用户名: 密码: 验证码:
各向异性介质的MT正反演研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究了各向异性介质的大地电磁正反演问题。本文的目的在于解决二维各向异性介质的大地电磁近似解析解、开发一套可用于模拟各向异性地电结构的大地电磁场及其响应函数的有限元数值模拟程序、以及实现大地电磁一维各向异性反演问题。
     本文从最简单的各向同性均匀半空间大地电磁理论开始,依次介绍了一维层状各向同性、二维各向同性及三维各向同性介质情形下的大地电磁理论。在此基础上阐述了一维层状各向异性介质二维各向异性介质情形下的大地电磁理论。
     对于一般二维介质的大地电磁场,通常需要利用数值方法求解。数值模拟方法也的确可以计算各种复杂二维地电模型的大地电磁场,但是,现实研究中经常会发现对同一个模型用不同的数值模拟方法得到的结果彼此不一致,这时无法判断哪个程序得到的结果是正确的,即使两种数值方法获得了同样的结果也不能证明该结果就是精确的。这就需要一个可以用解析方法求解的简单模型,可以借助该模型的解析解去判断数值模拟方法的正确性及其精度。因此,本文在二维各向同性无限深断裂模型解析解的基础上,研究了几种具有特殊各向异性电导率结构(对角各向异性、水平各向异性及方位各向异性)的无限深断裂的大地电磁场的近似解析解。
     本文仔细分析了二维各向同性与各向异性情形下Maxwell方程的异同,在此基础上利用伽辽金加权余量法推导出了大地电磁二维对称各向异性介质的有限元数值模拟方程。在推导有限元数值模拟方程的过程中,利用矩阵方程的变换性质对单元刚度矩阵做了优化处理,使得在求解总体刚度矩阵方程时需要存储的元素数据量减少到最低限度,有效节省了计算机的存储空间。
     在推导完二维对称各向异性介质有限元总体刚度矩阵方程后,借助Matlab平台编制了相应的有限元数值模拟程序,直接利用Matlab语言中的提供的稀疏矩阵存储技术存储总体系数矩阵,最大限度地减少了存储空间和内存空间,提高运算效率。采用Matlab平台中自带的解方程方法求解有限元刚度矩阵方程,程序编制简便且计算结果稳定可靠。
     为了检验所设计的有限元程序的正确性,本文利用各向异性无限深断裂的大地电磁场近似解析解检验了本文所编写的有限元程序。在验证完有限元数值模拟程序的正确性之后,本文模拟了几种著名的2D各向异性模型(Reddy&Rankin模型,Pek&Li模型)的大地电磁场及其MT响应,并讨论了电性各向异性对大地电磁场的影响。
     在完成二维各向异性正演后,本文进行MT全张量一维各向异性的反演研究,并将所研究的反演方法用于实测大地电磁资料。
     最后,对本文的工作进行了总结并展望了未来的研究方向。
This thesis deals with the forward and inversion problem of the magnetotelluric (MT) in a two-dimensional (2-D) medium with anisotropic conductivity structure. The goal of this thesis is to obtain quasi-analytic solution of2-D MT fields on an an axially anisotropic infinite fault, and to develop a code by finite element method which can be used to model the magnetotelluric fields and calculate the MT responses in anisotropic conductivity structures, and to carry out the inversion of MT field data in1-D medium.
     From the magnetotelluric theory in the simplest case, i.e. isotropic half space model, the MT theory of the one-dimensional (1-D) isotropic layered media, the2-D isotropic midia and the three-dimensional (3-D) case are introduced in sequence. And then the MT theory of the1-D anisotropic layered media and the2-D model with anisotropic conductivity structure are considered.
