施,现代化工.24(2004)53-55.
    [53]白晓慧,陈英旭,一体式膜生物反应器处理医药化工废水的试验,环境污染与防治.22(2005)19-21.
    [54]张正斌,刘春颖,邢磊,任春艳,刘莲生,利用化学因子预测赤潮的可行性探讨,青岛海洋大学学报.33(2003)257-263.
    [55]P. Shuk, K.V. Ramanujachary, M. Greenblatt, New metal-oxide-type pH sensors, Solid State Ionics.86-88 (1996) 1115-1120.
    [56]A. Fog, R.F. Buck, Electronic Semiconducting Oxides as pH Sensors, Sensors and Actuators.5 (1984) 137-146.
    [57]M.J. Deng, F.L. Huang, I.W. Sun, W.T. Tsai, J.K. Chang, An entirely electrochemical preparation of a nano-structured cobalt oxide electrode with superior redox activity, Nanotechnology.20 (2009) 1-5.
    [58]Y. Ha, M. Wang, Capillary Melt Method for Micro Antimony Oxide pH Electrode, Electroanalysis.18 (2006) 1121-1125.
    [59]J.H. Jang, A. Kato, K. Machida, K. Naoi, Tungsten/Tungsten Oxide pH Sensing Electrode for High Temperature Aqueous Environments, Journal of The Electrochemical Society.153 (2006) A321-A328.
    [60]L.B. Kriksunov, D.D. Macdonald, P.J. Millett, Tungsten/Tungsten Oxide pH Sensing Electrode for High Temperature Aqueous Environments, Journal of Electrochemical Society.141 (1994) 3002-3005.
    [61]P. Kurzweil, Metal Oxides and Ion-Exchanging Surfaces as pH Sensors in Liquids:State-of-the-Art and Outlook, Sensors.9 (2009) 4955-4985.
    [62]P. Rasiyah, A.C.C. Tseung, The Role of the Lower Metal Oxide/Higher Metal Oxide Couple in Oxygen Evolution Reactions, Journal of the Electrochemical SocietyElectrochemical Society.131 (1984) 803-805.
    [63]T. Katsube, I.Lauks, J.N. Zemel, pH-Sensitive Sputtered Iridium Oxide Films, Sensors and Actuators.2 (1982) 399-410.
    [64]Y. Mo, I.C. Stefan, W. Cai, J. Dong, P. Carey, D.A. Scherson, In Situ Iridium LⅢ-Edge X-ray Absorption and Surface Enhanced Raman Spectroscopy of Electrodeposited Iridium Oxide Films in Aqueous Electrolytes, Journal of Physical Chemistry B.106 (2002) 3681-3686.
    [65]M.L. Hitchmant, S. Ramanathan, Evaluation of Iridium Oxide Electrodes Formed by Potential Cycling as pH Probes, Analyst.113 (1988) 35-39.
    [66]P.C. Liao, C.S. Chen, W.S. Ho, Y.S. Huang, K.K. Tiong, Characterization of lrO2 thin films by Raman spectroscopy, Thin Solid Films.301 (1997) 7-11.
    [67]M.L. Hitchman, S. Ramanathan, A field-induced poising technique for promoting convergence of standard electrode potential values of thermally oxidized iridium pH sensors, Talanta.39 (1992) 137-44.
    [68]S.A.M. Marzouk, S. Ufer, R.P. Buck, T.A. Johnson, L.A. Dunlap, W.E. Cascio, Electrodeposited iridium oxide pH electrode for measurement of extracellular myocardial acidosis during acute ischemia, Analytical Chemistry.70 (1998) 5054-5061.
    [69]M. Pikulski, W. Gorski, Iridium-based electrocatalytic systems for the determination of insulin, Analytical Chemistry.72 (2000) 2696-702.
    [70]E.T. Baker, G.J. Massoth, C.E.J. Ronde, J.E. Lupton, B.I.A. Mclnnes, Observations and sampling of an ongoing subsurface eruption of Kavachi volcano, Solomon Islands, May 2000, Geology.30 (2002) 975-978.
