用户名: 密码: 验证码:
东营凹陷南部沙河街组砂—泥岩协同成岩作用及其石油地质意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东营凹陷是一个油气资源丰富的陆相断陷盆地,经过40多年的勘探和开发,勘探对象逐渐由构造油气藏转向岩性隐蔽油气藏,由于岩性圈闭含油性预测困难,严重困扰着新增资源的勘探和评价。油气成藏是一个复杂的地质过程,烃类的运移仅仅是泥质烃源岩排出的以无机地层流体向砂岩运移汇聚过程中的特殊幕次。来自泥质烃源岩的孔隙流体对砂岩储层的成岩作用有着重要的影响,可以形成特征性的成岩矿物及其组合。本文对东营凹陷沙河街组沙四上烃源岩、沙三下烃源岩及砂岩的成岩作用进行了详细的分析研究,以期寻找砂泥岩在成岩过程中的流体联系。
     首先,本文对比分析了东营凹陷沙河街组沙四上和沙三下两套泥质烃源岩的成岩矿物和地球化学特征。研究发现沙四上烃源岩的成岩碳酸盐矿物以高镁方解石和铁白云石为主,粘土矿物以富含绿泥石为特征,且有大量黄铁矿发育,具有高盐、富硫的成岩环境;沙三下泥质烃源岩的成岩碳酸盐矿物则以方解石为主,粘士矿物主要为伊利石、伊蒙混层和高岭石,黄铁矿仅零星发育,形成于相对低盐度、贫硫的成岩条件。地球化学分析表明沙四上烃源岩相较沙三下更为富含Ca、Mg、Fe、Ba和Sr等元素,且具有更重的C-O同位素组成。据此推测,沙四上烃源岩排出流体应具有更高的Ca、Mg、Fe、Ba、Mn和Sr等元素含量和更重的C-O同位素值。
     其次,精细分析了东营凹陷沙河街砂岩的成岩矿物及其组合特征及其空间分布规律。研究发现砂岩碳酸盐矿物的化学成分变化大,在牛18-牛20断层附近及其南侧,碳酸盐胶结物以铁白云石为主,且Sr含量较高:在牛18-牛20断层北侧,则以含铁方解石和方解石为主,仅见少量铁白云石;而在洼陷东部,胶结物则主要为方解石。以胶结物形式出现的粘十矿物成分亦随构造位置变化而变化:在牛18-牛20断层附近及其南侧,以伊利石、高岭石绿泥石和绿蒙混层矿物为主,局部发育有大量的绿泥石和绿蒙混层(如N43井3244m处);而在牛18-牛20断层北侧,粘土矿物主要为伊利石和高岭石,绿泥石和绿蒙混层矿物仅零星出现;及至洼陷东部,则仅见伊利石和高岭石。
     第三,基于成岩矿物分析,提出了两套泥质烃源岩与砂岩间的协同成岩作用关系。近牛18-牛20断层及其南侧,以铁白云石、绿泥石和绿蒙混层矿物为特征的砂岩胶结物反映了富Ca、Mg、Fe等元素的高盐度成岩流体,与沙四上烃源岩的成岩流体具有明显的相似性。而牛18-牛20断层北侧,以含铁方解石为主、绿泥石和绿蒙混层矿物缺乏的砂岩胶结物反映了来自沙三下烃源岩的贡献,因其仍有较高的Sr含量,局部发育铁白云石,推测仍受到沙四上烃源岩的影响。在洼陷东部,砂岩胶结物以方解石、高岭石和伊利石为主,则为沙三下烃源岩成岩流体影响的结果。这一认识与油源对比研究结果亦一致。
     第四,初步分析了砂泥岩成岩协同作用发生的空间联系和动力条件。通过典型成岩矿物的流体包裹体分析,发现牛18-牛20断层附近砂岩中包裹体盐度和捕获压力均相对较高,与该区普遍存在的异常高压带有着很好的一致性,可能为成岩流体运移的主要动力。而洼陷东部相对较低,该区亦未见异常压力带形成的勘探证据,成岩流体应以侧向运移和断层沟通为主。成岩流体的运移通道具有多样化,在正常压力区孔隙和微层理面为主要通道,而在异常压力带,断层和微裂隙是主要的运移通道,牛18-牛20断层贯穿了沙三下和沙四上烃源岩,对孔隙流体的运移起到了主要的疏导作用。且研究表明,烃源岩中发育有数量众多的微裂隙,大多被亮晶方解石所充填,而部分为未被充填的空裂隙,对成岩流体的运移具有不容忽视的影响。
The Dongying Depression is one of fault-sag lacustrine basins with enriched petroleum resources. During the last40-year petroleum exploration, the investigating targets became to potential oil pools reserved within lithological interfaces from the structural reservoirs. However, due to the difficulties for the petroleum prediction on this kind of oil-pools, it constrained these potential reservoirs'exploration and evaluation in the future. As for the complexities of oil-gas reserving process, the hydrocarbon migration is merely one step in its process of inorganic fluid from the argillaceous source rock to the reserving sandstone. The pore fluid resulted from the argillaceous source rock affected heavily on the reserving sandstone on its diagenesis of minerals, which could control partially its formation and assemblage essentially. This research targets a fluid effect in the argillaceous-sandstone source rock system based on the investigation of mineral diagenesis from the source rocks of Upper Unit in the fourth Member (ES43) and the Lower Unit in the third Member (ES3) of Shahejie Formation in Dongying Depression.
     The first, comparisons on the diagenetic mineral and bulk-rock geochemical features have been made from the core samples of Units ES43and ES31in Dongying Depression. The diagenetic carbonate minerals in Unit ES43developed characteristically with highly contents of high-Mg calcite and ferrous dolomite; its clay minerals enriched with chlorite, and abundant of pyrite as well, which indicate a depositing environment of salinity with enriched element sulfur. Whereas, the carbonate minerals in the Unit ES31contain mainly mineral calcite; and its clay include minerals of illite, illite-kaolinite mixture, and kaolinite with few of pyrite, which means an environmental condition with low concentrations of salinity and sulfur. Geochemical data reveal that the source rock of ES4shows relatively high concentrations in elements of Mg, Ca, Fe, Ba, Sr, and heavy isotopic compositions of carbon and oxygen as well. These could deduce that the diagenitic fluid expelled from the source rock of Unit ES43with the same geochemical characters.
     The second, this research analyzed the type of minerals, its assemblage and it spatial distribution of Unit ES31. The geochemical compositions of carbonate minerals in this Unit changed identifiably in different regions. The cement minerals contain mainly ferrodolomite with high content of element Sr near the fault Niu18-Niu20and southward nearby. In the northern side of Niu18-Niu20, it changed to be high content of ferroan calcite and calcite minerals with few of ferrodolomite; however, it developed merely in calcite in the eastern area of Dongying Depression. Significantly, the cemented clay-mineral composition displayed also changing distributions in different areas. In the Fault Niu18-Niu20and its southern side nearby, the cemented clay minerals are composited mainly of illite, kaolinite, chlorite, and chlorite-smectite mixture occasionally yielding with abundant minerals of chlorite and chlorite-smectite mixture elsewhere (e.g.,3244m depth in the Well N43); In the northern side of Fault Niu18-Niu20, it changes to be high content of illite and kaolinite minerals, but with sparse of chloritand chlorite-smectite; but it yielded merely the minerals of illite and kaolinite in the eastern area of Dongying Depression.
     The third, this research recognized two relationships involving in the synergistic diagenesis between argillaceous and sandstone rocks under analysis of diagenetic minerals in this area. In the sandstone reservoir in the Fault Niu18-Niu20and nearby, the sandstone cements containing mainly with the minerals of ferrodolomite, chlorite, and chlorite-smectite mixture are result of the salinity fluid input with enriched elements of Ca, Mg, and Fe, which excluded from the Unit ES43with similar geochemical compositions. Whereas, the sandstone cements in the northern side of Fault Niu18-Niu20, which enriched with ferroan calcite but without chlorite and chlorite-smectite mixture, reflect the influences from the diagenetic fluid input of source rock in Unit ES31. Meanwhile, the relatively high content of element Sr in this sandstone cement means that it is still under the fluid effects from the Unit ES43. In the eastern side of Dongying Depression, the sandstone cement characteristically with high mineral contains of calcite, kaolinite and illite was the results of diagenetic fluid input from the source rock of Unit ES31. These conclusions are consistent with the results from researches of source rocks in this area before.