     For the general2-D earth, the magnetotelluric fields must be calculated by numerical modeling methods. And the numerical modeling method can indeed be used to various calculation of2D model, however, sometimes the numerical results given by different methods differ from each other, then it is difficult to tell which of the methods is giving the correct solution and even if two methods do yield the same numerical solution, this does not prove conclusively that it is, in fact, an accurate one. In this case, it is desirable to assess the correctness and precision of the methods by a simple2D model which can also be solved analytically. Hence, the quasi-analytical solutions of the2-D magnetotelluric fields on the finite fault with special anisotropic condutivity structure (i.e. diagonal anisotropy, horizontal anisotropy and azimuthal anisotropy) are given based on that of the isotropic case
     The difference between the Maxwell equations corresponding to the2-D isotropic media and anisotropic ones, respectively, is analysed carefully. Base on this, the numerical modeling equations are derived using the galerkin weighted residual finite element method (FEM). The element stiffness matrix is optimized based on the transformation properties of the matrix equation when the FEM numerical modeling equations are derived, which makes the data storage required in the calculation of the overall stiffness matrix equations reduce to the least level so as to reduce the cost of the memory of the computer effectively.
     When the overall stiffness matrix equations for the2-D symmetric anisotropic conductivity media are obtained, the corresponding finite element numerical simulation code is developed in Matlab language. The code applys the sparse matrix storage technology provided by the Matlab platform to store the coefficient matrix, which reduces the strorage and memory at the maximum level and improves the computational efficiency significantly. The programming of the code is simple when the method for solving finite element stiffness matrix equation within the Matlab platform is applied, and the results of the calculation are stable and reliable.
     In order to examine the correctness of the FEM code, the quasi-analytical solution are used to check the FEM code in this thesis. After the correctness of the FEM code is confirmed, the magnetotelluric fields and the MT responses over several well-known2-D anisotropic media (Reddy&Rankin model, Pek&Li model) are calcalated, and the effects of the anisotropy on the MT fields are discussed.
     When the numerical modeling of MT fields in2-D anisotropic conductivity structures is finished, a inversion method of the whole tensor impedance response to one-dimensional anisotropic structure is considered. And then the inversion method is applied to MT field data.
     Finally, the work of this thesis is summarized and some directions of the future research are given.
引文
Abramovici, F.,1974. The forward magnetotelluric problem for an inhomogeneous and anisotropic structure. Geophysics 39,59-68.
    Abramovici, F., Landisman, M., Shoham, Y.,1976. Partial Derivatives for the One-Dimensional Magnetotelluric Problem. Geophys J R Astron Soc 44, 359-375.
    Alvarado, D.D.,2011. Magnetotelluric Study of the Western Cordillera (Northern Chile), with a Focus on Lascar Volcano. Freien Universitat, Berlin.
    Aprea, C., Booker, J. R., Smith, J. T.,1997. The forward problem of electromagnetic induction:Accurate finite-difference approximations for two-dimensional discrete boundaries with arbitrary geometry. Geophys J Int 129,29-40.
    Backus, G., Gilbert, F.,1967. Numerical applications of a formal ism for geophysical inverse problems. Geophys J Int 13,247-276.
    Backus, G., Gilbert, F.,1968. The resolving power of gross earth data. Geophys J R Astron Soc 16,169-205.
    Backus, G., Gilbert, F.,1970. Uniqueness in the inversion of inaccurate gross earth data. Philosophical Transactions for the Royal Society of London. Series A, Mathematical and Physical Sciences Ser. A266,123-192. Barnford, D., Crampin, S.,1977. Seismic anisotropy—the state of the art. Geophys J R Astron Soc 49,1-8.
    Brewitt-Taylor, C.R., Weaver, J.T.,1976. On the finite difference solution of 2-dimensional inducton problems. Geophys J R Astron Soc 47, 375-396.
    Cagniard, L.,1953. Basic Theory of the MT methods of Geophysical Propecting. Geophysics 18,605-635.
    Cantwell, T.,1960. Detection and analysis of low frequency magnetotelluric signals. Dept. of Geology and Geophysics, M. I.T. Cambridge, Massachusetts.
    Chen, X., Weckmann, U.,2012. Inversion of 2D magnetotelluric data with anisotropic conductivities,21st EM Induction Workshop, July 25-31,2012, in Darwin, Australia.