    [71]M.K. Tivey, S.E. Humphris, G. Thompson, Deducing patterns of fluid flow and mixing within the TAG active hydrothermal mound using mineralogical and geochemical data, Journal of Geophysical Research.100(1995) 12527-12555.
    [72]A.L. Reysenbach, E. Shock, Merging genomes with geochemistry in hydrothermal ecosystems, Science.296 (2002) 1077-1082.
    [73]K. Alain, M. Zbinden, N. Le Bris, F. Lesongeur, J. Querellou, F. Gaill, Early steps in microbial colonization processes at deep-sea hydrothermal vents, Environmental Microbioloby.6(2004) 227-241.
    [74]A. Page, S.K. Juniper, M. Olagnon, K. Alain, G. Desrosiers, J. Querellou, Microbial diversity associated with a Paralvinella sulfincola tube and the adjacent substratum on an active deep-sea, Geobiology.2 (2004) 225-238.
    [75]G.A. Perley, J.B. Godshalk, Cell for pH measurements., U.S. Patent U.S. Patent no.2,416,949,1947.
    [76]S. Glab, A. Hulanicki, G. Edwall, F. Ingman, Metal-Metal Oxide and Metal Oxide Electrodes as pH Sensors, Critical Reviews in Analytical Chemistry.21 (1989) 29-47.
    [77]彭红建,谢佑卿,贵金属|r的原子状态与物理性质,中南大学学报.37(2006)937-941.
    [78]阎鑫,张秋禹,卢锦花,赵雯,张军平,范晓东,铱金属及其氧化物薄膜的制备与应用研究进展,稀有金属.28(2004)756-761.
    [79]S. Thanawala, D.G. Georgiev, R.J. Baird, G. Auner, Characterization of iridium oxide thin films deposited by pulsed-direct-current reactive sputtering, Thin Solid Films.515 (2007) 7059-7065.
    [80]P.J. Kelly, R. Hall, J.O. Brien, J.W. Bradley, G. Roche, R.D. Arnell, Substrate effects during mid-frequency pulsed DC biasing, Surface and Coatings Technology.142-144 (2001)635-641.
    [81]S. Negi, R. Bhandari, L. Rieth, F. Solzbacher, Effect of sputtering pressure on pulsed-DC sputtered iridium oxide films, Sensors and Actuators B:Chemical. 137 (2009) 370-378.
    [82]L. Burke, R.A. Scannell, An investigation of hydrous oxide growth on iridium in base, Journal of Electroanalytical Chemistry.175 (1984) 119-141.
    [83]C. Bock, V.I. Birss, Irreversible decrease of Ir oxide film redox kinetics, Journal of The Electrochemical Society.146 (1999) 1766-1772.
    [84]V.I. Birss, H. Andreas, I. Serebrennikova, H. Elzanowska, Electrochemical Characterization of Sol-Gel Formed Ir Metal Nanoparticles, Electrochemical and Solid-State Letters.2 (1999) 326-329.
    [85]V.A. Alves, L.A. Silva, J.F.C. Boodts, S. Trasatti, Kinetics and mechanism of oxygen evolution on IrO2-based electrodes containing Ti and Ce acidic solutions, Electrochimica Acta.39 (1994) 1585-1589.
    [86]M.L. Hitchman, S. Ramanathan, Thermally grown iridium oxide electrodes for pH sensing in aqueous environments at 0 and 95℃, Analytica Chimica Acta. 263 (1992) 53-61.
    [87]M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, Pergamon Press, Oxford,1966.
    [88]C. Bock, V.I. Birss, Comparison of Ir oxide film redox kinetics in sulfuric and p-toluene sulfonic acid solutions, Electrochimica Acta.46 (2001) 837-849.
    [89]S. Yao, M. Wang, M. Madou, A pH Electrode Based on Melt-Oxidized Iridium Oxide, Journal of The Electrochemical Society.148 (2001) H29-H36.
    [90]M. Wang, S. Yao, M. Madou, A long-term stable iridium oxide pH electrode, Sensors and Actuators B:Chemical.81 (2002) 313-315.
    [91]M. Wang, S. Yao, Carbonate-Melt Oxidized Iridium Wire for pH Sensing, Electroanalysis.15 (2003) 1606-1615.