     The fourth, this research discussed further the spatial relationships and its dynamic drive between the source rock and sandstone reservoir. The analysis on the inclusion textures in the sandstone cements reveals that high salinity and captured temperature occurred near the Fault Niu18-Niu20, which supported very well the evidence of high-pressure occurrence observed in this area before. This relative high pressure might be the driving force for the diagenetic fluid migration around. In the eastern side of the Dongying Depression, the analyses of sandstone inclusion texture found no evidence for the anomaly of high-pressure occurrence even from the exploration data before. We excluded that the driving force should migrated by the lateral system within rocks and by the channel connections in the fault belts. The migrating channel system of the diagenetic fluid varied by different connecting systems in this area. It generally transported by the pore system and/or the microlaminar system in normal pressure condition; however, it could migrate by the macro and/or micro-crack systems in the fault belt and rocks. The fault belt of Niu18-Niu20was a primary migrating channel for the diagenetic fluid transportation and release, which perfectly cut deeply downward through the source-rock beds of Unit ES31and ES34. Furthermore, this research observed also that abundant micro-crack system developed in the argillaceous source rock, which mostly filled by the sparry calcite; however, the remaining unfilled cracks should significantly to be connecting channel system for the diagenetic fluid migration.
引文
Aagaard P, Jahren J S, Harstad A O, Nilsen O, Ramm M.2000. Formation of grain-coating chlorite in sandstones, Laboratory synthesized vs. natural occurrences [J]. Clay Minerals. 35(1):261-269.
    Aitken J F, Flint S S.1994. High-frequency sequences and the nature of incised-valley fills fluvial systems of the Breathitt Group(Pennsylvanian), Appalachian foreland basin, eastern Kentucky [J]. Society for Sedimentary Geology. ISBN 1-56576-015-8.
    Al-Ramadan K. A, Hussain M, Imam B, Saner S.2004. Lithologic characteristics and diagenesis of the Devonian Jauf sandstone at Ghawar Field, Eastern Saudi Arabia [J]. Marine and Petroleum Geology.21:1221-1234.
    Anderson J K.1996. Limitations of seismic inversion for porosity and pore fluid:Lessons from chalk reservoir characterization exploration [J]. Annual Meeting Abstracts, Society of Exploration Geophysicists.309-312.
    Aplin A C, Matenaar I F, Mccarty D K, Vander Pluijm B A.2006. Influence of mechanical compaction and clay mineral diagensis on the microfabric and pore-scale properties of deep-water Gulf of Mexico mudstones [J]. Clay and Clay Minerals.54(4):500-514.
    Armstrong-Altrin J S, Lee Y I, Verma S P, Ramasamy S.2004. Geochemistry of sandstone from the upper Miocene Kudankulam formation, southern India:implication for provenance, weathering, and tectonic setting [J]. Journal of Sedimentary Research.74(2):285-297.
    Bath A H, Milodowskiand A E, Strong G E.1987. Fluid flow and diagenesis in the East Midlands Triassic sandstone aquifer[J]. Geological Society, London, Special Publications,34:127-140.
    Berg R R, Gangi A F.1999. Primary migration by oil-generation microfracturing in low-permeability source rocks:Application to the Austin Chalk, Texas [J]. AAPG Bulletin. 83(5):727-756.
    Berger A, Gier S, Krois P.2009. Porosity-preserving chlorite cements in shallow-marine volcaniclastic sandstones:evidence from Cretaceous sandstones of the Sawan gas field, Pakistan [J]. AAPG Bulletin.93(5):595-615.
    Bernard S, Horsfield B, Schulz H M, Schreiber A, Wirth R, Vu T T A, Perssen F, Konitzer S, Volk H, Sherwood N, Fuentes D.2010. Multi-scale detection of organic and inorganic signatures provides insights into gas shale properties and evolution [J]. Chemie der Erde. S3:119-133.
    Best A I, McCann C.1995. Seismic attenuation and pore-fluid viscosity in clay-rich reservoir sandstones [J]. Geophysics.60(5):1386-1397.
    Best M E, Katsube T J.1995. Shale permeability and its significance in hydrocarbon exploration [J]. The leading Edge.14(3):165-170.
    Beveridge T J, Meloche J D, Fyfe W S, et al.1983. Diagenesis of metals chemically complexed to bacteria:laboratory formation of metal phosphates, sulfides, and organic condensates inartificial sediments [J]. Applied and Environmental Microbiology.45:1094-1108.
    Billault V, Beaudort D, Baronnet A, Lacharpagne J C.2003. A nanopetrographic and textural study of grain-coating chlorites in sandstone reservoirs [J]. Clay Minerals.38(3):315-328.
    Bjorlykke K, Brendsdal A.1986. Diagenesis of the Brent Sandstone in the Statfjord field, North Sea [J]. The Society of Economic Paleontologists and Mineralogists,38:157-167.
    Bj(?)rlykke K, Nedkvitne T, Ramm M, Saigal G C.1992. Diagenetic processes in the Brent Group(Middle Jurassic) reservoirs of the North Sea:an overview [J]. Geological Society Special Publications.61:263-287.
    Bloch S, Franks S G.1993. Preservation of shallow plagioclase dissolution porosity during burial implications for porosity prediction and aluminum mass balance [J]. AAPG Bulletin. 77:1488-1501.
    Bloch S. Lander R H. Bonnell L.2002. Anomalously high porosity and permeability in deeply buried sandstone reservoirs:Origin and Predictability [J]. AAPG Bulletin.86(2):301-328.
    Bowker K A.2003. Recent development of the Barnett Shale play, Fort Worth Basin [J].West Texas Geological Society Bulletin.42(6):1-11.
    Bowker K A.2007. Barnett Shale gas production Fort Worth Basin:Issues and discussion [J]. AAPG Bulletin.91(4):523-533.
    Brantley S L, Stillings L.1996. Feldspar dissolution at 25℃ and low pH. American Journal of Science,296:101-127.
    Brosse E, Margueron T, Cassou C, Sanjuan B, Canham A, Girard J P, Lacharpagne J C, Sommer F.2003. The formation and stability of kaolinite in Brent sandstone reservoirs:a modelling approach [J]. Special Publication of the International Association of Sedimentologists, 34:383-408.
    Burley S D, Kantorowicz J D, Waugh B.1985. Clastic diagenesis [J]. The Geological Society, London, Special Publications.18:189-226.
    Calvo R, Ayalon A, Bein A, Sass E.2011. Chemical and isotopic composition of diagenetic carbonate cements and its relation to hydrocarbon accumulation in the Heletz-Kokhav oil field (Israel) [J]. Journal of Geochemical Exploration.108:88-98.
    Cant D J.1986. Diagenetic traps in sandstone [J]. AAPG Bulletin.70(2):155-160.
    Cao J, Hu W X, Yao S P, Zhang Y J, Wang X L, Zhang Y Q, Tang Y, Shi X P.2007. Mn content of reservoir calcite cement:A novel inorganic geotracer of secondary petroleum migration in the tectopically complex Junggar Basin (NW China) [J]. Science in China. 50(12):1796-1809.
    Capuano R M.1993. Evidence of Fluid Flow in Microfractures in Geopressured Shales [J]. AAPG Bulletin.77(8):1303-1314.
    Castello D L, Alcaniz-Monge J, Casa-Lillo M A, Amoros D C.2002. Advances in the study of methane storage in porous carbonaceous materials [J]. Fuel.81:1777-1803.
