用户名: 密码: 验证码:
位场向下延拓的数值计算方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
位场向下延拓的研究不仅仅是在重磁资料的解译中,而且在导航方面也有着重要的作用。位场的向下延拓归结于求解一个第一类Fredholm型的积分方程,具有不适定性,如何获得稳定的、精度高、抑制噪声能力强、计算效率高的下延方法是本文的研究重点。
     位场的向下延拓问题是典型的第一类褶积型线性反演问题,无论直接求解还是迭代求解实质上都是求解该问题的广义逆。而每一种方法都有自己的优缺点,比如常用的有Tikhonov正则化和Landweber迭代方法。Tikhonov方法适合比较容易求得广义逆的反问题,但存在阻尼因子敏感的问题,而Landweber方法适合难以求得广义逆的反问题,即Landweber方法通过迭代来获得反问题求解所需要的广义逆,该方法需要迭代计算效率相对较低。为了系统的研究位场的向下延拓方法,本文首先介绍了求解广义逆的直接正则化方法——奇异值分解法,由于该算法是在空间域进行计算,只能适合较少量的数据计算,当数据量较大时,必须采用频率域方法、空间域迭代算法或空间域和频率域结合的迭代算法,因此迭代法的研究是本文的重中之重。对于迭代算法的“半收敛”现象,本章结尾处通过奇异值分解的原理进行阐释,这也是本文囊括奇异值分解法的意义。
     本文的迭代法包括了徐世浙院士提出的积分迭代法和已有的Tikhonov正则化迭代法,同时,也包括了本文提出的位场向下延拓的相关系数法、采用Barzilai-Borwein法求解下延方程组的快速向下延拓方法,加速的Landweber迭代法—位场向下延拓的υ半迭代法,以及包含了本文首次将krylov子空间方法(CGNR,LSQR,GMRES, MINRES, Lanczos)应用到位场的向下延拓中,实现了位场向下延拓的krylov子空间方法。另外,在位场向下延拓的krvlov子空间方法的算法实现上,快速傅里叶变换算法的引入是极为重要的一步,否则会受到数据量大的限制。
The downward continuation of potential fields plays an important role not only in gravity and magnetic data interpretation, but also in geomagnetic navigation. The downward continuation problem is essentially the solution of the Fredholem integral equation of the first kind. And the equation is ill-posed. The point of this research is how to get stability, high precision, strong anti-noise ability and efficient calculation for downward continuation of potential fields.
     The field downward continuation problem is typical of the first class of convolution type linear inversion problem, whether direct solution or the iterate solution is actually to solve the problem through the generalized inverse, but every method has its advantages and disadvanta-ges.Like we commonly used Tikhonov normalization and Landweber iteration method. Tikhonov method is suitable for getting the generalized inverse problem easier, but damping factor is sensitive, Landweber method is suitable for getting the generalized inverse problem harder, in other words Landweber methods get the needed generalized inverse which is used for solving inverse problem through iteration, this method need the efficiency of iterative calculation is relatively low. In order to research potential field of downward continuation method systemat-icially, this article firstly introduces solving the direct normalization method for generalized inv-erse-the Singular Value Decompostion method, when the amount of data calculation is small, this algorithm can be used to calculate in spatial domain, while the large number data exists, we must adopt frequency domain method, the iteration algorithm for spatial domain or frequency domain and frequency domain combined with the iterative algorithm, so the iterative method research in this paper is priority among priorities. For iterative algorithm usemi-convergent "phenomenon, we interpret this phenomenon at the end of this chapter through the singular value decomposition principle, this is reason why this paper includes singular value decomposition method.