    [92]J. Hendrikse, W. Olthuis, P. Bergveld, A method of reducing oxygen induced drift in iridium oxide pH sensors, Sensors and Actuators B:Chemical.53 (1998) 97-103.
    [93]D. Chen, J. Zhen, C. Fu, Preparation of Ir/IrOx pH electrode based on melt-oxidation and its response mechanism investigation, Trans. Nonferrous Met. Soc. China.13(2003) 1459-1464.
    [94]陈冬初,郑家桑,付朝阳,Ir/IrOx金属氧化物电极的H+响应行为研究,稀有金属材料与工程.33(2004)831-834.
    [95]陈东初,郑家燊,付朝阳,铱氧化物电极表面膜成分分析与H+响应机理研究,机械工程材料.30(2006)23-49.
    [96]A.J. Terezo, J. Bisquert, E.C. Pereira, G. Garcia-Belmonte, Separation of transport, chargestorage and reactionprocesses of porous electrocatalytic IrO2 and IrO2/Nb2O5 electrodes, Journal of Electroanalytical Chemistry.508 (2001) 59-69.
    [97]P. Tomczyk, M. Mosiatek, Investigation of the oxygen electrode reaction in basic molten carbonates using electrochemical impedance spectroscopy, Electrochimica Acta.46 (2001) 3023-3032.
    [98]T. Nishina, I. Uchida, J.R. Selman, Gas Electrode Reactions in Molten Carbonate Media, Journal of Electrochemical Society.141 (1994) 1191-1198.
    [99]T.H. Lim, E.R. Hwang, H.Y. Ha, S.W. Nam, I.H. Oh, S.A. Hong, Effects of temperature and partial pressure of CO2/O2 on corrosion behaviour of stainless-steel in molten Li/Na carbonate salt, Journal of Power Sources.89 (2000) 1-6.
    [100]C. Belhomme, J. Devynck, M. Cassir, New insight in the cyclic voltammetric behaviour of nickel in molten Li2CO3-Na2CO3 at 650℃, Journal of Electroanalytical Chemistry.545 (2003) 7-17.
    [101]R.E. Andresen, Solubility of Oxygen and Sulfur Dioxide in Molten Sodium Sulfate and Oxygen and Carbon Dioxide in Molten Sodium Carbonate, Journal of Electrochemical Society.126 (1979) 328-334.
    [102]G.J. Janz, Corrosion of Platinum, gold, silver and refractories in molten carbonates, Corrosion.2 (1963) 292-294.
    [103]A.J. Appleby, S. Nicholson, The Reduction of Oxygen in molten Lithium Carbonate, Electroanalytical Chemistry and Inerfacial Electrochemistry.53 (1974) 105-119.
    [104]R.W. Reeve, A.C.C. Tseung, Factors affecting the dissolution and reduction of oxygen in molten carbonate electrolytes. Part 1 " Effect of temperature and alkali carbonate mixture, Journal of Electroanalytical Chemistry.403 (1996) 69-83.
    [105]B.B. Dave, R.E. White, S. Srinivasan, A.J. Appleby, Impedance Analysis for Oxygen Reduction in a Lithium Carbonate Melt:Effects of Partial Pressure of Carbon Dioxide and Temperature, Journal of Electrochemical Society.140 (1993) 2139-2145.
    [106]B.B. Dave, R.E. White, S. Srinivasan, A.J. Appleby, Electrode Kinetics of Oxygen Reduction in Lithium Carbonate Melt:Use of Impedance Analysis and Cyclic Voltammetric Techniques to Determine the Effects of Partial Pressure of Oxygen, Journal of the Electrochemical Society.138 (1991) 673-678.
    [107]B. Malinowska, M. Cassir, F. Delcorso, Behaviour of nickel species in molten Li2CO3+Na2CO3+K2CO3 Part 1.Thermodynamic approach and electrochemical characterization under P(CO2)=1 atm, Journal of Electroanalytical Chemistry. 389 (1995) 21-29.
    [108]R.A. Rapp, Hot corrosion of materials:a fluxing mechanism? Corrosion Science. 44 (2002) 209-221.
