用户名: 密码: 验证码:
探地雷达属性技术及其在考古调查中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
探地雷达是用高频电磁波来确定介质内部物质分布规律的一种非侵入地球物理方法。目前对探地雷达数据体反射信息的解释更多的是基于解释者的经验,而雷达资料中的大量信息则被浪费。为改进数据解释的质量和效率,从经过数据处理过的2-D剖面以及3-D数据体提取包括振幅与到达时更多可靠的定量化信息,以获取更多地下目标体的细节,显得很有必要。而这个概念在今天是与“属性”的计算与分析有所关联。探地雷达属性技术是通过提取可描述的、定量化的属性特征,刻画地下目标体的结构与物性等信息。属性分析的结果能够增强目的层视觉效应,恰当的雷达属性既能对直接期望的近地表目标体敏感,同时也能反映埋藏环境的特征或性质。
     为更好地利用3-D探地雷达数据刻画埋藏的文化遗址及文物目标,了解其埋藏环境,本文研究和开发了一套适用于考古调查的探地雷达属性技术,包括:探地雷达数据处理、属性提取、属性分析和属性优化。明确了属性提取的方法,即:瞬时属性提取、单道时窗属性提取和多道时窗属性提取,以及属性优化的方法和原则。通过在意大利东北部Aquileia考古公园、中国浙江茅山遗址以及云南腾冲南诏古城遗址采集的3-D探地雷达数据,对探地雷达属性如何在城镇遗址中对复杂埋藏环境的考古目标体进行刻画,如何对已知埋藏文物体进行精细成像,以及如何在大遗址调查中对不同考古目标体的识别进行了详细的研究,进而明确了如何在面对不同的考古调查问题时应用探地雷达属性技术刻画和描述地下文化遗址、文物遗存以及相关埋藏环境。
     在本文研究过程中,不仅应用了各种振幅类相关属性、相位相关属性、频率相关属性等基于复雷达道提取的属性特征,以反映地下层序和横向变化特征以及物性差异等变化,对埋藏文物体或文化遗存进行精确成像;也应用了基于探地雷达道相似性的相干性,通过计算纵向和横向上局部的波形相似性和突变,来刻画地下小范围内介质的均质性和不均质性。此外,还通过在探地雷达属性体上继续提取新的属性,和多属性叠合分析等新技术的应用,改进了探地雷达数据解释能力,提高了探地雷达对地下目标体的成像能力。
Ground Penetrating Radar (GPR) can successfully describe and map buried archaeological interest in the subsurface based on changes in the electro-magnetic properties of the investigated materials. Comparing that2-D GPR profiles can supply intuitive and effective subsurface information in simple or relative simple situations, results of3-D analysis are highly effective to identify the size, shape, and location of buried cultural remains at different depths. However. GPR analysis often depends on a good deal of interpretive experience, so we evaluate the applicability and the effectiveness of the GPR attribute analysis for archaeological purposes, which was originally developed to improve the quality and efficiency of3-D data interpretation on petroleum industry.
     We tested the new technology on GPR archaeological data obtained in the river harbor area of the Aquileia Archaeological Park, Italy, Maoshan site, and ancient Nanzhao castle-site, China respectively. In Aquileia, cultural heritage of the Roman imperial period is buried at different depths beneath a silty loam layer at an average depth not greater than300cm, and it is always difficult to describe and map irregular superimposed and interconnected structures for GPR record with extremely poor signal to noise due to chaotic subsurface conditions in ancient urban settings, but the study performed has shown that attribute results can improve the imaging and characterization of archaeological site under complex subsurface conditions and deeper archaeological information can be attainable through attribute analysis without masked by shallower diffuse scattering zones. Besides, complex attribute analysis of GPR data allows enhancing the precision in target detection and provides more details about the buried canoe and the burial environment in the Maoshan site. Moreover, comparative analysis on GPR data obtained to map ancient wall, ancient kiln, and ancient tomb at Nanzhao castle-site, demonstrate that different attribute characteristics should be adopted for different archaeological targets'prospection in the same large archaeological site.