     The iterative method talk about in this article included integral iteration method proposed by Shizhe Xu academician and existing Tikhonov normalization iterative method, also included field downward continuation of the correlation coefficient method proposed by this article. We realize the potential field downward continuation of krylov subspace method through using the Barzilai-Borwein method to solve the downward equations of rapid downward continuation method, accelerated Landweber iterative method-potential field downward continuation v semis-iteration method, and contains the this article firstly applied krylov subspace method (CGNR, LSQR, GMRES, MINRES, Lanczos)to field downward continuation. In addition, in application of the potential field downward continuation of krylov subspace method, introducing fast Fourier transform algorithm is a very important step,or it will be limited by the large number of data.
引文
[1]Barzilai J, Borwein J. Two-point step size gradient methods[J]. IMA Journal of Numerical Analysis.1988(8):141-148
    [2]Ben Israel. A, Greville. T. N. E. Generalized Inverses:Theory and Applications[M]. Wiley, New York, 1974 2nd Edition, Springer, New York.,2003
    [3]Bhattacharyya B K, Chan K C. Reduction of magnetic and gravity data on an arbitrary surface acquired in a region of high topographic relief[J]. Geophysics,1977,42(7):1411-1430 [29]Clarke G K C. Optimum second-derivative and downward continuation filter[J]. Geophysics,1969,34:424-437
    [4]Brakhage H. On ill-posed problems and method of conjugate gradients, in Engl H W and Groetsch C Weds.. Inverse and Ill-posed Problems[J]. Orlando:Academic Press,1987:165-175
    [5]Dampancy C. N. G. The equivalent source technique[J]. Geophysics,1969,34(1):39-53
    [6]Dai Y H, Fletcher R. Projected Barzilai-Borwein methods for large-scale box-constrained quadratic programming[J]. University of Dundee Report NA/215,2003
    [7]Desa C, et al. Preconditioned Iterative Methods for Homotopy Curve tracking[J]. SIAM J Sci Stat Comput,1992,13(1):30-46
    [8]Ern A, et al. Towards Polyalgorithrnic linear system solver for nonlinear elliptic problems[J]. SLAM J Sci Comput,1994,15 (3):681-703
    [9]Emila D A, Equivalent source used as an analytic base for processing total magnetic field profiles[J]. Geophysics,1973,38 (2):339-348
    [10]Engl H W, Hanke M, Neubauer A. Regularization of Inverse Problems[M]. Kluwer Dordrecht,1996
    [11]Evjen, H.M.,1936. The place of the vertical gradient in gravitational interpretations[J], Geophysics,1, 127-136.
    [12]Fedi M. Florio G. A stable downward continuation by using the ISVD method [J]. Geophys. J. Int 2002.151(1):146-156
    [13]Fridmand V. Methods of successive approximation for Fredholm integral equations of the first kind [J]. Uspekhi Mat. Nauk.1956(49):777-788
    [14]Golub.G.H and Kaban.W. Calculating the singular Values and pseudo-inverse of a matrix[J]. SIAM Numer.Angl.1970,2.202-224
    [15]Groetsch C W. The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind[M]. Pibalan Advmlced Publising Program,1984
    [16]Hanke M. Accelerated Landweber Iterations for the Solution of Ill-posed Equations[J]. Numer Math, 1991,60(2):341-373
    [17]Hansen P C. The Truncated SVD as a Method for Regularization[J]. BIT,1987,27:534-553
    [18]Hansen P C. Rank-Deficient and Discrete Ill-Posed problems:Numerical Aspects of Linear Inversion Philadelphia, SI AM,1998
    [19]Hestenes M R, Stiefel E. Methods of Conjugate Gradients for Solving Linear Systems[J]. J Res Nat Bur Standards,1952,49:409-436
    [20]Ivan M. Upward continuation of potential fields from a polyhedral surface[J]. Geophysical Prospecting, 1994,42(3):391-404
    [21]Iuliano T,Mauriello P,Patella D.Looking inside mount vesuvius by potential fields integrated probability tomographies[J]. Journal of Volcanology and Geothermal Research,2002,113:363-378.