    [109]M. Spiegel, P. Biedenkopf, Corrosion of iron base alloys and steels in the Li2CO3-K2CO3 eutectic high alloy mixture, Corrosion Science.39 (1997) 1193-1210.
    [110]K. Ding, J.W.E. Seyfried, In-situ measurement of dissolved H2 in aqueous fluid at elevated temperatures and pressures, Geochimica Et Cosmochimica Acta. 59 (1995) 4769-4773.
    [111]Y.W. Pan, W.E. Seyfried, Experimental and Theoretical Constraints on pH Measurements with an Iridium Oxide Electrode in Aqueous Fluids from 25 to 175℃ and 25 MPa, Journal of Solution Chemistry.37 (2008) 1051-1062.
    [112]CRC Handbook of Chemistry and Physics,56th, CRC Press, Boca Raton, D134.
    [113]C.M. Bethke, Geochemical reaction modeling, Oxford University Press, New York,1996.
    [114]J.W. Johnson, E.H. Oelkers, H.C. Helgeson, SUPCRT92:A Software Package for Calculating the Standard Molal Thermodynamic Properties of Minerals, Gases, Aqueous Species and Reactions from 1 to 5000 Bar and 0 to 1000℃, Computer & Ceosciences.18 (1992) 899-947.
    [115]E.L. Shock, D.C. Sassani, M. Willis, D.A. Sverjensky, Inorganic species in geologic fluids:Correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes, Geochimica Et Cosmochimica Acta. 61 (1997) 907-50.
    [116]D.A. Sverjensky, E.L. Shock, H.C. Helgeson, Prediction of the thermodynamic properties of aqueous metal complexes to 1000℃ and 5 kb, Geochimica Et Cosmochimica Acta.61 (1997) 1359-412.
    [117]E.L. Shock, H.C. Helgeson, D.A. Sverjensky, Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures:Standard partial molal properties of inorganic neutral species, Geochimica Et Cosmochimica Acta.53(1989)2157-2183.
    [118]P.C. Ho, D.A. Palmer, M.S. Gruszkiewicz, Conductivity Measurements of Dilute Aqueous HCI Solutions to High Temperatures and Pressures Using a Flow-Through Cell, Journal of Physical Chemistry B.105 (2001) 1260-1266.
    [119]P.C. Ho, D.A. Palmer, R.E. Mesmer, Electrical conductivity measurements of aqueous sodium chloride solutions to 600℃ and 300 MPa, Journal of Solution Chemistry.23(1994) 997-1018.
    [120]P.C. Ho, D.A. Palmer, R.H. Wood, N. Si, Conductivity Measurements of Dilute Aqueous LiOH, NaOH, and KOH Solutions to High Temperatures and Pressures Using a Flow-Through Cell, Journal of Physical Chemistry B.104 (2000) 12084-12089.
    [121]P.C. Ho, H. Bianchi, D.A. Palmer, R.H. Wood, Conductivity of dilute aqueous electrolyte solutions at high temperatures and pressures using a flow cell, Journal of Solution Chemistry.29(2000) 217-235.
    [122]陈耀文,沈忠英,林月娟,张海丹沈智威,扫描电子显微镜与原子力显微镜技术之比较,中国体视学与图像分析.11(2006)53-58.
    [123]A. Cerquetti, P. Longhi, T. Mussini, Thermodynamics of Aqueous Hydrochloric Acid from E.M.F.'s of Hydrogen-Chlorine Cells, Journal of Chemical and Engineering Data.13 (1968) 458-461.
    [124]A.V. Zelyanskii, L.V. Zhukova, G.A. Kitaev, Solubility of AgCl and AgBr in HCI and HBr, Inorganic Materials.37 (2001) 622-625.
    [125]C.R. German, D.R. Yoerger, M. Jakuba, T.M. Shank, C.H. Langmuir, K. Nakamura, Hydrothermal exploration with the Autonomous Benthic Explorer, Deep-Sea Research Part I.55 (2008) 203-219.