     In the study, a multi-attribute approach is used to characterize the subsurface through several attribute categories, including instantaneous, section and volume attributes applied to quantities related not only to the reflection amplitude, but also to frequency and phase or other more complex parameters.
引文
Abdullatif, A.,2006. Mapping the surface of a shallow groundwater system using GPR:A case study in eastern Saudi Arabia. The Leading Edge 6,738-740.
    Annan, A. P.,2003. Ground Penetrating Radar Applications Principles. Procedures & Applications. Sensors & Software Inc.
    Annan A.P., Cosway, S.W.,1994. GPR Frequency Selection. Proceedings of the Fifth International Conference on Ground Penetrating Radar. Waterloo Centre for Groundwater Research, Waterloo, Canada,747-760.
    Annan, A.P., Waller, W.M., Strangway, D.W., Rossiter, J.R., Redman, J.D., Watts. R.D.,1975. The Electromagnetic Response of a Low-loss,2-layer, Dielectric Earth for Horizontal Electric Dipole Excitation. Geophysics 40,285-298.
    Arnold, J.E., Ambos, E. L., Larson, D.O.,1997. Geophysical surveys of strati graphically complex Island California Sites:New Implications for Household Archaeology. Antiquity 71,157-168.Bahorich, M.S., Farmer. S.L.,1995.3-D Seismic discontinuity for faults and stratigraphic features:the coherence cube. The Leading Edge 14(10),1053-1058.
    Baker, G.S.,1998. Applying AVO analysis to GPR data. Geophysical Research Letters 25(3),397-400.
    Baker, G.S., Steeples, D.W., Schmeissner, C., Pavlovic, M., Plumb, R.,2001.
    Near-surface imaging using coincident seismic and GPR data. Geophysical Research Letters 28 (4),627-630.
    Bakker, P.,2003. Image structure analysis for seismic interpretation:Ph. D. thesis, Delft University of Technology.
    Batey, R.A.,1987. Subsurface interface radar at Sepphoris, Israel,1985. Journal of Field Archaeology 14,1-8.
    Berard, B.A., Maillol, J. M.,2007. Multi-offset ground penetrating radar data for improved imaging in areas of lateral complexity—Application at a Native American site. Journal of Applied Geophysics 62,167-177.
    Barnes, A.E., Laughlin, K.J.,2002. Comparison of methods for unsupervised classification of seismic data:64th Conference and Technical Exhibition, EAGE, Extended Abstracts.222.
    Bergmann, T., Robertsson, J.O.A., Holliger, K.,2006. Finite-difference modeling of electromagnetic wave propagation in dispersive and attenuating media. Geophysics 71(3),K47-K57.
    Bevan. B., Kenyon, J.,1975. Ground-penetrating radar for historical archaeology. MASCA Newsletter 11 (2),2-7.
    Bevan, B.W.,1977. Ground-penetrating radar at Valley Forge. Geophysical Survey System, North Salem, New Hampshire.
    Bevan, B.W.,1991. The search for graves. Geophysics 56.1310-1319.
    Boniger, U., and Tronicke, J.,2010. Improving the interpretability of 3D GPR data using target-specific attributes:application to tomb detection. Journal of Archaeological Science 37,672-679.
    Booth, A.D., Endres, A.L., Murray, T.,2009. Spectral bandwidth enhancement of GPR profiling data using multiple-frequency compositing. Journal of Applied Geophysics 67,88-97.
    Booth, A., Linford, N.T., Clark, R.A., Murray A.,2008. Three-dimensional, multi-offset Ground-penetrating Radar imaging of archaeological targets. Archaeological Prospection 15,93-112.
    Bradford, J.H.,2008. Measuring Water Content Heterogeneity Using Multifold GPR with Reflection Tomography. Vadose Zone Journal 7(1),184-193.
    Bradford, J.H., Deeds, J.C.,2006. Ground-penetrating radar theory and application of thin-bed offset-dependent reflectivity. Geophysics 71(3), K47-K57.
    Bradford, J.H., Dickins, D.F., Brandvik, P.J.,2010. Assessing the potential to detect oil spills in and under snow using airborne ground-penetrating radar. Geophysics 75(2), G1-G12.