    [22]Kirsch A. An Introduction to the Mathematical Theory of Inverse Problems[M]. New York: Springer-Verlag,1996
    [23]Lavrentiev M M, Romanov V G, Shishatskii S P. Ill-posed Problems of mathematical physics and analysis[J]. Translations of Mathematical Monographs. Vol.64, AMS,1964
    [24]Lanczos C. Solution of systems of liner equations by minimized iterations[J]. J res Nat Bur Standards, 1952,49(1):33-53
    [25]Landweber L. An iteration formula for Fredholm integral equations of the first kind [J]. Amer.J.Math. 1951 (73):615-624
    [26]Mauriello P,Patella D. Principles of probability natural-source electromagnetic induction fields[J]. Geophysics,1999,64(5):1403-1417.
    [27]Mauriello P, Patella D. Localization of maximum-depth gravity anomaly sources by a distribution of equivalent point masses[J]. Geophysics,2001,66:1431-1437.
    [28]Mauriello P, Patella D. Gravity probability tomography:a new tool for buried mass distribution imaging[J]. Geophysical Prospecting,2001,49(1):1-12.
    [29]Nacbtigal N M, Reddy S C, Trefethen L N. How fast are nonsymmetric matrix derations[J]. SIAM J Matrix Anal Appl,1992,13:778-795
    [30]Neulauer A. On Landweber Iteration for Nonlinear Ill-posed Problem in Hilbert Scales[J]. Numer math, 2000,85(2):309-328
    [31]Paige C C, Saunders M A. Solution of Sparse Indefinite Systems of Linear equations[J]. SIAM J Numer Anal,1975,12:617-629
    [32]Parlett B N. A new look at the Lanczos algorithm for solving symmetric systems of linear equation[J]. Linear Algebra and its applications,1980,29:323-346
    [33]Pilkington M, Urquhart W E S. Reduction of potential field data to a horizontal plane[J]. Geophysics, 1990,55(5):549-555
    [34]Peters L J. The direct approach to magnetic interpretation and its practical application[J]. Geophysics.1949.14:290-320
    [35]Paige C C, Saunders M A. LSQR:Spares Linear equations and least squares problems[J]. ACM Transactions Math. Software,1982,8:195-209
    [36]Paige C C, Saunders M A. LSQR:An algorithm for spares linear equations and squares least problems[J]. ACM Transactions Math. Software,1982,8:43-71
    [37]Patella D. Introduction to ground surface self-potential tomography[J] Prospecting Geophysical,1997,45:653-681
    [38]Saad Y. Preconditioning techniques for nonsymmetric and indefinite linear systems[J]. J Comput Appl Matb,1998,24:89-105
    [39]Saylor P E, Smolarski D C. Implementation of an adaptive algorithm for Richardsion's method[J]. Lin Alg Appl,1991:154-156,615-646
    [40]Saad Y, Schultz M H. GMRES:a generalized minimal residual algorithm for solving nonsymmetric linear sy stems [J]. SJAM J Sci Stat Comput,1985.7:856-869
    [41]Syberg F. J. R. Potential field continuation between general surfaces[J]. Geophysical Prospecting, 1972,20(2):267-282
    [42]Tikhonov A N, Arsenin V Y. Solutions of Ill-posed Problems[M]. New York-John Wiley and Sons,1977
    [43]Widlund O. A Lanczos method for a class of nonsymmetric systems of linear equations[J]. SIAM J Numer Anal,1978,15 (4):801-812
    [44]Xu S Z, Yang J Y, Yang C F, et al. The iteration method for downward continuation of a potential field from a horizontal plane[J]. Geophysical Prospecting,2007,55:883-890
    [45]陈传璋.候宗义,李明忠.积分方程论及其应用[M].1987,上海:上海科学技术出版社.
    [46]陈龙伟,张辉,郑志强,等.水下地磁辅助导航中地磁场延拓方法[J].中国惯性技术学报,2007,15(6):693-697.