    [126]D.C. Kadko, N.D. Rosenberg, J.E. Lupton, R.W. Collier, M.D. Lilley, Chemical reaction rates and entrainment within the Endeavour Ridge hydrothermal plume, Earth and Planetary Science Letters.99 (1990) 315-335.
    [127]E.T. Baker, R.M. Haymon, J. Resing, S.M. White, S.L. Walker, K.C. Macdonald, et al., High-resolution surveys along the hot spot-affected Galapagos Spreading Center:1. Distribution of hydrothermal activity, Geochemistry Geophysics Geosystems.9 (2008) 1-16.
    [128]E.T. Baker, G.J. Massoth, K. Nakamura, R.W. Embley, Hydrothermal activity on near-arc sections of back-arc ridges:Results from the Mariana Trough and Lau Basin, Geochemistry Geophysics Geosystems.6 (2005) 1-14.
    [129]E.T. Baker, J.A. Resing, S.L. Walker, F. Martinez, B. Taylor, K. Nakamura, Abundant hydrothermal venting along melt-rich and melt-free ridge segments in the Lau back-arc basin, Geophysical Research Letters.33 (2006) 5-8.
    [130]K.G. Speer, P.A. Rona, A model of an Atlantic and Pacific hydrothermal plume, Journal of Geophysical Research.94 (1989) 6213-6220.
    [131]C.R. German, K.J. Richards, M.D. Rudnicki, M.M. Lam, J.L. Charlou, Topographic control of a dispersing hydrothermal plume, Earth and Planetary Science Letters.156 (1998) 267-273.
    [132]J. Lin, C.L. Zhang, The First Collaborative China-International Cruises to Investigate Mid-Ocean Ridge Hydrothermal Vents, InterRidge News.15 (2006) 33-34.
    [133]C.H. Tao, H.M. Li, Y.M. Yang, J.Y. Ni, R.Y. Cui, Y.S. Chen, et al., Two hydrothermal fields found on the Southern Mid-Atlantic Ridge, Science China Earth Sciences.54 (2011) 1302-1303.
    [134]C.H. Tao, J. Lin, S. Guo, Y.J. Chen, G. Wu, X. Han, et al., First active hydrothermal vents on an ultraslow-spreading center:Southwest Indian Ridge, Geology.19 (2012) 47-50.
    [135]C.H. Tao, H. Li, W. Huang, X. Han, G. Wu, X. Su, et al., Mineralogical and geochemical features of sulfide chimneys from the 49°39'E hydrothermal field on the Southwest Indian Ridge and their geological inferences, Chinese Science Bulletin.56 (2011) 2828-2838.
    [136]Y. Chen, Y. Ye, C.J. Yang, Integration of real-time chemical sensors for deep sea research, China Ocean Engineering.19 (2005) 129-137.
    [137]Y. Pan, Y. Ye, C. Han, An improved approach of pH electrode preparation for application in the deep-sea environment, Acta Oceanologica Sinica.32 (2010) 73-79.
    [138]Y. Ye, X. Huang, Y.W. Pan, C.H. Han, W. Zhao, In-situ measurement of the dissolved S2- in seafloor diffuse flow system:sensor preparation and calibration, Journal of ZheJiang University Science A.9 (2008) 423-428.
    [139]K. Ding, W.E. Seyfried, Gold as a Hydrogen Sensing Electrode for in Situ Measurement of Dissolved H2 in Supercritical Aqueous Fluid, Journal of Solution Chemistry.25(1996) 421-433.
    [140]W. Zhao, Y. Chen, C.J. Yang, J.W. Cao, L.Y. Gu, Design of Low-Power Data Logger of Deep Sea for Long-Term Field Observation, China Ocean Engineering. 23 (2009) 133-144.
    [141]S. loka, T. Sakai, T. Igarashi, Y. Ishijima, Long-term continuous in situ potentiometrically measured redox potential in anoxic groundwater with high methane and iron contents, Environmental Earth Sciences.64(2010)143-149.
    [142]S. loka, T. Sakai, T. Igarashi, Y. Ishijima, Determination of redox potential of sulfidic groundwater in unconsolidated sediments by long-term continuous in situ potentiometric measurements, Environmental Monitoring and Assessment.178 (2011) 171-178.