    Chalmers G R L, Bustin R M.2008. Lower Cretaceous gas shales in northeastern British Columbia, Part Ⅰ:geological controls on methane sorption capacity [J]. Bulletin of Canadian Petroleum Geology.56(1):1-21.
    Chalmers G R L, Bustin R M.2008. Lower Cretaceous gas shales in northeastern British Columbia, Part Ⅱ:evaluation of regional potential gas resource [J]. Bulletin of Canadian Petroleum Geology.56(1):22-61.
    Claypool G E.1998. Kerogen Conversion in Fractured Shale Petroleum Systems [C]. Annual Meeting Expanded Abstracts-American Association of Petroleum Geologists.
    Cookenboo H O, Bustin R M.1999. Pore water evolution in sandstones of the Groundhog Coalfield, northern Bowser Basin, British Columbia [J]. Sedimentary Geology,123:129-146.
    Crosdale P J, Beamish B B, Valix M.1998. Coalbed methane sorption related to coal composition [J]. International Journal of Coal Geology.35(2):147-158.
    Curtis C D.1977. Sedimentary geochemistry:environments and processes dominated by involvement of an aqueous phase [J]. Philosophical Transactions of the Royal Society, London. A286:352-373.
    Curtis J B.2002. Fractured shale-gas systems [J]. AAPG Bulletin.86(11):1921-1938.
    DeRos L F. Anjos M S.1994. Authigenesis of amphibole and its relationship to the diagenetic evolution of Lower Cretaceous sandstones of the Potiguar rift basin, northeastern Brazil [J]. Sedimentary Geology.88(3-4):253-266.
    Drummond C N, Wikinson B H, Lohmann K. C, Smith G. R.1983. Effect of regional topography and hydrology on the lacustrine isotopic record of Miocene paleoclimate in the Rocky Mountains [J]. Palaeogeography, Palaeoclimatology, Palaeoecology. 101(1-2):67-79.
    Duan Z H, Li D D.2008. Coupled phase and aqueous species equilibrium of the H2O-CO2-NaCl-CaCO3 system from 0 to 250℃,1 to 1000 bar with NaCl concentrations up to halite [J]. Geochimica et Cosmochimica Acta.72(20):5128-5145.
    Ehrenberg S N.1993. Preservation of anomalously high porosity in deep buried sandstones by grain-coating:Example from the Norwegian continental shelf [J]. AAPG Bulletin. 77(7):1260-1286.
    Eide A L, Ursin B, More H.1997. Stochastic simulation of porosity and acoustic impedance conditioned to seismic data and well data [J]. Annual Meeting Abstracts, Society of Exploration Geophysicists.1614-1617.
    Emery D, Myers K J, Young R.1990. Ancient subaerial exposure and freshwater leaching in sandstones [J]. Geology(Boulder).1178-1181.
    Ferraris G, Merlino S.2005. Micro and mesoporous mineral phases [J]. Reviews in Mineralogy & Geochemistry.57:1-448.
    Franca A B, Araujo L M, Maynard J B, Potter P E.2003. Secondary porosity formed by deep meteoric leaching:Botucatu eolianite, southern South America [J]. AAPG Bulletin, 87(7):1073-1082.
    Frohlich S, Redfern J, Petitpierre L, Marshall J D, Power M, Grech P V.2010. Diagenetic evolution of incised channel sandstones:implications for reservoir characterisation of the Lower Carboniferous Marar Formation, Ghadames Basin, Western Libya [J]. Journal of Petroleum Geology.33(1):3-18.
    Gale J F W, Reed R M, Holder J.2007. Natural fractures in the Barnett Shale and their importance for hydraulic fracture treatments [J]. AAPG Bulletin.91(4):603-622.
    Gao B, Saiers J E, Ryan J N.2004. Deposition and mobilization of clay colloids in unsaturated porous media [J]. Water Resources Research.40:W08602.
    Girard J P, Munz I A, Johansen H, Lacharpagne J C, Sommer F.2002.Diagenesis of the Hild Brent sandstones, Northern North Sea:isotopic evidence for the prevailing influence of deep basinal water [J]. Journal of Sedimentary Research.72(6):746-759.
    Glumac B, Walker K. R.2002. Effects of grand-cycle cessation on the diagenesis of Upper Cambrian carbonate deposits in the Southern Appalachians, U.S.A. [J]. Journal of Sedimentary Research.74(4):570-586.
    Goldhaber M B, Kaplan I R.1974. The sulftlr cycle [M]. Goldberg, The sea, Wiley.5:569-655.
    Guo X W, He S, Liu K Y, Song G Q, Wang X J, Shi Z S.2010. Oil generation as the dominant overpressure mechanism in the Cenozoic Dongying depression, Bohai Bay Basin, China [J]. AAPG Bulletin.94(12):1859-1881.
    Hao F, Zhou X H, Zhu Y M, Bao X H, Yang Y Y.2009. Charging of the Neogene Penglai 19-3 field, Bohai Bay, China:Oil accumulation in a young trap in an active fault zone [J]. AAPG Bulletin.93(2):155-179.
    Hao F, Zou H Y, Gong Z S, Yang S G, Zeng Z P.2007. Hierarchies of overpressure retardation of organic matter maturation:Case studies from petroleum basins in China [J]. AAPG Bulletin. 91(10):1467-1498.
    Haszeldine R S, Cavanagh A J, England G L.2003. Effects of oil charge on illite dates and stopping quartz cement, calibration of basin models [J]. Journal of Geochemical Exploration. 78-79:373-376.
    Hayes M J, Boles J B.1992. Volumetric relations between dissolved plagioclase and kaolinite in sandstones:implications for aluminum mass transfer in the San Joaquin basin, California [J]. Special Publication Society of Economic Paleontologists and Mineralogists.47:111-123.
    Heydari E, Wade W J.2002. Massive recrystallization of low-Mg calcite at high temperatures in hydrocarbon source rocks:Implications for organic acids as factors in diagenesis [J]. AAPG Bulletin,86(7):1285-1303.
    Hickey J J, Henk B.2007. Lithofacies summary of the Mississippian Barnett Shale Mitchell 2 T.P. Sims well, Wise Country, Texas [J]. AAPG Bulletin.91(4):437-443.
    Hill D G, Lombardi T E, Martin J P.2002. Fractured shale gas potential in New York [C]. Annual Conference-Ontario Petroleum Institute.1-49.
    Hiller S.1994. Pore-lining chlorites in siliciclastic reservoir sandstones:electron microprobe, SEM and XRD data, and implications for their origin [J]. Clay Minerals.29:665-679.
    Hochella M F.2002. There's plenty of room at the bottom:Nanoscience in geochemistry [J]. Geochimica et Cosmochimica Acta.66(5):735-743.
    Horsfield B, Dueppenbecker S J.1991. The decomposition of posidonia shale and green river shale kerogens using microscale sealed vessel (MSSV) pyrolysis [J]. Journal of Analytical and Applied Pyrolysis.20:107-123.
    Hou Q F, Lu X C, Liu X D, Hu B X, Lu Z J, Shen J.2005. Variation in surface fractal of graphite due to the adsorption of polyoxyethylene sorbitan monooleate [J]. Applied surface Science. 240:244-250.
    Hou Q F, Lu X C, Liu X D, Hu B X, Shen J.2004. Study of influence on the surface energy heterogeneity of multiwalled carbon nanotubes after the adsorption of poly(acrylic acid) [J]. Journal of Colloid and Interface Science.278:299-303.
    Islam M A.2009.Diagenesis and reservoir quality of Bhuban sandstones (Neogene), Titas Gas Field, Bengal Basin, Bangladesh [J]. Journal of Asian Earth Sciences,35:89-100.
    Jeans C V.1994. Clay diagenesis, overpressure and reservoirs quality:an introduction [J]. Clay Minerals.29:415-424.
    Jiao Zunsheng, Surdam R C.1994. Stratigraphic/Diagenetic Pressure Seals in the Muddy Sandstone, Powder River Basin, Wyoming [J]. AAPG Special Volumes,61:297-312.