    [47]陈龙伟,徐世浙,胡小平,等.位场向下延拓的迭代最小二乘法[J].地球物理学进展,2011,26(3):894-901
    [48]陈生昌,肖鹏飞.位场向下延拓的波数域广义逆算[J].地球物理学报,2007,50(6):1816-1822
    [49]蔡剑锋.Toeplitz矩阵广义逆的快速算法.[硕士论文]复旦大学,2004
    [50]冯彦谦,赵光茂,孟宪波.井间地震层析成像技术的应用[J].物探与化探,2011,35(3):345-348
    [51]冯富荣.非线性不适定问题的几种数据解法[硕士学位论文]. 哈尔滨理工大学,2009
    [52]傅初黎,李洪芳,熊向团.不适定问题的迭代Tikhonov正则化方法[J].计算数学,2006,28(3):237-246
    [53]傅淑芳,朱仁益.地球物理反问题[M].北京:地震出版社,1998
    [54]顾勇为,归庆明,边少峰,等.地球物理反问题中两种正则化方法的比较[J]. 武汉大学学报(信息科学版),2005,30(3):238-241
    [55]郭才发,胡正,张士峰,等.地磁导航综述[J].宇航学报,2009,30(4):1314-1319.
    [56]郭良辉,孟小红,石磊,等.重力和重力梯度数据三维相关成像[J].地球物理学报,2009,52(4):1098-1106.
    [57]郭良辉,孟小红,石磊,等.磁异常AT三维相关成像[J].地球物理学报,2010,53(2):435-441.
    [58]郝燕玲,成怡,孙枫,等.Tikhonov正则化向下延拓算法仿真实验研究[J].仪器仪表学报,2008,29(3):605-609
    [59]黄翼坚,王万银,于长春.等效源法三维随机点位场数据处理和转化[J].地球物理学进展,2009,24(1):95-101
    [60]侯重初,蔡宗熹,刘奎俊.剖面曲线上的位场转换系统[J].地球物理学报,1984,27(6):573-581.
    [61]侯重初,蔡宗熹,刘奎俊.从单层位出发建立曲面上的位场转换解释系统(2)[J].物化探计算技术,1985,7(2):99-107
    [62]李春光,徐成贤.一个求解大型线性方程组的自适应CGNR算法[J].工程数学学报,2001,18(3): 71-77
    [63]李才明,张善法.电磁波层析成像阻尼因子引入与应用[J].地球物理学进展,2005,20(1):221-224
    [64]李洪芳,傅初黎,熊向团.关于一类广义Tikhonov正则化方法的饱和效应分析[J].应用数学学报,2005,28(2):308-318
    [65]李家康,余钦范.近地表速度的约束层析反演[J].石油地球物理勘探,2001,36(2):135-140
    [66]李平,王椿镛,许厚泽,等. 地球物理反演中奇异值分解应用的若干问题探讨[J].自然科学进展,2001,11(8):891-896
    [67]李星.积分方程[M].2008,北京:科学出版社.
    [68]李晓梅,吴建平.Krylov子空间方法及其并行计算[J].计算机科学,2005,32(1):19-20,40
    [69]梁锦文.位场向下延拓的正则化方法[J].地球物理学报,1989,32(5):600-608
    [70]刘东甲,洪天求,贾志海等.位场向下延拓的波数域迭代法及其收敛性[J].地球物理学报,2009,52(6):1599-1605
    [71]刘劲松,刘福田,刘俊,等.地震层析成像LSQR算法的并行化[J].地球物理学报,2006,49(2):540-545
    [72]刘天佑,杨宇山,李媛媛,等.大型积分方程降阶解法与重力资料曲面延拓[J].地球物理学报,2007,50(1):290-296
    [73]刘小军,李长征,王家林,等.高密度电法概率成像技术在提防隐患探测中的应用[J].工程地球物理学报,2006,3(6):415-418.
    [74]刘小军,王家林,杨光亮,等.三维电阻率概率成像法研究[J].大地测量与地球动力学,2006,26(3):93-96.