    [143]L. Auque, M.J. Gimeno, J. Gomez, A.C. Nilsson, Potentiometrically measured Eh in groundwaters from the Scandinavian Shield, Applied Geochemistry.23 (2008) 1820-1833.
    [144]J. Radford-Knoery, C.R. German, J.L. Charlou, J.P. Donval, Y.F. Fouquet, Distribution and behavior of dissolved hydrogen sulfide in hydrothermal plumes, Limnology and Oceanography.46(2001)461-464.
    [145]S.M. Sudarikov, A.B. Roumiantsev, Structure of hydrothermal plumes at the Logatchev vent field,14°45'N, Mid-Atlantic Ridge:evidence from geochemical and geophysical data, Journal of Volcanology and Geothermal Research.101 (2000) 245-252.
    [146]T. Pichler, J. Veizer, G.E.M. Hall, The chemical composition of shallow-water hydrothermal fluids in Tutum Bay, Ambitle Island, Papua New Guinea and their effect on ambient seawater, Marine Chemistry.64 (1999) 229-252.
    [147]C.A. Chen, B. Wang, J. Huang, J. Lou, F. Kuo, Y. Tu, et al., Investigation into extremely acidic hydrothermal fluids off Kueishan Tao, Acta Oceanologica Sinica.24 (2005) 125-133.
    [148]P. Lonsdale, Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centres, Deep-Sea Research.24 (1977) 857-863.
    [149]V.M. Vidal, P.M. Vidal, J.D. Isaacs, Coastal submarine hydrothermal activity off northern Baja California, Journal of Geophysical Research.83-B (1978) 1757-1774.
    [150]Stein, J.L., Subtidal gastropods consume sulphur-oxidizing bacteria:evidence from coastal hydrothermal vents, Science.223 (1984) 696-698.
    [151]M. Kleinschmidt, R. Tschauder, Shallow-water hydrothermal vent systems off the Palos Verdes Peninsula, Los Angeles County, California, Bulletin of the Biological Society of Washington.6 (1985) 485-488.
    [152]H. Fricke, O. Giere, K. Stetter, G.A. Alfredsson, J.K. Kristjansson, P. Stoffers, et al., Hydrothermal vent communities at the shallow subpolar mid-Atlantic ridge, Marine Biology.102 (1989) 425-429.
    [153]J. Hashimoto, T. Miura, K. Fujikura, J. Ossaka, Discovery of vestimentiferan tube-worms in the euphotic zone, Zoological Science.10 (1993) 1063-1067.
    [154]P. Sedwick, D. Stuben, Chemistry of shallow submarine warm springs in an arc-volcanic setting: Vulcano Island, Aeolian Archipelago, Italy, Marine Chemistry.53 (1996) 147-161.
    [155]D. Stuben, P. Sedwick, P. Colantoni, Geochemistry of submarine warm springs in the limestone cavern of Grotta Azzurra, Capo Palinuro, Italy: evidence for mixing-zone dolomitisation, Chemical Geology.131 (1996) 113-125.
    [156]F. Thiermann, I. Akoumianaki, J.A. Hughes, O. Giere, Benthic fauna of a shallow-water gaseohydrothermal vent area in the Aegean Sea (Milos, Greece), Marine Biology.128 (1997) 149-159.
    [157]P.R. Dando, D. Stuben, S.P. Varnavas, Hydrothermalism in the Mediterranean Sea, Progress in Oceanography.44(1999) 333-367.
    [158]R. Botz, D. Stuben, G. Winckler, R. Bayer, M. Schmitt, E. Faber, Hydrothermal gases from offshore Milos Island, Greece, Chemical Geology.130(1996) 161-173.
    [159]V.G. Tarasov, A.V. Gebruk, V.M. Shulkin, G.M. Kamenev, V.I. Fadeev, V.N. Kosmynin, et al., Effect of shallow-water hydrothermal venting on the biota of Matupi Harbour (Rabaul Caldera, New Britain Island, Papua New Guinea), Continental Shelf Research.19 (1999) 79-116.