    Jonk R, Hurst A, Duranti D, Parnell J, Mazzini A, Fallick A E.2005.Origin and timing of sand injection, petroleum migration, and diagenesis in Tertiary reservoirs. South Viking Graben, North Sea [J]. AAPG Bulletin.89(3):329-357.
    Kinley T J, Cook L W, Breyer J A, Jarvie D M, Busbey A B.2008. Hydrocarbon potential of the Barnett Shale (Mississippian) Delaware Basin, West Texas and Southeastern New Mexico [J]. AAPG Bulletin.92(8):967-991.
    Kohn M L, Riciperti L, Stakes D, et al.1998. Sulfur isotope variability in biogenic pyrite: reflections of heterogeneous bacterial colonizations [J]. American Mineralogist. 83:1454-1468.
    Lampe C, Song G Q, Cong L Z, Mu X.2012. Fault control on hydrocarbon migration and accumulation in the Tertiary Dongying depression, Bohai Basin, China [J]. AAPG Bulletin. 96(6):983-1000.
    Langhi L, Zhang Yanhua, Gartrell A, Undershultz J, Dewhurst D.2010.Evaluating hydrocarbon trap integrity during fault reactivation using geomechanical three-dimensional modeling:An example from the Timor Sea, Australia [J]. AAPG Bulletin.94(4):567-591.
    Lanson B, Beaufort D, Berger G, Bauer A, Cassagnabere A, Meunier A.2002. Authigenic kaolin and illitic minerals during burial diagenesis of sandstones:a review [J]. Clay Minerals, 37:1-22.
    Lev V, Charles L.1996. Elastic anisotropy of source rock:implications for hydrocarbon generation and primary migration [J]. AAPG Bulletin,50:531-544.
    Littke R, Baker D R, Leythaeuser D.1988. Microscope and sedimentologic evidence for the generation and migration of hydrocarbons in Toarcian source rock of different maturities [J]. Organic Geochemistry.13(1-3):549-559.
    Liu Xiandong, Lu Xiancai, Wang Rucheng, Zhou Huiqun.2010. In silico calculation of acidity constants of carbonic acid conformers [J]. J. Physical Chem. A,114(49):12914-12917.
    Loucks R G, Ruppel S C.2007. Mississippian Barnett Shale:Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas [J]. AAPG Bulletin. 91(4):579-601.
    Lu X C, Li F C, Watson A T.1995. Adsorption measurements in Devonian Shales [J]. Fuel. 74(4):599-603.
    Lu X C, Li Y H, Liu Q, Zhang L Y.2003. Variation in surface characteristics of clay minerals in diagensis processes and their relationship to the generation and primary migration of hydrocarbon [J]. Geochimica et Cosmochimica Acta.67(18):A261.
    Lu X C, Liu Q, Zhang L Y, Lu Z J, Liu X D.2004. Imprint of primary migration of hydrocarbon on the nano-scaled pore structure of source rocks and surface properties of organo-clay complexes [J]. Geochimica et Cosmochimica Acta.58(11):A234.
    Maex K, Baklanov M R, Shamiryan D, Lacopi F, Brongersma S H., et al.2003. Low dielectric constant materials for microelectronics [J]. Journal of Applied Physics.93:8793-9941.
    Magara K.1980. Comparison of porosity depth relationships of shale and sandstone [J]. Journal of Petroleum Geology.3(2):175-185.
    Marchand A M E, Haszeldine R S, Smalley P C, Macanlay C L, Fallick A E.2001. Evidence for reduced quartz-cementation rates in oil-filled sandstones [J]. Geology.29:915-918.
    Marfil R, Delgado A, Rossi C, Iglesia A L, Ramseyer K.2003. Origin and diagenetic evolution of kaolin in reservoir sandstones and associated shales of the Jurassic and Cretaceous, Salam Field, Western Desert (Egypt) [J]. Special Publication of the International Association of Sedimentologists,34:319-342.
    Mark R P T, Richard R H, Richard E S, Chris K M, Abdul R D.2009. Origin of overpressure and pore-pressure prediction in the Baramprovince, Brunei [J]. AAPG Bulletin.93(1):51-74.
    Martineau D F.2007. History of the Newark East field and the Barnett Shale as a gas reservoir [J]. AAPG Bulletin.91(4):399-403.
    Martini A M, Walter L M,Ku T C W, Budai J M, McIntosh J C, Schoell M.2003. Microbial production and modification of gases in sedimentary basins:A geochemical case study from a Devonian shale gas play, Michigan basin [J].AAPG Bulletin.87(8):1355-1375.
    Martini A M, Walter L M, McIntosh J C.2008. Identification of microbial and thermogenic gas components from Upper Devonian black shale cores, Illinois and Michigan basins [J]. AAPG Bulletin.92(3):327-339.
    Mavor M.2003. Barnett shale gas-in-place volume including sorbed and free gas volume [C]. AAPG Southwest Section Meeting.
    Mildren S D, Hillis R R, Kaldi J.2002. Calibrating predictions of fault seal reactivation in the Timor Sea [J]. Australian Petroleum Production and Exploration Association Journal. 42:187-202.
    Milliken K.2003. Microscale distribution of kaolinite in Breathitt Formation sandstones (middle Pennsylvanian):implications for mass balance [J]. Special Publication of the International Association of Sedimentologists,34:343-360.
    Momper J A.1978. Oil migration limitations suggested by geological and geochemical consideration [J]. AAPG Course Note Series 8. B1-B60.
    Montgomery S L, Jarvie D M, Bowker K A, Pollastro R M.2005. Mississippian Barnett Shale, Fort Worth Basin, north-central Texas:Gas-shale play with multi-trillion cubic foot potential [J]. AAPG Bulletin.89(2):155-175.
    Morad S, Ketzer J M, Deros L F.2000. Spatial and temporal distribution of diagenetic alterations in siliciclastic rocks:implications for mass transfer in sedimentary basins [J]. Sedimentology. 47(Suppl. 1):95-120.
    Niu B, Yoshimura T, Hirai A.2000. Smectite diagenesis in Neogene marine sandstone and mudstone of the Niigata Basin, Japan [J]. Clays and Clay Minerals,48(1):26-42.
    Paikaray S, Banerjee S, Mukherji S.2008. Geochemistry of shales from the Paleoproterozoic to Neoproterozoic Vindhyan Supergroup:Implications on provenance tectonic and paleoweathering [J]. Journal of Asian Earth Sciences.32:34-48.
    Paxton S T, Szabo J O, Ajdukiewicz J M, Klimentidis R E.2002. Construction of an intergranular volume compaction curve for evaluating and predicting compaction and porosity loss in rigid-grain sandstone reservoirs [J]. AAPG Bulletin.86:2047-2067.
    Pe-Piper G, Dolansky L, Piper D J W.2005. Sedimentary environment and diagenesis of the Lower Cretaceous Chaswood Formation, southeastern Canada:The origin of kaolin-rich mudstones [J]. Sedimentary Geology,178:75-97.
    Raiswell R, Buckley F, Berner R A, Anderson T F.1988. Degree of pyritization of iron as a paleoenvironmental indicator of bottom-water oxygenation [J]. Journal of Sedimentary Petrology.58(5):812-819.
    Ramm M.1992. Porosity-depth trends in reservoir sandstones theoretical models related to Jurassic sandstones offshore Norway [J]. Marine and Petroleum Geology.9:553-567.
    Raut U, Fama M, Teolis B D, Baragiola R A.2007. Characterization of porosity in vapor-deposited amorphous solid water from methane adsorption [J]. The Journal of Chemical Physics.127:1-6.
    Remy R R.1994.Porosity reduction and major controls on diagenesis of Cretaceous-Paleocene voleanielastie and arkosic sandstone, Middle Park basin, Colorado [J]. Journal of Sedimentary Research.64(4):797-806.
    Ross D J K, Bustin R M.2006. Sediment geochemistry of the Lower Jurassic Gordondale Member, northeastern British Columbia [J]. Bulletin of Canadian Petroleum Geology.54(4):337-365.