    Bradford, J.H., Wu, Y.F.,2007. Instantaneous spectral analysis:Time-frequency mapping via wavelet matching with application to contaminated-site characterization by 3D GPR. The Leading Edge 26(8),1018-1023.
    Brown, A.R.,2004. Interpretation of three dimensional seismic data (6th edition), Memoir 42, AAPG and SEG.
    Buteaux, S., Gaffney. V., White, R., van Leusen, M.,2000. Wroxeter hinterland project and geophysical survey at Wroxeter. Archaeological Prospection 7,69-80,
    Butnor. J.R., Doolittle, J.A., Kress, L., Cohen, S., Johnsen. K.H.,2001. Use of ground penetrating radar to study tree roots in the southeastern United States. Tree Physiology 21,1269-1278.
    Chamberlain, A.T., Andrew, T.C., William, S., Chis, P., Roslyn, C.,2000. Cave detection in limestone using ground penetrating radar. Journal of Archaeological Science 27,957-964.
    Chen, Q., Sidney, S.,1997. Seismic attribute technology for reservoir forecasting and monitoring. The Leading Edge 16.445-452.
    Chopra, S.,2002. Coherence cube and becond. First Break 20(1).27-33.
    Chopra, S., Marfurt, K.J.,2005. Seismic attributes—A historical perspective. Geophysics 70(5),3S0-28SO.
    Chopra, S., Alexeev, V..2006. Applications of texture attribute analysis to 3D seismic data. The Leading Edge 25,934-940.
    Chopra, S., Marfurt, K.J.,2007. Seismic attributes for prospect identification and reservoir characterization. SEG/EAGE,464pp.
    Christie, M., Tsoflias, G.P., Stockli, D.F., Black R.,2009. Assessing fault displacement and off-fault deformation in an extensional tectonic setting using 3-D ground-penetrating radar imaging. Journal of Applied Geophysics 68,9-16.
    Claerbout, J.F.,1990. The plane-wave destructor (PWD), Standford Exploration Project. Report 65.
    Conyers, L.B., Goodman, D.,1997. Ground-penetrating Radar:An Introduction for Archaeologists, AltaMira Press, Walnut Creek, California.
    Conyers, L.B.,2010. Ground-penetrating radar for anthropological research. Antiquity 84,1-11.
    Conyers, L.B., Leckebusch, J.,2010. Geophysical archaeology research agendas for the future:Some ground-penetrating radar examples. Archaeological Prospection 17(2),117-123.
    Corbeanu, R.M., McMechan, G.A., Szerbiak, R.B., Soegaard,K.,2002. Prediction of 3-D fluid permeability and mudstone distributions from ground-penetrating radar (GPR) attributes:Examples from the Cretaceous Ferron Sandstone Member, east-central Utah. Geophysics 67(5),1495-1504.
    Corin, L., Couchart, I., Dethy, B., Halleux, L., Monjoie, A., Richter, T., Wauters, J.P., 1997. Radar Tomography Applied to Foundation Design in a Karstic Environment. Modern Geophysics and Engineering Geology:Geological Society of London. Special Publication, Engineering Geology,12, pp.167-173.
    Dabas, M., Camerlynck, C., Camps, P.F.,2000. Simultaneous use of electrostatic quadrupole and GPR in urban context:Investigation of the basement of the Cathedral of Girona (Catalunya, Spain). Geophysics 65 (2),526-532.
    Daubechies, I.,1992. Ten lectures on Wavelets. SIAM. Philadelphia. PA.
    Davis, J.L., Annan, A.P.,1989. Ground penetrating radar for high resolution mapping of soil and rock stratigraphy. Geophysical Prospecting 37,531-551.
    Davis, J.L., Annan, A.P., Black, G., and Leggatt, C.D.,1985, Geological sounding with low frequency radar:in Extended Abstracts,55th Annual International Meeting of the Society of Exploration Geophysicists, Washington, D.C.
    De Rooij, M., Tingdahl, K.,2002. Meta-attributes the key to multivolume, multiattribute interpretation. The Leading Edge 21 (10),1050-1053.