    [75]刘伊克,常旭,王辉,等.三维复杂地形近地表速度估算及地震层析校正[J].地球物理学报,2001,44(2):272-278
    [76]刘玉柱,董良国,夏建军.初至波走时层析成像中的正则化方法[J].石油地球物理勘探,2007,42(6)682-685,698
    [77]栾文贵,地球物理中的反问题[M].科学出版社,1989
    [78]骆遥,薛典军.基于概率成像技术的低纬度磁异常化极方法[J].地球物理学报,2009,52(7):1907-1914.
    [79]毛立峰,王绪本,高永才.大地电磁概率成像的效果评价[J].地球物理学报,2005,48(2):429-433.
    [80]宁方飞,徐力平GMRES算法在二维定常无粘流计算中的应用[J].计算物理,2000,17(5):537-547
    [81]宁津生,汪海洪,罗志才.基于多尺度边缘约束的重力场信号的向下延拓[J].地球物理学报,2005,48(1):63-68
    [82]瞿辰,杨文采,于常青.高分辨率过井地震层析成像的级联算法及其应用[J].物探与化探,2010,34(6):814-820
    [83]彭富清.地磁模型与地磁导航[J].海洋测绘,2006,26(2):73-75.
    [84]孙继广.矩阵扰动分析(第二版)[M].北京:科学出版社,2001
    [85]宛新林,席道瑛,高尔根,等.用改进的光滑约束最小二乘正交分解法实现电阻率三维反演[J].地球物理学报,2005,48(3):439-444
    [86]王邦华,王理.重磁位场的正则化向下延拓[J].物探化探计算技术,1998,20(1):30-35
    [87]汪炳柱,王朔儒.二维位场向上延拓和向下延拓的样条函数法[J].物探化探计算技术,1998,20(2):126-129
    [88]王万银,潘作枢,李家康.三维高精度重磁位场曲面延拓方法[J].物探与化探,1991,15(6):415-422
    [89]王国荣.矩阵与算子广义逆[M].北京:科学出版社,1998
    [90]王家映.地球物理反演理论(第二版)[M].北京:高等教育出版社,2002
    [91]王萍.Toeplitz型矩阵类的快速算法及性质研究.[硕士论文]西北工业大学,2006
    [92]王顺杰,朱海,栾禄雨.水下地磁导航中位场积分迭代法收敛性分析[J].地球物理学进展,2009,24(3):1095-1097
    [93]王松桂,杨振海.广义逆矩阵及其应用[M].北京:北京工业大学出版社,1996
    [94]王向磊,田艳峰.基于地磁场的自主导航研究[J].地球物理学报,2010,53(11):2724-2731.
    [95]王兴涛,夏哲仁,石磐等.航空重力测量数据向下延拓方法比较[J].地球物理学报,2004,47(6):1017-1022
    [96]王绪本,毛立峰,高永才.电磁导数场概率成像方法研究[J].成都理工大学学报,2004,31(6):678-684.
    [97]王彦飞,杨长春,段秋梁.地震偏移反演成像的迭代正则化方法研究[J].地球物理学报,2009,52(6):1615-1624
    [98]王彦飞.反演问题的计算方法及其应用[M].北京:高等教育出版社,2007:51-60
    [99]吴小平,徐果明.利用共轭梯度法的电阻率三维反演研究[J].地球物理学报,2000,43(3):420-427
    [100]肖庭延,于慎根,王彦飞.反问题的数值解法[M].北京:科学出版社,2003
    [101]许大欣.利用重力异常匹配技术实现潜艇导航[J].地球物理学报,2005,48(4):812-816
    [102]许令周,关继腾,房文静.自然电位的概率成像方法评价[J].物探与化探,2003,27(5):395-398.