    [160]A.V. Zhirmunsky, V.G. Tarasov, Unusual marine ecosystem in the flooded crater of Ushishir Volcano, Marine Ecology-Progress Series.65 (1990) 95-102.
    [161]Y.I. Sorokin, P.Y. Sorokin, O.Y. Zakuskina, Microplankton and its functional activity in zones of shallow hydrotherms in the western Pacific, Journal of Plankton Research.20 (1998) 1015-1031.
    [162]C.T.A. Chen, Z. Zeng, F.W. Kuo, T.F. Yang, B. Wang, Y. Tu, Tide-influenced acidic hydrothermal system offshore NE Taiwan, Chemical Geology.224 (2005) 69-81.
    [163]V. Beltenev, A. Nescheretov, V. Shilov, A. Shagin, T. Stepanova, G. Cherkashev, et al., New discoveries at 12°58'N,44°52'W, MAR:Professor Logatchev-22 cruise, initial results, InterRidge News.12 (2003) 13-14.
    [164]K.J. Edwards, B.T. Glazer, O.J. Rouxel, W. Bach, D. Emerson, R.E. Davis, et al., Ultra-diffuse hydrothermal venting supports Fe-oxidizing bacteria and massive umber deposition at 5000 m off Hawaii, The International Society for Microbial Ecology Journal.5 (2011)1748-1758.
    [165]栾锡武,现代海底热液活动区的分布与构造环境分析,地球科学进展.19(2004)931-938.
    [166]J. Sarrazin, S.K. Juniper, Biological characteristics of a hydrothermal edifice mosaic community, Marine Ecology Progress Series.185 (1999) 1-19.
    [167]M.F. Fitzsimons, P.R. Dando, J.A. Hughes, F. Thiermann, I. Akoumianaki, S.M. Pratt, Submarine hydrothermal brine seeps off Milos, Greece:observations and geochemistry, Marine Chemistry.57 (1997) 325-340.
    [168]F.F.A. Barriga, I.M.A. Costa, J.M.R. Relvas, A. Ribeiro, Fouquet, Y., H. Ondreas, et al., The Rainbow serpentinites and serpentinite-sulfide stockwork (mid-Atlantic Ridge, AMAR-segment):a preliminary report of the FLORES results, EOS. Transactions of the American Geophysical Union.78 (1997) F832.
    [169]J.M. Edmond, A.C. Campbell, M.P. Palmer, C. German, Geochemistry of hydrothermal fluids from the mid-Atlantic Ridge: TAG and MARK, EOS Transactions of the American Geophysical Union.71 (1990) 1650-1651.
    [170]H.W. Jannasch, Microbial interactions with hydrothermal fluids, in:Seafloor Hydrothermal Systems,Geophysical Monograph, (1995) 273-296.
    [171]W.E. Seyfried, M.J. Mottl, Geologic setting and chemistry of deep-sea hydrothermal vents, in:D.M. Karl (Ed.), The Microbiology of Deep-Sea Hydrothermal Vents, CRC Press, Boca Rato, (1995) 1-34.
    [172]A. Butterfield, G.J. Massoth, R.E. McDuff, J.E. Lupton, M.D. Lilley, Geochemistry of hydrothermal fluids from Axial Seamount hydrothermal emissions study vent field,Juan de Fuca Ridge:subseafloor boiling and subsequent fluid-rock interaction, Journalof Geophysical Research.95 (1990) 12895-12921.
    [173]T. Pichler, J. Veizer, G.E.M. Hall, Natural Input of Arsenic into a Coral-Reef Ecosystem by Hydrothermal Fluids and Its Removal by Fe(Ⅲ) Oxyhydroxides, Environmental Science & Technology.33(1999) 2-7.
    [174]E. Valsami-Jones, E. Baltatzis, E.H. Bailey, A. J. Boyce, J.L Alexander, A. Magganas, et al., The geochemistry of fluids from an active shallow submarine hydrothermal system:Milos island, Hellenic Volcanic Arc, Journal of Volcanology and Geothermal Research.148 (2005) 130-151.