    Ross D J K, Bustin R M.2007. Shale gas potential of the Lower Jurassic Gordondale Member northeastern British Columbia, Canada [J]. Bulletin of Canadian petroleum geology. 55(1):51-75.
    Ross D J K, Bustin R M.2008. Characterizing the shale gas resource potential of Devonian-Mississippian strata in the Western Canada sedimentary basin:Application of an integrated formation evaluation [J]. AAPG Bulletin.92(1):87-125.
    Rossi C, Marfil R, Ramseyer K, Permanyer A.2001. Facies-related diagenesis and multiphase siderite cementation and dissolution in the reservoir sandstones of the Khatatba Formation, Egypt's Western Desert [J]. Journal of Sedimentary Research,71(3):459-472.
    Rouchet J D.1981. Stress fields, A key to oil migration [J]. AAPG Bulletin.65(1):74-85.
    Scasso R A, Kiessling W.2001. Diagenesis of Upper Jurassic concretions from the Antarctic Peninsula [J]. Journal of Sedimentary Research.70(1):88-100.
    Schettler P D, Parmoly C R.1990. The Measurement of Gas Desorption Isotherms for Devonian Shale [J].GRI Devonian Gas Shale Technology Review.7(1):4-9.
    Schmidt V. William A.1983. Development of diagenetic seal in carbonates and sandstones [J]. AAPG Bulletin.67:545-546.
    Schneider J, Bakker R, Bechstadt T, Littke R.2008. Fluid evolution during burial diagenesis and subsequent orogenetic uplift:The La Via Group (Cantabrian Zone, Northern Spain) [J]. Journal of Sedimentary Research.78:282-300.
    Shaw H F, Primmer T J.1989. Diagenesis in shales from a partly overpressured sequence in the Gulf Coast, Texas, USA [J]. Marine and Petroleum Geology.6(2):121-128.
    Shkolin A V, Fomkin A A.2009. Deformation of AUK Microporous Carbon Adsorbent Induced by Methane Adsorption [J]. Colloid Journal.71(1):119-124.
    Snarsky A N.1962. Die primare migration des erdols [J]. Freiberger Forschungsch. C 123:63-73.
    Son B K, Yoshimura T, Fukasawa H.2001. Diagenesis of dioctahedral and trioctahedral smectites from alternating beds in Miocene to Pleistocene rocks of the Niigata Basin, Japan [J]. Clays and Clay Minerals,49(4):333-346.
    Stephens N P, Carroll A R.1999. Salinity stratification in the Permian Phosphoria sea; a proposed paleoceanographic model [J]. Geology.27(10):899-902.
    Surdam R C, Boese S W, Crossey L J.1984. The chemistry of secondary porosity. AAPG Special Volumes,37:127-149.
    Szczepanik P, Sawlowicz Z.2009. Fe-S mineralization in the Jurassic biogenic remains (Czestochowa, Poland) [J]. Chemie Erde-Geochemistry,10:1-11.
    Thyberg B, Jahren J, Winje T, Bjorlykke K, Faleide J I, Marcussen 0.2010. Quartz cementation in Late Cretaceous mudstones, northern North Sea:Changes in rock properties due to dissolution of smectite and precipitation of micro-quartz crystals [J]. Marine and Petroleum Geology.27:1752-1764.
    Tissot B, Califet-Debyser Y, Deroo G, Oudin J L.1971. Origin and Evolution of Hydrocarbons in Early Toarcian Shales, Paris Basin, France [J]. AAPG Bulletin.55(12):2177-2193.
    Tournier F, Pagel M, Portier E, Wazir 1, Fiet N.2010. Relationship between deep diagenetic quartz cementation and sedimentary facies in a Late Ordovician glacial environment (Sbaa Sasin,Algeria) [J]. Journal of Sedimentary Research.80:1068-1084.
    Umar M, Friis H, Khan A S, Kassi A M, Kasi A K.2011. The effects of diagenesis on the reservoir characters in sandstones of the Late Cretaceous Pab Formation, Kirthar Fold Belt, southern Pakistan [J]. Journal of Asian Earth Science.40:622-635.
    Ungerer P, Behar E, Discamps D.1983. Tentative calculation of the overall volume expansion of organic matter during hydrocarbon genesis from geochemistry data. Implications for primary migration [J]. Advances in Organic Geochemistry.1981:129-135.
    Vernik L.1994. Hydrocarbon generation induced microcracking of source rocks. Geophysis, 59(4):555-563.
    Von Gumbel C W.1868. Geognostische beschreibung des ostbayerischen Grenzgebirges oder des Bayerischen Waldgebirges [J]. Gotha.968S.
    Walther J W.1893. Lithogenesis der gegenwart einleitung in die geologie als distorische wissenschaft,3Gustav Fischer, Cambridge.535-1055.
    Wang Y F, Bryan C, Xu H F, Gao H Z.2003. Nanogeochemistry:Geochemical reactions and mass transfers in nanopores [J]. Geology.31(5):387-390.
    Welte D H, Horsfield B, Baker D R.1997. Petroleum and basin evolution [M]. Berlin:Springer. 405-519.
    Wilkinson M, Haszeldine R S.2011. Oil charge preserves exceptional porosity in deeply buried, overpressured, sandstones:Central North Sea, UK [J]. Journal of the Geological Society.168: 1285-1295.
    Wolela A.2010. Diagenetic evolution of the Ansian-Pliensbachian Adigrat Sandstone, Blue Nile Basin, Ethiopia [J]. Journal of African Earth Science.56:29-42.
    Worden R H, Morad S.2003. Clay minerals in sandstones:Controls on formation, distribution and evolution [J]. Special Publication of the International Association of Sedimentologists. 34:3-31.
    Xie X, Bethke C M, Li S, Liu X, Zheng H.2001. Overpressure and petroleum generation and accumulation in the Dongying depression of the Bohaiwan Basin, China [J]. Geofluids. 1:257-271.
    Zhang L P, Bai G P, Luo X R, Ma X H, Chen M J, Wu M H, Yang W X.2009. Diagenetic history of tight sandstones and gas entrapment in the Yulin Gas Field in the central area of the Ordos Basin, China [J]. Marine and Petroleum Geology.26:974-989.
    Zhang L Y, Liu Q, Zhu R F, Li Z, Lu X C.2009. Source rocks in Mesozoic-Cenozoic continental rift basins, east China:A case from Dongying Depression, Bohai Bay Basin [J]. Organic Geochemistry.40:229-242.
    Zhang S W, Wang Y S, Shi D S, Xu H M, Pang X Q, Li M W.2004. Fault-fracture mesh petroleum plays in the Jiyang superdepression of the Bohai Bay Basin, eastern China [J]. Marine and Petroleum Geology.21:651-668.
    Zhang Y G, Frantz J D.1987. Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCl-KCl-CaCl2-H2O using synthetic fluid inclusions [J]. Chemical Geology.64:335-350.
    Zhu X M, Liu C L, Zhong D K, Han X F.2009. Diagenesis and their succession of gas-bearing and non-gas-bearing reservoirs in the Sulige Gas Field of Ordos Basin, China [J]. Acta Geologica Sinica (English Edition).83(6):1202-1213.
    蔡进功.张枝焕,朱筱敏,谢忠怀,李艳霞,刘洪军,袁东山.2003.东营凹陷烃类充注与储集层化学成岩作用[J].石油勘探与开发,30(3):79-83.
    蔡李梅,陈红汉,李纯泉,李兆奇,刘惠民,郝雪峰.2009.济阳凹陷东营凹陷沙三中亚段流体包裹体古流体势场恢复[J].石油与天然气地质.30(1):17-25.
    曹剑,张义杰,胡文瑄,张越迁,唐勇,姚素平,陶国亮.2005.油气储层自生高岭石发育特点及其对物性的影响.矿物学报,25(4):367-373.
    岑为,刘东兵,朱孝恒,毛炳权.2012.小角X射线散射表征BCE催化剂孔隙结构的研究[J].石油化工.41(1):97-103.