    Drecun, R., Lucas, J.,1985. Enhancement of edge patterns on horizontal time slices, 55th Annual International Meeting, SEG, Expanded Abstracts,579-582.
    El Said, M.A.H.,1956. Geophysical prospection of underground water in the desert by means of electromagnetic interference fringes, Pro. I.R.E 44,24-30 and 940.
    Ernenwein, E.G., Kvamme, K.L.,2008. Data processing issues in large-area GPR surveys:correcting trace misalignments, edge discontinuities and striping. Archaeological Prospection 15,133-149.
    Fang, G., Pipan, M.,2003. Synthetic and field examples of ground-penetrating radar (GRP) using two-phase detection techniques. Geophysics 68,554-558.
    Fenner, T.J.,1992. Recent Advances in Subsurface Interface Radar Technology. In Fourth International Conference on Ground-Penetrating Radar, edited by P.Hanninen and S. Autio, Geological Survey of Finland Special Paper 16. Rovaniemi, Finland,13-19.
    Fisher, E., McMechan. G.A., Annan, A.P.,1992. Acquisition and processing of wide-aperture ground penetrating radar data. Geophysics 57,495.
    Forte, E., Pipan, M.,2008. Integrated seismic tomography and ground-penetrating radar (GPR) for the high-resolution study of burial mounds (tumuli). Journal of Archaeological Science 35,2614-2623.
    Forte, E., Pipan, M., Casabianca, D., Di Cuia, R., Riva, A.,2012. Imaging and characterization of a carbonate hydrocarbon reservoir analogue using GPR attributes. Journal of Applied Geophysics 81,76-87.
    Francese, R.G., Finzi, E., Morelli, G.,2009.3-D high-resolution multi-channel radar investigation of a Roman village in Northern Italy. Journal of Applied Geophysics 67, 44-51.
    Franseen, E.K.. Byrnes, A.P., et al.,2007. Improving resolution and understanding controls on GPR response in carbonate strata:Implications for attribute analysis. The Leading Edge 26,984-993.
    Fukui K., Sone T., Strelin J.A., Torielli C.A., Mori J., Fujii Y.,2008. Dynamics and GPR stratigraphy of a polar rock glacier on James Ross Island, Antarctic Peninsula. Journal of Glaciology 54,445-451.
    Gabor, D.,1946. Theory of communication. Journal of the Institution of Electrical Engineers 93,429-457.
    Gaffney, V.L., Patterson, H., Piro, S., Goodman, D., Nishimura, Y.,2004. Multimethodological approach to study and characterize Forum Novum (Vescovio, Italy). Archaeological Prospection 11,201-212.
    Gao, D.,2003. Volume texture extraction for 3D seismic visualization and interpretation. Geophysics 68,1294-1302.
    Geophysical Survey Systems, Inc.,1987. Operations Manual for Subsurface Interface Radar System-3. Mannual#MN83-728. Geophysical Survey Systems, North Salem, New Hampshire.
    Gersztenkorn, A., Marfurt, K.J.,1999. Eigenstructure-based coherence computations as an aid to 3D structural and stratigraphic mapping. Geophysics 64,1468-1479.
    Goodman, D., Hongo, H., Higashi, N., Inoaka, H., Nishimura, Y.,2007. GPR surveying over burial mounds:correcting for topography and the tilt of the GPR antenna. Near Surface Geophysics 5 (6),383-388.
    Goodman, D., Nishimura, Y., Hongo, H., Higashi, N.,2006. Correcting for topography and the tilt of Ground-penetrating Radar antennae. Archaeological Prospection 13,157-161.
    Goodman, D., Nishimura, Y., Rogers, J.D.,1995. GPR time-slices in archaeological prospection. Archaeological Prospection 2,85-89.
    Gracia, V.P., Canas, J.A., Pujades, L.G., Clapes, J., Caselles, O., Garcia, F., and Osorio, R.,2000. GPR survey to confirm the location of ancient structures under the Valencian Cathedral (Spain). Journal of Applied Geophysics 43 (2-4),167-174.