    Chetayev, D. N.,1960. The determination of anisotropic coefficient and the angle of inclination of homogeneous anisotropic medium, by measuring the impedance of natural electromagnetic field. Bull Acad Sci USSR Geophysics ser, English Transl,407-408.
    Christensen, N.I.,1984. The magnitude, symmetry and origin of upper mantle anisotropy based on fabric analyses of ultramafic tectonites. Geophys J R Astron Soc 76,89-111.
    Coggon, J.H.,1971. Electromagnetic and electrical modeling by finite element method. Geophysics 36,132-155.
    Crampin, S., Chesnokov, E. M., Hipkin, R. G.,1984. Seismic anisotropy the state of the art:II. Geophys J R Astron Soc 76,1-16.
    Crampin, S., Chesnokov, E. M., Hipkin, R. G.,1984. Seismic anisotropy—the state of the art:Ⅱ. Geophys J R Astron Soc 76,1-16.
    d'Erceville, I., Kunetz, G.,1962. The effect of a fault on the earth's natural electromagnetic field. Geophysics 27,651-665.
    de Groot-Hedlin, C.,2006. Finite-difference modeling of magnetotelluric fields:Error estimates for uniform and nonuniform grids. Geophysics 71, G97-G106.
    deGroot-Hedlin, C., S.Constable,1990. Occam's inversion to generate smooth, two-dimensional models from magnetotelluric data. Geophysics 55, 1613-1624.
    Eaton, D.W., Jones, A.,2006. Tectonic fabric of the subcontinental lithosphere:Evidence from seismic, magnetotelluric and mechanical anisotropy-Preface. Phys Earth Planet Inter 158,85-91.
    Eaton, D. W., Jones, A. G., Ferguson, I.J.,2004. Lithospheric anisotropy structure inferred from collocated teleseismic and magnetotelluric observations:Great Slave Lake shear zone, northern Canada. Geophys Res Lett 31, L19614.
    Finlayson, B., Scriven, L.,1966. The method of weighted residuals—a review. Appl. Mech. Rev 19,735-748.
    Finlayson, B.A.,1972. The method of weighted residuals and variational principles, in:Bellman, R. (Ed.), Mathematics in Science and Engineering. Academic Press, New York and London.
    Gatzemeier, A., Tommasi, A.,2006. Flow and electrical anisotropy in the upper mantle:Finite-element models constraints on the effects of olivine crystal preferred orientation and microstructure. Phys Earth Planet Inter 158,92-106.
    Geyer, R. G.,1972. The effect of a dipping contact on behavior of electromagnetic field. Geophysics 37,337-350.
    Habashy, T. M., Groom, R. W., Spies, B. R.,1993. Beyond the Born and Rytov approximations:A nonlinear approach to electromagnetic scattering. J. Geophys. Res 98,1759-1775.
    Hamilton, M. P.,2008. Electrical and seismic anisotropy of the lithosphere with the focus on central southern Africa, Faculty of Science,. University of the Witwatersrand.
    Heise, W., Caldwell, T., Bibby, H., Brown, C.,2006. Anisotropy and phase splits in magnetotellurics. Phys Earth Planet Inter 158,107-121.
    Heise, W., Pous, J.,2003. Anomalous phases exceeding 90° in magnetotellurics anisotropic model studies and a field example. Geophys J Int 155,308-318.
    Hess, H.,1964. Seismic anisotropy of the uppermost mantle under oceans. Nature 203,629-631.
    Hilley, G., Burgmann, R., Zhang, P., Molnar, P.,2005a. Bayesian inference of plastosphere viscosities near the Kunlun Fault, northern Tibet. Geophys Res Lett 32, L01302.
    Hilley, G. E., Burgmann, R., Zhang, P. Z., Molnar,2005b. Bayesian inference of plastosphere viscosities near the Kunlun Fault, northern Tibet. Geophys Res Lett 32.
    Hobbs, B. A.,1975. Analytical solutions to global and local problems of electromagnetic induction in the earth. Phys Earth Planet Inter 10, 250-261.