    [103]徐世浙.位场大深度向下延拓[J].物探化探计算技术,2006,28(增刊): 29-31
    [104]徐世浙.迭代法与FFT法位场向下延拓效果的比较[J].地球物理学报,2007,50(1):285-289
    [105]徐世浙,余海龙. 位场曲化平的插值—迭代法[J].地球物理学报,2007,50(6):1811-1815
    [106]徐世浙,曹洛华,姚敬金.重力异常三维反演-视密度成像方法技术的应用[J].物探与化探,2007,31(1):25-28
    [107]徐世浙,余海龙,李海霞等.基于位场分离与延拓的视密度反演[J].地球物理学报,2009,52(6):1592-1598
    [108]徐世浙,沈晓华,邹乐君等.将航磁异常从飞行高度向下延拓至地形线[J].地球物理学报,2004,47(6):1127-1130
    [109]徐世浙,王华军,余海龙等.普光气田重力异常的视密度反演[J].地球物理学报,2009,52(9):2357-2363
    [110]徐世浙,张秀达,张昌达.水下磁定位的若干问题[J].海军大连舰艇学院学报,2007,30(3):4-6.
    [111]姚长利,管志宁,黄卫宁.位场转化的抽样分组法[J].石油地球物理勘探,1997,32(5):696-702,723
    [112]姚长利,郝天珧,管志宁,等.重磁遗传算法三维反演中高速计算及有效存储方法技术[J].地球物理学报,2003,46(2):252-258.
    [113]闫永利,赵永贵,陈本池,等.二次电流场多次叠加概率成像[J].地球物理学报,2008,51(5):1544-1550.
    [114]闫辉,肖昌汉,张朝阳,等.三分量磁场延拓的递推算法[J].计算物理,2010,27(5):705-710
    [115]扬明明,刘大明,刘胜道,等.采用边界积分方程和Tikhonov正则化方法延拓潜艇磁场[J].兵工学报,2010,31(9):1216-1221
    [116]杨文采.地球物理反演的理论与方法[M].北京:地质出版社,1997
    [117]杨文采.地球物理反演和地震层析成像[M].北京:地质出版社,1989
    [118]杨金玉,徐世浙,余海龙等.视密度反演在东海及邻区重力异常解释中的应用[J].地球物理学报,2008,51(6):1909-1916
    [119]于波,翟国君,刘燕春,等.噪声对磁场向下延拓迭代法的计算误差影响分析[J]..地球物理学报,2009,52(8):2182-2188
    [120]杨昆,康戈文,李洪.重力场和地磁场综合匹配在导航中的应用[J].航海工程,2010,39(1):129-131.
    [121]杨薇,刘四新,冯彦谦.跨孔层析成像LSQR算法研究[J].物探与化探,2008,32(2):199-202
    [122]杨钢,王玉涛,邵富群,等. 用于ECT图像重建的预处理Landweber迭代算法[J]. 东北大学学报(自然科学版),2006,27(9):953-956
    [123]张辉,陈龙伟,任治新等.位场向下延拓迭代法收敛性分析及稳健向下延拓方法研究[J].地球物理学报,2009,52(4):1107-1113
    [124]张凤旭,孟令顺,张凤琴等.利用Hilbert变换计算重力归一化总梯度[J].地球物理学报,2005,48(3):704-709
    [125]曾小牛,李夕海,韩绍卿,等.位场向下延拓三种迭代方法之比较[J].地球物理学进展,2011, 26(3):908-915
    [126]周军,施桂国,葛致磊.地球物理导航中位场下延的迭代正则化方法研究[J]. 宇航学报,2011,32(4):787-794
    [127]张军.求解不适定问题的快速Landweber迭代法[J].数据杂志,2005,25(3):333-335
    [128]张伟斌,冯象初,王卫卫.图像恢复的小波域加速Landweber迭代阈值方法[J].电子与信息学报,2011,33(2):342-346
    [129]朱广军,张玉海,张超.求解不适定方程的两步定常迭代法[J].山东理工大学学报(理学版),2007,42(10):47-53
    [130]宗志雄,高飞.Landweber迭代正则化的加速[J].武汉理工大学学报,2008,30(10):178-180

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700