用户名: 密码: 验证码:
交叉偶极声波测井资料处理及在致密气层评价中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
致密储层具有低孔、低渗、非均质性强的特点,复杂的孔隙结构对电阻率的影响可能远大于储层流体类型对电阻率的影响,这将使气、水层电阻率特征差别不明显,从而使常规的电阻率曲线在识别流体性质方面遇到较大的困难,而地层含气时,气层的声学信息比较明显,因而利用声波资料对气层进行定性识别及定量评价具有独特的优势。
     本文基于上述背景,针对致密层测井评价所面临的难题,以交叉偶极声波测井资料为基础,对苏里格致密砂岩气田和松辽盆地南部砂砾岩气田储层评价进行了研究。
     论文研究的主要内容包括以下几个方面:
     对阵列声波测井资料进行了预处理,提取了纵波、横波及斯通利波的声波时差,并反演了地层横波的各向异性。
     对致密气藏进行了流体替换研究,正演模拟不同流体状态下的岩石纵横波速度,为流体识别及地震勘探打下基础。
     以弹性模量为基础,对含气储层进行了定性识别和含气饱和度的定量计算。
     不同分布形式的泥质对测井结果的影响不同,本文对泥质的分布形式进行了定量划分。
     论文的创新之处包括以下四点:1、利用差分进化算法反演地层横波各向异性,较传统模拟退火算法处理速度及
     精度上均有提高。
     2、利用纵横波速比小波能量分析对流体进行识别,实现了整口井进行连续处理,能够二维直观显示处理结果。
     3、建立了基于弹性模量计算含气饱和度的模型,丰富了利用声波测井资料对储集层流体评价的方法。
     4、对泥质的分布形式进行定量划分,将用声波计算的层状泥质用FMI计算出的层状泥质进行对比,结果表明利用阵列声波测井资料计算的泥质含量是可靠的。
Along with the deep going study of exploration and development of oil and gasfields, the target of exploration and development shifted from structural reservoirs tolithologic reservoirs.The unconventional oil and gas reservoirs with low porosity, lowpermeability and low saturation have been one of the most important oil and gasresources in the world. In the past ten years, we have made a great development in theexploration and development of tight gas reservoirs.
     Until now Sugeli gas field was the biggest onshore gas filed with the world-classreserves in China. It’s a typical lithologic trapping reservoir with low porosity, lowpermeability and low saturation. Its complex logging responses caused by featuressuch as thin beds, strong heterogeneity, the large variation of physical property andcomplex relationship among fluids lead to the difficulty of calculating porositypermeability and saturation accurately. The reservoirs couldn’t be evaluatedeffectively with conventional methods.
     There are tight sandstone and tight conglomerate reservoir existing in the deeplevel of southern Songliao basin.
     Tight reservoirs with low porosity, low permeability and strong heterogeneityhave complex pore structure which influences the resistivity more than the type offluids in reservoirs. So there is no obvious difference between the gas and water onresistivity log. Therefore it’s hard to recognize the type of fluid with conventionalmethods by analysing resistivity. Fortunately, when the reservoir includes gas,thereare significant changes in the acoustic velocity, acoustic amplitude and somedynamics of rock which make the gas horizon apart from the oil and water throughanalysing acoustics information.In the paper, we took advantage of the array sonicdata to identify the gas reservoir qualitatively and evaluate it quantitatively, whichcontributes to the improvement the accuracy of log interpretation.
     As a new means of logging, array acoustic logging contains much moreinformation than the old acoustic logging. In this paper, we mainly took thefollowing work:calculating the anisotropy,dividing the shale volume,identifingthe fluid type,quantitatively calculating the gas saturation,replacing the fluids andso on. We found an appropriate method of log interpretation for the tight sandstonereservoir of Sugeli gas field.The completed work included the following parts:
     1. Processing cross-dipole acoustic logging data and extracting slowness
     Preprocessing original DSI data includes gain processing, filtering andequalization processing. A mathematical model was set up for extracting the full waveslowness separately in the time domain and the frequency domain.The time-slowness correlation method was adopted in the time domain. Phase method was usedin the frequency domain. We could find that the approach is of correctness andreliability after compared our results with the software processing results.
     2. Inverting the anisotropy of shear wave with differential evolution algorithm
     Anisotropic inversion of cross-dipole logging data is an important technique inmodern acoustic logging. We established the differential evolution algorithm on thebasis of waveform inversion objective function.The relative error of results waswithin5%between this algorithm and the simulated annealing treatment.However,the processing speed is faster than the simulated annealing by above20%.
     3. Summarizing the characteristics of the logging response and the loggingevaluation model in Sugeli gas field,the tight sandstone gas reservoirs.
     4. Studying the fluid replacement of tight sandstone reservoirs
     We studied fluid replacement of tight sandstone reservoir and predicted thechange of elastic parameters caused by the change of fluid. Forward simulation ofcompressional wave velocity and shear wave velocity of rock under different fluidstates lay the foundation for the fluid identification and the AVO effect of seismicexploration.