    Hohmann, G.W.,1971. Electromagnetic scattering by conductors in the earth near a line source of current. Geophysics 36,101-131.
    Istok, J.,1989. Groundwater modeling by the finite element method. American Geophysical Union.
    Jiracek, G. R.,1973. Numerical comparisons of a modified rayleigh approach with other rough surface EM scattering solutions. Ieee T Antenn Propag AP21,393-396.
    Jiracek, G. R., Reddig, R. P., Kojima, R. K.,1989. Application of the rayleigh-FFT technique to magnetotelluric modeling and correction. Phys Earth Planet Inter 53,365-375.
    Kaikkonen, P.,1977. Finite-element program package for electromagnetic modeling. Journal of Geophysics-Zeitschrift Fur Geophysik 43,179-192. Kaikkonen, P.,1980. Numerical Finite Element Modeling in Geophysical Applications of Electromagnetic Fields. Acta Univ. Oul.
    Keen, C., Tramontini, C.,1970. A Seismic Refraction Survey on the Mid-Atlantic Ridge. Geophys J R Astron Soc 20,473-491.
    Keller, G. V., Frischknecht, F. C.,1966. Electrical Methods in Geophysical Prospecting, In International Series ofMonographs in ElectromagneticWaves.10, eds. A. L. Cullen, V. A. Fock, and J. R. Wait. Pergammon Press, Oxford.
    Kisak, E., Silvester, P.,1975. Finite-element program package for magnetotelluric modeling. Comput Phys Commun 10,421-433.
    Kong, J.A.,1972. Electromagnetic fields due to dipole antennas over stratifield anisotropic media. Geophysics 37,985-996.
    Ledo, J.,2006.2-D versus 3-D magnetotelluric data interpretation. Surv Geophys 27,111-148.
    Leibecker, J., Gatzemeier, A., Honig, M., Kuras,0., Soyer, W.,2002. Evidence of electrical anisotropic structures in the lower crust and the upper mantle beneath the Rhenish Shield. Earth Planet Sci Lett 202, 289-302.
    Li, X. B., Oskooi, B., Pedersen, L. B.,2000. Inversion of controlled-source tensor magnetotelluric data for a layered earth with azimuthal anisotropy. Geophysics 65,452-464.
    Li, Y.,2000. Numerische Modellierungen von elektromagnetischen Feldern in 2-und 3-dimensionalen anisotropen Leitfahigkeitsstrukturen der Erde nach der Methode der Finiten Elemente. Cuvillier.
    Li, Y., Pek, J., Brasse, H.,2003. Magnetotelluric inversion for 2D anisotropic conductivity structures,20. Kolloquium Elektromagnetische Tiefenforschung, Konigstein,29.09.-3.10.2003, Hrsg.:A. Hordt und J. B. Stoll.
    Li, Y.G.,2002. A finite-element algorithm for electromagnetic induction in two-dimensional anisotropic conductivity structures. Geophys J Int 148, 389-401.
    Loewenth. D, Landisma. M,1973. Theory for magnetotelluric observations on surface of a layered anisotropic half space. Geophys J R Astron Soc 35, 195-214.
    Muller, W., Losecke, W.,1975. Accelerating Convergence Techniques and Grid Spacing Problems in Two-Dimensional Magnetotelluric Modelling. Geophys J R Astron Soc 41,185-191.
    Madden, T., Mackie, R. L.,1989. Three-dimensional magnetotelluric modelling and inversion. Proc. Ieee 77,318-333.
    Mallet, R., Doll, H.G.,1933. Sur un thkoreme relatifaux mileux klectriquement anisoanisotropes et ses applications a la prospection klectrique en constant continu. Gerlands BeilBeilrage Zur Geophysik 3.
    Mandolesi, E., Jones, A. G.,2012. Magnetotelluric Inversion in a 2D Anisotropic Environment, EGU General Assembly 2012,22-27 April,2012, in Vienna, Austria, p.13561.