    陈洁,董冬,邱明文.1999.济阳坳陷内的负反转构造及其石油地质意义[J].石油实验地质.21(3):201-206.
    陈瑞君,朱井泉,李任伟,陈辉,张汝藩.1993.云南安宁地区晚侏罗世含盐岩系的主要特点及沉积环境[J].岩石学报.9(1):94-105.
    陈志刚,刘成宝,王振邦,段晓涛,陈红,苗峙,付猛.2010.微-纳米孔碳质材料的制备及微观结构[J].硅酸盐学报.38(4):704-710.
    陈中红,查明.2008.断陷湖盆超压封存箱形成机理与油气成藏机制——以渤海湾盆地东营凹陷为例[J].地质科学,43(1):50-64.
    程慧,常迎梅,经雅丽.2009.渤海湾盆地东营凹陷地层油气藏成藏阶段分析[J].石油实验地质.31(1):54-57.
    丁晓琪,张哨楠,葛鹏莉,万友利.2010.鄂南延长组绿泥石环边与储集性能关系研究[J].高校地质学报.16(2):247-254.
    付广,庞雄奇,杨勉,薛永超.2000.天然气运聚相态及其研究意义[J].中国海上油气(地质).14(2):112-117.
    付广,薛永超,付晓飞.2001.油气运移输导系统及其对成藏的控制[J].新疆石油地质.21(1):24-26.
    傅国旗,周理.2000.天然气吸附存储实验研究Ⅰ:少量乙烷对活性炭存储能力的影响[J].天然气化工.25(4):12-14.
    傅国旗,周理.2000.天然气吸附存储实验研究Ⅱ:少量丙烷和丁烷对活性炭存储能力的影响[J].天然气化工.25(6):22-24.
    郝雪峰,陈红汉,高秋丽,宋国奇.2006.东营凹陷牛庄砂岩透镜体油气藏微观充注机理[J].地球科学——中国地质大学学报.31(2):182-190.
    胡爱军,潘一山,唐巨鹏,李成全,董子贤.2007.型煤的甲烷吸附以及NMR试验研究[J].洁净煤技术.13(3):37-40.
    胡见义,徐树宝等.1986.非构造油气藏[M].北京:石油工业出版社.
    胡文瑄,符琦,陆现彩,Duan Z H.1996含(油)气流体体系压力及相变规律初步研究[J].高校地质学报.2(4):458-465.
    黄思静,武文慧,刘洁,沈立成.黄成刚.2003.大气水在碎屑岩次生孔隙形成中的作用——以鄂尔多斯盆地三叠系延长组为例[J].地球科学——中国地质大学学报,28(4):419-428.
    黄思静,谢连文,张萌,武文慧,沈立成,刘洁.2004.中国三叠系陆相砂岩中自生绿泥石的形成机制及其与储层孔隙保存的关系[J].成都理工大学学报(自然科学版).31(3):273-281.
    贾红义,于建国,王金铎.2006.济阳坳陷早始新世构造变动与油气成藏-以东营凹陷为例[J].油气地球物理.4(2):46-50.
    姜慧超,罗佳强.2005.济阳坳陷油气主运移通道及成藏规律研究[J].油气地质与采收率.12(1):18-20.
    巨文军,申丽红,郭丹丹.2009.氮气吸附法和压汞法测定A1203载体孔结构[J].广东化工.36(196):213-215.
    康志勤,赵阳升,孟巧荣,杨栋,卻保平.2009.油页岩热裂解规律显微CT实验研究.地球物理学报.52(3):842-848.
    雷怀玉,邹伟宏,王连军,郑宪,王权,刘珍花.1999.岔西地区浊积岩的发现及其油气勘探意义[J].沉积学报.17(1):89-94.
    李成凤,肖继风.1988.用微量元素研究胜利油田东营盆地沙河街组的古盐度[J].沉积学报.6(4):100-107.
    李洪星,陆现彩,边立曾,陈建平.2009.川北矿山梁地区大隆组塔斯马尼亚藻胞囊内黄铁矿草莓状的形成机制及其地质意义[J].自然科学进展.19(10):1082-1089.
    李军亮.2008.渤海湾盆地东营凹陷深层砂砾岩储层成岩演化特征[J].石油实验地质.30(3):252-255.
    李利,牛强,杜焕福,邓美寅.2008.东营凹陷北部陡坡带盐22地区沙四段砂砾岩体储层微观特征[J].内蒙古石油化工.19:97-100.
    李明诚,李剑.2010.“动力圈闭”——低渗透致密储层中油气充注成藏的主要作用[J].石油学报,31(5):718-722.
    李丕龙,张善文,曲寿利等.2003.陆相断陷盆地油气地质与勘探,卷三,陆相断陷盆地油气生成与资源评价[M].北京:石油工业出版社.1-4.
    李丕龙.2002.陆相断陷盆地油气地质与勘探,卷一,陆相断陷盆地构造演化与构造样式[M].北京:石油工业出版社.
    李善鹏,邱楠生,曾溅辉.2004.利用流体包裹体分析东营凹陷古压力[J].东华理工学院学报.27(3):209-212.
    李素梅,邱桂强,姜振学,高永进.2007.牛庄洼陷“岩性油气藏”油气成因[J].地球科学-中国地质大学学报,32(2):213-218.
    李新景,胡素云,程克明.2007.北美裂缝性页岩气勘探开发的启示[J].石油勘探与开发.34(4):392-400.
    李兆奇,陈红汉,刘惠民,郝广雷,蔡李梅.2008.流体包裹体多参数综合划分东营凹陷沙三段油气充注期次及充注时间确定[J].地质科技情报.27(4):69-74.
    李政.2011.东营凹陷页岩气勘探潜力初步评价[M].成都理工大学硕士论文.
    刘传联,赵泉鸿,汪品先.2001.湖相碳酸盐氧碳同位素的相关性与生油古湖泊类型[J].地球化 学.30(4):363-367.
    刘传联.1998.东营凹陷沙河街组湖相碳酸盐岩碳氧同位素组分及其古湖泊学意义[J].沉积学报.16(3):109-114.
    刘俊海,胡芬,宋文君,韩忠义.2003.东营凹陷南斜坡储集岩成岩作用及对储层性能的影响[J].新疆石油学院学报.15(3):21-26.
    刘洛夫,张守春,高岗等.2003.油气生排烃机理与模式[M].北京:石油工业出版社.
    刘企英.1994.利用地震信息进行油气预测[M].北京:石油工业出版社.
    刘庆,张林哗,沈忠民,孔祥星,李政.2004.东营凹陷湖相盆地类型演化与烃源岩发育[J].石油学报.25(4):42-45.
    刘庆,张林哗,沈忠明,孔祥星,王茹.2004.东营凹陷富有机质烃源岩顺层微裂隙的发育与油气运移[J].地质论评,50(6):593-598.
    刘庆.2012.济阳坳陷古近系咸化湖泊烃源岩的形成及生排烃机理研究[M].山东东营:胜利油田博士后科研项目出站报告.
    刘宪斌,万晓樵,林金逞,李怀渊,穆剑.2003.陆相浊流沉积体系与油气[J].地球学报.24(1):61-66.
    柳少波,顾家裕.1997.包裹体在石油地质研究中的应用与问题讨论[J].石油与天然气地质.18(4):326-331.
    柳益群,李文厚.1996.陕甘宁盆地顶部上三叠统含油长石砂岩的成岩特点及孔隙演化[J].沉积学报.14(3):87-96.
    陆克政,漆家福,代俊生,杨桥,童亨茂.1997.渤海湾新生代含油气盆地构造模式[M].北京:地质出版社.
    陆现彩,胡文宣,符琦,张文兰,周光甲,洪志华,陈致林.1998.利用碳酸盐矿物成分研究沉积-成岩过程中流体盐度演化—以东营凹陷沙四段低熟油烃源岩为例[J].沉积学报.16(1):120-126.