    Grasmueck, M.,1996.3-D ground-penetrating radar applied to fracture imaging in gneiss. Geophysics 61 (4),1050-1064.
    Grasmueck, M.,Weger, R.,2002.3D GPR reveals complex internal structure of Pleistocene oolitic Sandbar. The Leading Edge 7,634-639.
    Grasmueck, M., Weger, R., Horstmeyer, H.,2005. Full-resolution 3-D GPR imaging. Geophysics,70(1), K12-K19.
    Greaves, R.J., Lesmes, D.P., Lee, J.M., Toksoz, M.N,1996. Velocity Variation and Water Content Estimated from Multi-Offset, Ground Penetrating Radar. Geophysics 61 (3),683-695.
    Gregoire, C., Hollender, F.,2004. Discontinuity characterization by the inversion of the spectral content of ground-penetrating radar (GPR) reflections—Application of the Jonscher model. Geophysics 69(6),1414-1424.
    Huggenberger, P., Meier, E., Beres, M.,1994. Three-Dimensional Geometry of Fluvial Gravel Deposits from GPR Reflection Patterns:a Comparison of Results of Three Different Antenna Frequencies. Proceedings of the Fifth International Conference on Ground Penetrating Radar, Waterloo Centre for Groundwater Research, Waterloo, Canada,805-815.
    Hughes, L.G.,2009. Mapping contaminant-transport structures in karst bedrock with ground penetrating radar. Geophysics 74 (6). B197-B208.
    Johnson, T.C., Routh. P.S., Barrash, W., Knoll, M.D.,2007. A field comparison of Fresnel zone and ray-based GPR attenuation-difference tomography for time-lapse imaging of electrically anomalous tracer or contaminant plumes. Geophysics 72 (3), J7-J16.
    Jol, H. M.,2009. Ground penetrating radar theory and applications:Elsevier.
    Kadioglu, S.,2010. Definition of buried archaeological remains with a new 3D visualization technique of a ground-penetrating radar data set in Temple Augustus in Ankara. Turkey. Near Surface Geophysics 8,397-406.
    Keach, R. W., McBride, J. H, and Pykles, B. C.,2010. Petroleum industry techniques yield new insights into 3D GPR data. IEEE:Ground Penetrating Radar (GPR),13th International Conference.
    Kruse, S., Grasmueck, M., Weiss. M.. Viggiano, D.A.,2006. Sinkhole structure imaging in covered karst terrain. Geophysical Research Letters 33 (16), L16405.1 L16405.6.
    Kruse, S.H., Jol, H.M.,2003. Amplitude analysis of repetitive GPR reflections on a Lake Bonneville delta, Utah. Geological Society 211,287-298.
    Leckebusch, J.,2003. Ground-penetrating radar:a modern three-dimensional prospection method. Archaeological Prospection 10,213-240.
    Lee, K., Tomasso, M., Ambrose, W. A.,2007. Integration of GPR with stratigraphic and lidar data to investigate behind-the-outcrop 3D geometry of a tidal channel reservoir analog, upper Ferron Sandstone, Utah. The Leading Edge 8,994-998.
    Lemke, S.R., Mankowski, L.C.,2000. GPR attribute analysis. Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems.
    Leucci, G., Negri, S.,2006. Use of ground penetrating radar to map subsurface archaeological features in an urban area. Journal of Archaeological Science 33, 502-512.
    Liner, C., Li, C.F., Gersztenkorn, A., Smythe, J.,2004. SPICE:A new general seismic attribute:72nd Annual International Meeting, SEG, Expanded Abstracts,433-436.
    Linford, N.T., Linford, P.K.,2004. Short Report:Ground penetrating radar survey over a Roman building at Groundwell Ridge, Blunsdon St Andrew, Swindon, UK. Archaeological Prospection 11,49-55.
    Luo, Y., Higgs, W.G. and Kowalik, W.S.,1996. Edge detection and stratigraphic analysis using 3D seismic data, SEG 1996 expanded abstracts,324-327.