    Marti, A., Queralt, P., Ledo, J., Farquharson, C.,2010. Dimensionality imprint of electrical anisotropy in magnetotelluric responses. Phys Earth Planet Inter 182,139-151.
    Minster, J., Jordan, T., Molnar, P., Haines, E.,1974a. Numerical Modelling of Instantaneous Plate Tectonics*. Geophys J R Astron Soc 36, 541-576.
    Minster, J. B., Jordan, T. H., Molnar, P., Haines, E.,1974b. Numerical Modelling of Instantaneous Plate Tectonics. Geophys J R Astron Soc 36, 541-576.
    Negi, J., Saraf, P.,1989. Anisotropy in Geoelectromagnetism. Elsevier. Negi, J. G., Saraf, P.D.,1972. Effect of anisotropy of the earth on the impedance measurements. Pure Appl Geophys 96,37-&.
    Neves, A.S.,1957. The Magneto-Telluric Method in Two-Dimensional Structures'. Ph. D. thesis, Dept. of Geology and Geophysics, MIT.
    O'Brien, D. P., Morrison, H. F.,1967. Electromagnetic fields in an N-layered anisotropic half-space. Geophysics ⅩⅩⅫ,668-677.
    Osella, A.M., Martinelli, P.,1993. Magnetotelluric response of anisotropic 2-D structures. Geophys J Int 115,819-828.
    Park, S. K., Orange, A. S., Madden, T. R.,1983. Effects of threedimensional structure on magnetotelluric sounding curves. Geophysics 48,5-18.
    Parkinson, W. D.,1959. Directions of Rapid Geomagnetic Fluctuations. Geophys J R Astron Soc 2,1-14.
    Pascoe, L., Jones, F.,1972. Boundary Conditions and Calculation of Surface Values for the General Two-Dimensional Electromagnetic Induction Problem. Geophys J R Astron Soc 27,179-193.
    Pek, J., Santos, F. A. M.,2002. Magnetotelluric impedances and parametric sensitivities for 1-D anisotropic layered media. Comput Geosci-uk 28, 939-950.
    Pek, J., Santos, F.A.M.,2006. Magnetotelluric inversion for anisotropic conductivities in layered media. Phys Earth Planet Inter 158,139-158.
    Pek, J., Santos, F. A. M., Li, Y., Kovacikova, S.,2012. Magnetotelluric inversion for 2D generally anisotropic conductivities,21st EM Induction Workshop, July 25-31,2012, in Darwin, Australia.
    Pek, J., Verner, T.,1997. Fini te-difference modell ing of magnetotelluric fields in two-dimensional anisotropic media. Geophys J Int 128,505-521.
    Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P.,1992. Numerical Recipes in Fortran:The Art of Scientific Computing. Cambridge University Press.
    Price, A.T.,1962. The Theory of Magnetotelluric Methods When the Source Field Is Considered. Journal of geophysical research 67,1907-1918.
    Qin, L., Yang, C., Chen, K.,2013. Quasi-analytic solution of 2-D magnetotelluric fields on an axially anisotropic infinite fault. Geophys J Int 192,67-74.
    Ramaswamy, V., Nienaber, W., Dosso, H., Jones, F., Law, L.,1977. Comments on the numerical and analogue model results for electromagnetic induction for an island situated near a coastline". Phys Earth Planet Inter 14,28P.
    Ramaswamy, V., Nienaber, W., Dosso, H. W., Jones, F. W., Law, L. K.,1975. Numerical and analogue model results for electromagnetic induction for an island situated near a coastline. Phys Earth Planet Inter 11,81-90.
    Rankin, D.,1962. The magneto-telluric effect on a dike. Geophysics 27, 666-676.
    Reddy, I.K., Rankin, D.,1971. Magnetotelluric effect of dipping anisotropies. Geophys Prospect 19,84-97.
    Reddy, I.K., Rankin, D.,1975. Magnetotelluric response of laterally inhomogeneous and anisotropic media. Geophysics 40,1035-1045.