    [175]R.A. Zierenberg, W.C. Shanks, J.L. Bischoff, Massive sulfide deposits at 21°N, East Pacific Rise:Chemical composition,stable isotopes,and phase equilibria, Geological Society of America Bulletin.95 (1984) 922-929.
    [176]W.F. Giggenbach, Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin, Earth and Planetary Science Letters.113(1992).
    [177]C.R. Fisher, Toward an appreciation of hydrothermal vent animals:their environment, physiological ecology,and tissue stable isotope values, American Geophysical Union.6 (1995) 297-316.
    [178]K.T. McCarthy, T. Pichler, R.E. Price, Geochemistry of Champagne Hot Springs shallow hydrothermal vent field and associated sediments, Dominica, Lesser Antilles, Chemical Geology.224 (2005) 55-68.
    [179]Y.I. Sorokin, P.Y. Sorokin, O.Y. Zakuskina, Microplankton and its function in a zone of shallow hydrothermal activity:the Craternaya Bay, Kurile Islands, Journal of Plankton Research.25 (2003) 495-506.
    [180]Y.I. Sorokin, P.Y. Sorokin, O. Zakuskina, Microplankton and its functional activity in zones of shallow hydrotherms in the Western Pacific, Journal of Plankton Research.20 (1998) 1015-1031.
    [181]V.G. Tarasov, Effects of shallow-water hydrothermal venting on biological communities of coastal marine ecosystems of the western Pacific., Advances in Marine Biology.50 (2006) 267-421.
    [182]K. Jens, B.B. Gundersen, E.L. Jorgensen, et al., Mats of giant sulphur bacteria on deep-sea sediments due to fluctuating hydrothermal flow, Nature.360 (1992) 454-.
    [183]Y.G. Chen, W.S. Wu, C.H. Chen,et al., A date for volcanic eruption inferred from a siltstone xenolith, Quaternary Science Reviews.20 (2001) 869-873.
    [184]T. Gamo, K. Okamura, J. L. Charlou, et al., Acidic and sulfate-rich hydrothermal fluids from the Manus back-arc basin, Papua New Guinea, Geology.25 (1997) 139-142.
    [185]刘长华,曾志刚,龟山岛附近海底热液自然硫烟囱体的硫同位素研究,海洋与湖沼.38(2007)118-123.
    [186]F.W. Guo, Preliminary investigation of the hydrothermal activities off Kueishantao Island[硕士论文],台湾国立中山大学,2001.
    [187]T.F. Yang, T.F. Lan, H.F. Lee, et al., Gas compositions and helium isotopic ratios of fluid samples around Kueishantao, NE offshore Taiwan and its tectonic implications, Geochemical Journal.39 (2005) 469-480.
    [188]刘长华,汪小妹,曾志刚等,龟山岛附近海域热液活动流体的来源,海洋科学.34(2010)61-68.
    [189]S. Peiffer, O. Klemm, K. Pecher, et al., Redox measurements in aqueous solutions-A theoretical approach to data interpretation, based on electrode kinetics, Journal of Contaminant Hydrology.10 (1992)1-18.
    [190]A.V. Vershinin, A.G. Rozanov, The platinum electrode as an indicator of redox environment in marine sediments, Marine Chemistry.14(1983) 1-15.
    [191]M.J. Herbel, D.L. Suarez, S. Goldberg, et al., Evaluation of Chemical Amendments for pH and Redox Stabilization in Aqueous Suspensions of Three California Soils, Soil Science Society of America Journal.71 (2007) 927-939.
    [192]L.Y. Yang, H.S. Hong, W.D. Guo, et al., Absorption and fluorescence of dissolved organic matter in submarine hydrothermal vents off NE Taiwan, Marine Chemistry.128-129 (2011) 64-71.
    [193]R.M. Prol-Ledesma, C. Canet, M.A. Torres-vera, et al., Vent fluid chemistry in Bahia Concepcion coastal submarine hydrothermal system, Baja California Sur, Mexico, Journal of Volcanology and Geothermal Research.137 (2004) 311-328.
    [194]A.I. Obzhirov, Chemistry of free and dissolved gases of Matupi Bay, Rabaul caldera, Papua New Guinea, Geo-Marine Letters.12 (1992) 54-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700