    Makkawi, M.H.,2004. Integrating GPR and geostatistical techniques to map the spatial extent of a shallow groundwater system. Journal of Geophysics and Engineering 56(1),56-62.
    Malagodi. S., Orlando, L, Rosso, F.,1996. Location of archaeological structures using GPR method:three-dimensional data acquisition and radar signal processing. Archaeological Prospection 3,12-23.
    Marfurt, K.J., Duncan, W.S., Constance, P.,2002. Comparison of 3-D edge detection seismic attributes to Vinton Dome Louisiana, SEG Expanded Abstracts 21,577-580.
    Marfurt, K.J., Kirlin, R.L., Framer, S.L., Bahorich, M.S.,1998.3-D seismic attributes using a semblance-based coherency algorithm. Geophysics 63.1150-1165.
    Marfurt, K.J., Sudhaker, V., Gersztenkorn, A., Crawford, K.D., Nissen, S.E.,1999. Coherency calculations in the presence of structural dip. Geophysics 64,104-111.
    McClymont, A.F., Green, A.G., Streich, R., Horstmeyer, H., Tronicke, J., Nobes, D.C., Pettinga, J., Campbell, J., Langridge, R.,2008. Visualization of active faults using geometric attributes of 3D GPR data:an example from the Alpine Fault Zone, New Zealand. Geophysics 73 (2), B11-B23.
    Meyer, Y.,1993. Wavelets & Applications, Society for Industrial and Applied Mathematics, Philadelphia.
    Milligan, R., Atkin, M.,1993. The use of ground-probing radar within a digital environment on archaeological sites, in Andresen, J., Madsen, T. and Scollar, I., eds., Computing the Past:Computer Application and Quantitative methods in Archaeology:Aarhus, Denmark, Aarhus University Press,285-291.
    Morey, R.M.,1974. Continuous subsurface profiling by impulse radar:Proceedings of Engineering Foundations Conference on Subsurface Exploration for Underground Excavations and Heavy Construction. Henniker, N.H.,213-232.
    Morlet, J.,1981. Sampling theory and wave propagation.51th Annual International SEG Meeting, Session S15.1.
    Morlet, J., Arens, G., Fourgeau, L., Giard, D..1982. Wave propagation and sampling theory. Geophysics 47,203-236.
    Moysey, S., Knight, R.J., Jol. H.M.,2006. Texture-based classification of ground-penetrating radar images. Geophysics 73(2), B11-B23.
    Neubauer, W., Eder-Hinterleitner, A., Seren, S., Melichar, P.,2002. Georadar in the Roman civil town Carnuntum, Austria:An approach for archaeological interpretation of GPR data. Archaeological Prospection 9,135-156.
    Nicolotti, G., Socco, L.V., Martinis, R., Godio. A., Sambuelli. L.,2003. Application and comparison of three tomographic techniques for detection of decay in trees, Journal of Arboriculture 29 (2),66-78.
    Nielsen, L., Brockdorff, A., Bjerager, M., Surlyk, F.,2009. Three-dimensional architecture and development of Danian bryozoan mounds at Limhamn, south-west Sweden, using ground-penetrating radar. Sedimentology 56.695-708.
    Nishimura, Y., Goodman, D.,2000. Ground penetrating radar survey at Wroxeter. Archaeological Prospection 7,101-105.
    Nishimura, Y., Kamei, H.,1990. A study in the application of geophysical survey, in Pernifka, E. and Wagner, G., eds., Proceedings, Archaeometry'90 Conference, Heidelberg,757-765.
    Novo, A., Lorenzo, H., et al.,2011.3D GPR in forensics:Finding a clandestine grave in a mountainous environment. Forensic Science International 204,134-138.
    Nuzzo, L., Leucci, G., Negri, S., Carrozzo, M.T., Quarta, T.,2002. Application of 3D visualization techniques in the analysis of GPR data for archaeology. Annals of Geophysics 45 (2),321-337.
    Olhoeft, G.R.,1981. Electrical Properties of Rocks. In Physical Properties of Rocks and Minerals, edited by Y.S. Touloukian, W.R.Judd, and R.F. Roy. McGraw-Hill, New York.