    Regis, C., Rijo, L.,1997.1-D inversion of anisotropic magnetotelluric data, Extended Abstracts Book from the 50th Congresso Internacional da Sociedade Brasileira de Geofisica, Brasil, pp.673-674.
    Regis, C., Rijo, L.,2000. Approximate equality constraints in the inversion of anisotropic MT data, Abstracts Book,15th Workshop on Electromagnetic Induction in the Earth, Cabo Frio, Brazil, p.47.
    Rodi, W. L.,1976. A technique for improving the accuracy of finite element solutions for magnetotelluric data. Geophys J R Astron Soc 44,483-506.
    Saraf, P., Negi, J.,1983. On multifrequency magneto telluric sounding over the Himalayan type colliding plate boundaries. Geophys J R Astron Soc 74,809-817.
    Saraf, P. D., Negi, J.G., Cerv, V.,1986. Magnetotelluric response of a laterally inhomogeneous anisotropic inclusion. Phys Earth Planet Inter 43,196-198.
    Schlumberger, C.,1920. Etude sur la prospection electrique du sous-sol (study of electrical prospecting of substrata), Paris. Gauthier, Villars, pp.43-44.
    Schlumberger, C., Schlumberger, M., Leonardon, E.G.,1934. Some observations concerning electrical measurements in anisotropic media, and their interpretation. Transactions of the American Institute of Mining and Metallurgical Engineers 110,161-184.
    Shoham, Y., Loewenthal, D.,1975. Matrix polynomial representation of the anisotropic magnetotelluric impedance tensor. Phys Earth Planet Inter 11, 128-138.
    Simpson, F., Bahr, K.,2005. Practical magnetotellurics. Cambridge University Press.
    Siripunvaraporn, W., Egbert, G., Lenbury, Y.,2002. Numerical accuracy of magnetotelluric modeling:A comparison of finite difference approximations. Earth Planets Space 54,721-725.
    Takasugi, S., Sato, T., Honkura, Y.,1993.2-dimensional forward modeling for the COPROD2 MT data. Journal of Geomagnetism and Geoelectricity 45, 957-962.
    Thomson, A. W. P., McKay, A. J., Clarke, E., Reay, S. J.,2005. Surface electric fields and geomagnetically induced currents in the Scottish Power grid during the 30 October 2003 geomagnetic storm. Space Weather-the International Journal of Research and Applications 3.
    Tikhonov, A.N.,1950. The determination of the electrical properties of the deep layers of the earth's crust. Dokl. Acad. Nauk. SSR 73,295-297 (in Russian).
    Tikhonov, A. N.,1959. The propagation of continuous electromagnetic waves in a laminarly anisotropic medium. Soviet Physics Doklady,4,566-570. Tikhonov, A.N.,1986. On determining electrical characteristics of the deep layers of the earth's crust, In Magnetotelluric Methods, ed. K. Vozoff.. Society of Exploration Geophysicists, Tulsa, pp.2-3.
    Tikhonov, A.N., Berdichevsky, M. N.,1966. Experience in the use of magnetotelluric methods to study the geological structures of sedimentary basins. Izv. Acad. Sci. USSR Phys. Solid Earth Eng. transl.2,34-41.
    Wait, J. R.,1954. On the relation between telluric currents and the earth's magnetic field. Geophysics 19,281-289.
    Wait, J. R.,1982. Geo-electromagnetism. Academic Press, New York, USA.
    Wait, J. R., Spies, K.P.,1974. Magneto-Telluric fields for a segmented overburden. Journal of Geomagnetism and Geoelectricity 26,449-458.
    Wang, D., Mookherjee, M., Xu, Y., Karato, S.-i.,2006. The effect of water on the electrical conductivity of olivine. Nature 443,977-980.
    Wang, T. L., Fang, S.,2001.3-D electromagnetic anisotropy modeling using finite differences. Geophysics 66,1386-1398.
    Wannamaker, P. E.,2005. Anisotropy versus heterogeneity in continental solid earth electromagnetic studies:Fundamental response characteristics and implications for physicochemical state. Surv Geophys 26,733-765.