    陆现彩,刘庆,张林晔,李迎辉,周睿,陆建军.2004.蒙脱石伊利石化对含油气盆地地层压力影响的定量研究[J].矿物岩石地球化学通报.23(4):285-291.
    陆现彩,张林晔等.2004.东营凹陷沙河街组烃源岩初次排烃的界面地球化学记录研究[M].胜利油田有限公司科技合作项目.
    陆现彩.1998.胜利油区低熟油烃源岩的沉积、成岩及生烃作用的地质—地球化学研究[M].南京大学博士研究生毕业论文.
    路慎强.2008.渤海湾盆地东营凹陷古近系碎屑岩储层成岩研究[J].石油实验地质.30(5):456-460.
    马金艳,曲凤玉,徐莹璞,李晓丰.2010.以天然植物为模板合成高度有序的多级复合孔材料[J].高等学校化学学报.31(6):1103-1107.
    马明福,方世虎,张煜,史文东.2001.东营凹陷广利油田纯化镇组低渗透储层微观孔隙结构特征[J].石油大学学报(自然科学版).25(4):10-12.
    苗建宇,祝总祺,刘文荣,卢焕勇.2004.泥岩有机质的赋存状态与油气初次运移的关系[J].沉积学报.22(1):169-175.
    牟汉生,姜在兴,邱隆伟,向树安.2007.东营凹陷现河地区沙三段下亚段储层成岩作用[J].油气 地质与采收率.14(4):50-52.
    聂海宽,张金川,张培先,宋晓薇.2009.福特沃斯盆地Barnett页岩气藏特征及启示[J].地质科技情报.28(2):87-93.
    潘元林,张善文,肖焕钦.2003.济阳断陷盆地隐蔽油气藏勘探[M].北京:石油工业出版社.1-22.
    漆滨汶,林春明,邱桂强,李艳丽,刘惠民,高永进,茅永强.2007.山东省牛庄洼陷古近系沙河街组沙三中亚段储集层成岩作用研究[J].沉积学报.25(1):99-109.
    钱焕菊,陆现彩,张雪芬,张林晔,刘庆.2009.东营凹陷沙四段上部泥质烃源岩元素地球化学及其古盐度的空间差异性[J].岩石矿物学杂志.28(2):161-168.
    钱焕菊.2009.多元分析在烃源岩及深部流体元素地球化学中的应用[M].南京大学硕士研究生毕业论文.
    邱楠生,金之钧,胡文暄.2000.东营凹陷油气充注历史的流体包裹体分析[J].石油大学学报(自然科学版).24(4):95-98.
    邱楠生,金之钧.2000.油气成藏的脉动式探讨[J].地学前缘(中国地质大学,北京).7(4):561-567.
    邱楠生,李善鹏,曾溅辉.2004.渤海湾盆地济阳坳陷热历史及构造-热演化特征[J].地质学报.78(2):263-269.
    邱楠生,张善文,金之钧.2001.东营凹陷油气流体运移模式探讨——来自沸腾包裹体的证据[J].石油实验地质.23(4):403-407.
    曲国辉,初阳.2012.强碱三元复合驱储层物性变化特征研究[J].科学技术与工程.12(18):4360-4363.
    饶孟余,钟建华,王海侨,郭泽清.2004.山东东营牛庄洼陷沙三中亚段浊积砂体储层特征及影响因素[J].现代地质.18(2):256-262.
    佘敏,寿建峰,郑兴平,张天付,董虎.2011.基于CT成像的三维高精度储集层表征技术及应用[J].新疆石油地质.32(6):664-666.
    沈渭洲,赵连泽,赵明,孔庆友,蔡元峰.2002.山东济阳坳陷第三纪玄武岩的铅同位素研究[J].地质学报.76(1):33-41.
    舒小辛.1996.东营凹陷沙三段下部纹层泥岩中的碳酸盐矿物[J].复式油气田,1(1):46-52.
    宋来亮.2008.东营凹陷陡坡带深部储层储集空间演化特征[J].油气地质与采收率.15(5):8-13.
    宋明水.2005.东营凹陷南斜坡沙四段沉积环境的地球化学特征[J].矿物岩石.25(1):67-73.
    苏永进,蒋有录,房新娜.2006.原生岩性油藏形成机理新解[J].油气地质与采收率,13(2):37-40.
    隋风贵.2004.东营断陷盆地地层流体超压系统与油气运聚成藏[J].石油大学学报(自然科学版).28(3):17-21.
    隋风贵,刘庆,张林晔.2007.济阳断陷盆地烃源岩成岩演化及其排烃意义[J].石油学报.28(6):12-16.
    孙海宁,夏景生,钟建华,王志坤.2008.山东东营凹陷东部浊积扇油藏成藏条件与模式[J].地质力学学报,14(3):221-230.
    孙镇城,杨藩,张枝焕等.1997.中国新生代咸化湖泊沉积环境与油气生成[M].北京:石油工业出版社.115-133.
    孙治雷,黄思静,张玉修,王庆东,包申旭,孙致学.2008.四川盆地须家河组砂岩储层中自生绿泥 石的来源与成岩演化[J].沉积学报.26(3):459-468.
    谭友明.2003.渤海湾盆地东营-惠民凹陷孔店期原型盆地分析[J].石油实验地质.5(4):348-352.
    田建锋,陈振林,凡元芳,李平平,宋立军.2008.砂岩中自生绿泥石的产状、形成机制及其分布规律[J].矿物岩石地球化学通报.27(2):200-205.
    田克勤,于志海,冯明,杨池银,廖前进,周建生,孙晓明.2000.渤海湾盆地下第三系深层油气地质与勘探[M].北京:石油工业出版社.
    田永东,李宁.2007.煤对甲烷吸附能力的影响因素[J].西安科技大学学报.27(2):247-250.
    王秉海,钱凯.1992.胜利油区地质研究与勘探实践[M].东营:石油大学出版社.
    王居峰.2005.济阳坳陷东营凹陷古近系沙河街组沉积相.古地理学报,7(1):45-58.
    王行信,周书欣.]992.泥岩成岩作用对砂岩储层胶结作用的影响[J].石油学报.13(4):20-30.
    王社教,王兰生,黄金亮,李新景,李登华.2009.上扬子区志留系页岩气成藏条件[J].天然气工业.29(5):45-50.
    王书宝,钟建华,王勇,夏景生.2008.永北地区砂砾岩体成岩作用及次生孔隙成因[J].西南石油大学学报(自然科学版).30(4):19-23.
    王随继,黄杏珍,妥进才,邵宏舜,阎存凤,王寿庆,何祖荣.1997.泌阳凹陷核桃园组微量元素演化特征及其古气候意义[J].沉积学报.15:65-70.
    王新洲,宋一涛,王学军.1996.石油成因与排油物理模拟[M].东营:石油大学出版社.
    王兴志,方少仙,侯方洁,黄继祥,李凌.1998.四川盆地灯影组储层原生孔隙内胶结物研究[J].西南石油学院学报.20(3):1-6.
    王召巴,金永.2002.高能X射线工业CT技术的研究进展.测试技术学报.16(2):1-6.
    吴智平,李伟,任拥军,林畅松.2003.济阳坳陷中生代盆地演化及其与新生代盆地叠合关系探讨[J].地质学报.77(2):280-286.
    夏景生,王志坤,陈刚,朱鑫,张一航,冀晓静.2009.东营凹陷东部深层浊积扇油藏成藏条件与模式研究[J].岩性油气藏,21(1):55-60.
    夏文武.1992.江汉盐湖盆地潜江凹陷粘土矿物分布规律及成因探讨[J].江汉石油科技.2(3):13-19.
    肖飞,何宗斌.2012.核磁共振测井连续表征储层孔隙结构方法研究[J].石油天然气学报.34(2):93-98.
    肖乾华,李宏伟.1998.层序地层学原理与方法在隐蔽油气藏勘探中的应用[J].断块油气田.5(2):6-9.