    Olson, C.G., Doolittle, J.A.,1985. Geophysical Techniques for Reconnaissance Investigation of Soils and Surficial Deposits in Mountainous Terrain. Soil Science Society of America Journal 49,1490-1498.
    Orlando, L.,2003. Semiquantitative evaluation of massive rock quality using ground penetrating radar. Journal of Applied Geophysics 52,1-9.
    Pettinelli, E., Beaubien, S., Tommasi, P..1996. GPR investigation to evaluate the geometry of rock slides and buckling in a limestone formation in northern Italy. European Journal of Environmental and Engineering Geophysics 1,271-286.
    Pipan, M., Baradello, L., Finetti, I., Forte, E., Prizzon, A.,1999.2-D and 3-D processing and interpretation of multi-fold ground penetrating radar data:a case history from an archaeological site. Journal of Applied Geophysics 41,271-292.
    Pipan, M., Baradello. L., Forte, E., Finetti, I.,2001. Ground penetrating radar study of iron age tombs in southeastern Kazakhstan. Archaeological Prospection 8,141 155.
    Pipan, M., Forte, E., Guangyou, F., Finetti, I.,2003. High-resolution GPR imaging and joint characterisation in limestones. Near Surface Geophysics 1,39-55.
    Pipan, M., Forte, E., Sugan, M., Dal Moro, G., Gabrielli, P., Finetti, I.,2005. Integrated geophysical methods for the high-resolution study and characterization of low-contrast archaeological targets. Proceedings of the 6th Archaeological Prospection Conference, Rome,14-17 September.
    Rea, J., Knight, R.,1998. Geostatistical analysis of ground-penetrating radar data: Ameans of describing spatial variation in the subsurface. Water Resources Research 34,329-339.
    Roberts, A.,2001. Curvature attributes and their aplication to 3D interpreted horizons. First Break 19(2),85-100.
    Sassen, D.S.,2008. Coherency attribute algorithm for polarimetric ground penetrating radar (GPR). SEG Las Vegas Annual Meeting,1172-1176.
    Sassen, D.S., Everett, M.E.,2009.3D polarimetric GPR coherency attributes and full-waveform inversion of transmission data for characterizing fractured rock. Geophysics 74(3), J23-J34.
    Senecha, P., Perroud. H., and Senechal, G.,2000. Interpretation of reflection attributes in a 3-D GPR survey at Vall'e d'Ossau, western Pyrenees, France. Geophysics 65(5),1435-1445.
    Shaaban, F.A., Abbas, A.M., Atya, M.A.. Hafez, M.A.,2009. Ground-penetrating radar exploration for ancient monuments at the Valley of Mummies-Kilo 6, Bahariya Oasis. Egypt. Journal of Applied Geophysics 68.194-202.
    Sinha, S., Routh, P., Anno, P.,2009. Instantaneous spectral attributes using scales in continuous wavelet transform. Geophysics 74(2), WA137-WA142.
    Sinha, S., Routh, P., Anno, P., Castagna,2003. Time-frequency attribute of seismic data using continuous wavelet transform:73nd Annual International Meeting, SEG. Expanded Abstracts,1481-1484.
    Sloss, L.L.,1962. Stratigraphic models in exploration. AAPG Bulletin.1962 46(7), 1050-1057.
    Smith, D.G., Jol, H.M.,1995. Ground Penetrating Radar:Antenna Frequencies and Maximum Probable Depths of Penetration in Quaternary Sediments. Journal of Applied Geophysics 33.93-100.
    Stokes, A., Fourcaud, T., Hruska, J., Cermak, J., Nadyezdhina, N., Nadyezhdin, V. Praus, L.,2002. An evaluation of different methods to investigate root system architecture of urban trees in situ:1. Ground-penetrating radar. Journal of Arboriculture 28(1),2-9.
    Sun, S., Siegfried, R., Castagna, J.,2002. Examples of wavelet transform time-frequency analysis in direct hydrocarbon detection:72nd Annual International Meeting, SEG, Expanded Abstracts,1481-1484.