    Wannamaker, P. E., Stodt, J. A., Rijo, L.,1986. Two-dimensional topographic responses in magnetotellurics modeled using finite-element. Geophysics 51,2131-2144.
    Wannamaker, P.E., Stodt, J. A., Rijo, L.,1987. A stable finite-element solution for two-dimensional magnetotelluric modeling. Geophys J R Astron Soc 88,277-296.
    Weaver, J.T.,1963. The electromagnetic field within a discontinuous conductor with reference to geomagnetic micropul sat ions near a coastline. Can J Phys 41,484-495.
    Weaver, J. T.,1994. Mathematical methods for geo-electromagnetic induction. UK:Research Studies Press, Taunton, Somerset.
    Weaver, J. T., Lequang, B.V., Fischer, G.,1985. A comparison of analytic and numerical results for a two-dimensional control model in electromagnetic induction.1. B-polarization calculations. Geophys J R Astron Soc 82,263-277.
    Weaver, J.T., Lequang, B.V., Fischer, G.,1986. A comparison of analytic and numerical results for a two-dimensional control model in electromagnetic induction.1. E-polarization calculations. Geophys J R Astron Soc 87,917-948.
    Weidelt, P.,1999.3-D Conductivity models:implications of electrical anisotropy, in Three-Dimensional Electromagnetics, pp.119-137 ed. Oristaglio, M.& Spies, B., Geophysical Developments,7, Society of Exploration Geophysicists, Tulsa, Oklahoma.
    Wiese, H.,1962. Geomagnetische Tiefentellurik Teil Ⅱ:die Streichrichtung der Untergrundstrukturen des elektrischen Widerstandes, erschlossen aus geomagnetischen Variationen. Geofis. Pura et Appl.52, 83-103.
    Xiong, Z.,1989. Electromagnetic fields of electric dipoles embedded in a stratified anisotropic earth. Geophysics 54,1643-1646.
    Yin, C.,2000. Geoelectrical inversion for 1D anisotropic models and inherent non-uniqueness. Geophys. J. Int.140,11-23.
    Yin, C.,2003. Inherent nonuniqueness in magnetotelluric inversion for 1D anisotropic models. Geophysics 68,138-146.
    Yoshino, T., Matsuzaki, T., Yamashita, S., Katsura, T.,2006. Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere. Nature 443,973-976.
    Zyserman, F. I., Guarracino, L., Santos, J. E.,1999. A hybridized mixed finite element domain decomposed method for two dimensional magnetotelluric modelling. Earth Planets Space 51,297-306.
    陈乐寿,刘任,王天生,1989.大地电磁测深资料处理与解释.石油工业出版社,北京.
    陈乐寿,王光锷,1990.大地电磁测深法.地质出版社,北京.
    邓建中,葛仁杰,程正兴,1985.计算方法.西安交通大学出版社,西安.
    晋光文,1987.大地电磁视电阻率和阻抗相位资料的联合反演.地震地质9,81-86.
    林长佑,武玉霞,杨长福等,1996.水平层状对称各向异性介质的大地电磁资料反演.地球物理学报39(增刊),342-348.
    秦林江,杨长福,2012.大地电磁全张量响应的一维各向异性反演.地球物理学报55,693-701.
    徐翠薇,孙绳武,2002.计算方法引论.高等教育出版社,北京.
    徐世浙,1994.地球物理中的有限单元法.科学出版社,北京.
    徐世浙,赵生凯,1985.二维各向异性地电断面大地电磁场的有限元法解法.地震学报,80-90.
    杨长福,1997.大地电磁二维对称各向异性介质的有限元数值模拟.西北地震学报19,28-34.
    杨长福,林长佑,孙崇赤等,2005.二维对称各向异性介质大地电磁反演.地震学报27,339-345.
    杨长福和林长佑,1997.甘肃及邻近地区的各向异性介质MT反演及该区地壳深部应力场和形变带.内陆地震11,143-147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700