    徐其俊,吴必豪.1982.江汉盆地q组含盐系中碳酸盐矿物的研究[J].中国地质科学院矿床地质研究所所刊.1:65-71.
    徐同台,王行信,张有瑜,赵杏媛,包于进.2003.中国含油气盆地粘土矿物[M].北京:石油工业出版社.
    许满贯,马正恒,陈甲,许双泉.2009.煤对甲烷吸附性能影响因素的实验研究[J].矿业工程研究.24(2):51-54.
    薛会,张金川,刘丽芳,卞昌蓉.2006.天然气机理类型及其分布[J].地球科学与环境学报.28(2):53-57.
    杨景标,蔡宁生.2008.催化剂对褐煤焦孔隙结构和表面形态的影响[J].中国电机工程学报.28(11):24-31.
    杨侃,陆现彩,刘显东,侯庆锋.2006.基于探针气体吸附等温线的矿物材料表征技术:Ⅱ.多孔材料的孔隙结构[J].矿物岩石地球化学通报.25(4):362-371.
    杨侃.2011.岩石微孔隙中气体吸附、链状分子运移的计算模拟及其石油地质意义[M].南京大学博士毕业论文.
    杨品荣,陈洁,蔡进功,杨永红.2001.济阳坳陷构造转型期及其石油地质意义[J].油气地质与采收率.8(3):5-10.
    杨庆红,谭吕,蔡建超,胡祥云.2012.储层微观非均质性定量表征的分形模型[J].地球物理进展.27(2):603-609.
    游国庆,潘家华,刘淑琴,陈永峤.2006.东营凹陷古近系砂岩成岩作用与孔隙演化[J].岩石矿物学杂志.25(3):237-242.
    于兴河.2002.碎屑岩系油气储层沉积学[M].北京:石油工业出版社.
    余和中,谢锦龙,王行信,韩守华.2006.有机粘土复合体与油气生成.地学前缘(中国地质大学(北京);北京大学).13(4):274-281.
    元雪静.2006.利津油田砂砾岩扇体发育特征及储层评价[J].石油地球物理勘探.41(4):410-414.
    袁静.2003.东营凹陷下第三系深层成岩作用及次生孔隙发育特征[J].煤田地质与勘探.3(3):20-23.
    张海峰,刘庆,张林晔,张建中.2005.山东东营凹陷古近系沙河街组湖盆演化及烃源岩赋存相带[J].古地理学报.7(3):383-397.
    张厚福,方朝亮,高先志,张枝焕,蒋有录.1999.石油地质学[M].北京:石油工业出版社.133-140.
    张淮浩,陈进富,李兴存,褚衍秋.2005.天然气中微量组分对吸附剂性能的影响[J].石油化工.34(7):656-659.
    张建培,葛和平,漆滨汶.2009.西湖凹陷砂岩自生高岭石发育特征及其对储层物性的影响[J].海洋石油,29(1):1-8.
    张建忠,许建华.2003.东营凹陷北部陡坡带西段水下扇储层成岩作用与孔隙演化[J].油气地质与采收率.10(5):8-9.
    张金川,汪宗余,聂海宽,徐波,邓飞涌,张培先,殷毅,郭华强,林拓,张琴,张德明.2008.页岩气及其勘探研究意义[J].现代地质.22(4):640-656.
    张金川,徐波,聂海宽,汪宗余,林拓.2008.中国页岩气资源勘探潜力[J].天然气工业.28(6):136-140.
    张金川,薛会,张德明,蒲军.2003.页岩气及其成藏机理[J].现代地质.17(4):466.
    张俊,庞雄奇,姜振学,陈冬霞,杜春国.2007.东营凹陷牛庄-六户洼陷沙河街组三段下亚段烃源岩排烃通道及证据[J].地质学报,81(2):261-267.
    张林晔,蒋有录,刘华,谭丽娟,张乐.2003.东营凹陷油源特征分析[J].石油勘探与开发.30(3):61-64.
    张林晔,李政,李钜源,朱日房,孙锡年.2012.东营凹陷古近系泥页岩中存在可供开采的油气资源[J].天然气地球科学.23(1):1-13.
    张林晔,李政,朱日房,李钜源,张林彦.2008.济阳坳陷古近系存在页岩气资源的可能性[J].天然气工业.28(12):1-4.
    张林晔,李政,朱日房.2009.页岩气的形成与开发[J].天然气工业.29(1):1-5.
    张林晔,刘庆,张春荣.2005.东营凹陷成烃与成藏关系研究[M].北京:地质出版社.3-5.
    张鹏,王良书,丁增勇,钟锴.2006.济阳坳陷中-新生代断裂发育特征及形成机制[J].石油与天然气地质.27(4):467-474.
    张卫海,查明,曲江秀.2003.油气输导体系的类型及配置关系[J].新疆石油地质.24(2):118-121.
    张晓东,秦勇,桑树勋.2005.煤储层吸附特征研究现状及展望[J].中国煤田地质.17(1):16-22.
    张学才.2010.东营陆相断陷盆地Es4上亚段高分辨率层序地层学及滩坝储层预测研究[M].南京大学博士研究生毕业论文.
    张雪芬,陆现彩,张林晔,刘庆,马野牧,徐士进.2013.胜利油区牛庄洼陷沙河街组烃源岩和砂岩的协同成岩作用及其石油地质意义[J].地质论评.
    张雪芬,陆现彩,张林晔,刘庆.2010.页岩气的赋存形式研究及其石油地质意义.地球科学进展.25(6):597-604.
    张云银.2003.郯庐断裂带含油气性研究[J].石油实验地质.25(1):28-36.
    张照录,王华,杨红.2000.含油气盆地的输导体系研究[J].石油与天然气地质.21(3):133-135.
    张哲,陈小明,赵明..利用伊蒙混层矿物对山东济阳坳陷古地温和剥蚀深度的反演.南京大学学报(自然科学),2008,44(6):621-631
    赵力民,邹伟宏.2000.利用RM反演方法进行地层岩性油藏研究[J].石油学报.21(2):62-65.
    赵杏媛,张有瑜.粘土矿物与粘土矿物分析[M].北京:海洋出版社.1990.
    郑德顺.2006.济阳坳陷中、新生代断裂特征及其控盆作用[M].中国石油大学(华东)博士研究生毕业论文.
    钟大康,朱筱敏,张琴.2004.不同埋深条件下砂泥岩互层中砂岩储层物性变化规律[J].地质学报,78(6):863-871.
    钟玲文,张慧,员争荣,雷崇利.2002.煤的比表面积孔体积及其对煤吸附能力的影响[J].煤田地质与勘探.30(3):26-28.
    朱光有,金强,张水昌,戴金星,王冠民,张林晔,李剑.2005.济阳坳陷东营凹陷古近系沙河街组深湖相油页岩的特征及成因[J].古地理学报.7(1):59-69.
    朱光有,金强,张水昌,戴金星,张林晔,李剑.2004.东营凹陷沙河街组湖相烃源岩的组合特征[J].地质学报.78(3):416-427.
    朱光有,金强,周建林,张林晔.2003.东营断陷湖盆充填过程对烃源岩的控制作用研究[J].地质地球化学.31(2):73-79.
    朱世全,黄思静,姚鹏,吴素娟,胡作维.2006.姬塬地区上三叠统长2油层组高岭石胶结与储层评价.沉积与特提斯地质,26(1):88-91.
    朱筱敏,钟大康,张琴,张枝焕,张善文,吕希学.2008.济阳坳陷古近系碎屑岩储层特征和评价[M].北京:科学出版社.17-35
    卓勤功.2007.异常高压对烃源岩成烃机理和油气运聚成臧的影响[J].石油实验地质,27(2):169-174.
    宗国洪,肖焕钦,李常宝,施央申,王良书.1999.济阳坳陷构造演化及其大地构造意义[J].高校地 质学报.5(3):275-282.
    邹华耀,郝芳,柳广弟,隋成.2005.库车冲断带巴什基奇克组砂岩自生高岭石成因与油气成藏[J].石油与天然气地质,26(6):786-792.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700