    Szerbiak, R.,B., McMechan, G. A., et al.,2001.3-D characterization of a clastic reservoir analog:From 3-D GPR data to a 3-D fluid permeability model. Geophysics 66(4),1026-1037.
    Taner, M.T., Koehler, F., Sherif, R.E.,1979. Complex seismic trace analysis. Geophysics 44,1041-1063.
    Tavano S.,1986. Aquileia e Grado-storia, arte e cultura, Ed. LINT, Trieste, in Italian.
    Trinks, I., Johansson, B., Gustafsson, J., Emilsson, J., Friborg, J., Gustafsson, C., Nissen, J., Hinterleitner A.,2010. Efficient, large-scale archaeological prospection using a true three-dimensional ground-penetrating radar array system. Archaeological Prospection 17,175-186.
    Tsokas, G. N., Giannopoulos, A., Tsourlos, P., Vargemezis, G., Tealby, J.M., Sarris, A. Papazachos, C.B., Savopoulou, T.,1994. A large scale geophysical survey in the archaeological site of Europos (northern Greece). Journal of Applied Geophysics 32,85-98.
    Ursin, B.,1983. Review of elastic and electromagnetic wave propagation in horizontally layered media. Geophysics 48 (1),1063-1081.
    Vaughan, C.J.,1986. Ground penetrating radar surveys used in archaeological investigations. Geophysics 51,595-604.
    Von Hippel, A.R.,1954. Dielectrics and Waves. MIT Press, Cambridge, Massachusetts.
    Waite, A.H., Schmidt, S.J.,1961. Gross errors in height indication from pulsed radar altimeters operating over thick ice or snow. IRE Convention Record, Part 5,38-54.
    Wang, B., Tian, G., Cui, X.,2008. The internal COF feature in Dome A of Antarctic revealed by the multi-polarization-plane RES. Applied Geophysics 5 (3),230-237.
    White, R.E.,1991. Properties of instantaneous seismic attributes. The Leading Edge 10,26-32.
    Xia, L.,1999. Spectral analysis of seismic data using wavelet transforms:M.S. thesis, University of Oklahoma.
    Yalciner, C.C., Bano, M., Kadi og lu, M., Karabacak, V., Meghraoui, M., Altunel, E. 2009. New temple discovery at the archaeological site of Nysa (western Turkey) using GPR method. Journal of Archaeological Science,36 (8),1680-1689.
    Yilmaz, O.,2001. Seismic data analysis:processing, inversion, and interpretation of seismic data. SEG, Tulsa, OK.
    Young, R.A., Deng, Z., Marfurt, K.J., Nissen, S.E.,1997.3-D dip filtering and coherence applied to GPR data:A study. The Leading Edge 16,1011-1018.
    Zeng, X.X., McMechan, G.A., Xu, T.,2000. Synthesis of amplitude-versus-offset variations in ground-penetrating radar data. Geophysics 65(1),113-125.
    陈遵德,1998.储层地震属性优化方法.北京:石油工业出版社.
    程乾生,1979.希尔伯特变换与信号的包络、瞬时相位和瞬时频率.石油地球物理勘探,14(3),1-14.
    杜世通,宋建国,孙夕平,2010.地震储层解释技术.北京:石油工业出版社.
    高静怀,陈文超,李幼铭,2003.广义S变换与薄互层地震响应分析.地球物理学报,46(4),526-532.
    高静怀,汪文秉,朱光明,1997.小波变换与信号瞬时特征分析.地球物理学报,40(6),821-832.
    王永刚,2007.地震资料综合解释方法.东营:中国石油大学出版社.
    肖兵,何继善,1999.探地雷达信号瞬态谱分析.物探与化探,23(6),459-461.
    谢雄耀,万明浩,2000.复信号分析技术在地质雷达信号处理中的应用.物探化探计算技术,22(2),108-112.
    余志雄,薛桂玉,周创兵,2005.复信号分析技术及其在地质雷达数字处理中的应用.岩石力学与工程学报,24(5),798-802.
    曾昭发,刘四新,王者江,薛建,2006.探地雷达方法原理及应用.北京:科学出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700