     5. Identifying fluid based on the elastic modulus and the wavelet transform
     We took advantage of the data of P and S wave from array sonic and conventionallogging curve to recognize the fluid. The fluid was recognized by single parameter elastic modulus,two-dimensional,three-dimensional rendezvous analysis techniquesand wavelet energy spectrum analysis technology. In the wavelet energy spectrumanalysis techniques,we study the ratio of P and S wave. We can process the wholewell continuously by combining with auto-layering technology instead of processinglayer one by one. The matching between energy spectrum matching and depth domaincame to realize. The results could be showed with two-dimensional visual.
     6. Evaluating laminated shale and dispersed shale quantitatively
     We divided the laminated shale using Tang’s method for the laminated shalewith macro-anisotropic, then, we calibrated it by the results of FMI. Finally, wedistinguished the structural shale from the dispersed shale with the Thomas-Stieberplates.
     7. Establishing the model for quantitative calculation of gas saturation
     Based on the Gassmann equation, we took advantage of the P-S slowness and thedensity logging to set up a model for calculating the gas saturation with elasticmodulus. It enriched the methods of evaluating the fluid in reservoirs with loggingdata.
     In this paper, we evaluated tight sandstone reservoir based on the array soniclogging data, and overcame the difficulties in the current evaluation technology. Anew method without resistivity to evaluate the tight sandstone reservoir was foundand proved well.
引文
[1].石玉江,时卓,张海涛,等.苏里格气田致密气层测井精细建模方法[J].西南石油大学学报(自然科学版),2012(5).
    [2].谷江锐,刘岩.国外致密砂岩气藏储层研究现状和发展趋势[J].国外油田工程,2009,25(7):1-5.
    [3]. Zhiqiang Z, Junwei Z.国际低渗透油气资源勘探开发技术进展[J].地球科学进展,2009,24(8):854-864.
    [4].张静.苏里格地区致密砂岩含气性评价及产能预测[D].中国石油大学,2011.
    [5].晏磊.偶极子阵列声波测井仪的实现及相关检测算法研究[D].解放军信息工程大学,2006.
    [6]. Kimball C V, Marzetta T L. Semblance processing of borehole acousticarray data[J]. Geophysics,1984,49(3):274-281.
    [7]. Hsu K, Chang S K. Multiple-shot processing of array sonic waveforms[J].Geophysics,1987,52(10):1376-1390.
    [8]. McFadden P L, Drummond B J, Kravis S. The N th-root stack: Theory,applications, and examples[J]. Geophysics,1986,51(10):1879-1892.
    [9]. Nolte B, Huang X J. Dispersion analysis of split flexural waves: Annualreport of borehole acoustics and logging and reservoir delineation consortia:Massachusetts Institute of Technology[J]. Massachusetts Institute of Technology,1997.
    [10]. Tang X M. Predictive processing of array acoustic waveform data[J].Geophysics,1997,62(6):1710-1714.
    [11].黄文新.声波信息时差相关处理[J].测井技术,1987,6:48.
    [12].朱正亚,周致强.全波列声波测井数据的时域处理方法[J].石油物探,1991,30(2):76-87.
    [13].乔文孝.用插值法提高声波时差的计算精度[J].测井技术,1997,21(2):125-128.
    [14].刘忠松,杨小宝,沈建国,等.阵列声波测井资料处理时窗宽的选择问题[J].测井技术,2002,26(6):464-466.
    [15].章成广,肖柏勋,江万哲.频谱法时差提取在声波全波形处理中的应用[J].工程地球物理学报,2004,1(1).
    [16].朱留方,沈建国.基于阵列声波测井波形二维谱分布的纵,横波时差处理方法[J][J].测井技术,2004,28(5):373-377.
    [17].李鹏举,宋延杰,付多辰,等. XMAC纵波时差高分辨率处理方法[J].地质与勘探,2006.
    [18].陈强,张超谟.长短时窗能量比法提取声波全波列测井纵横波信息[J].石油天然气学报,2006,28(3):72-75.
    [19].孙宽,乔文孝.遗传算法在阵列声波慢度提取中的应用[C]//2008年全国声学学术会议论文集.2008.
    [20].钟剑.阵列声波测井属性信息提取方法研究[D].西南石油大学,2011.
    [21]. Esmersoy C, Chang C, Kane M, et al. Acoustic imaging of reservoirstructure from a horizontal well[J]. The Leading Edge,1998,17(7):940-946.
    [22]. Mueller M C, Boyd A J, Esmersoy C. Case studies of the dipole shearanisotropy log[C]//SEG Expanded Abstr.1994,64:1143-1146.
    [23]. Tang X M. Predictive processing of array acoustic waveform data[J].Geophysics,1997,62(6):1710-1714.
    [24].陶果,杨韦华,杨建利.用模拟退火方法计算偶极横波时差[J].石油大学学报(自然科学版),2001,25(1):96-98.
    [25].何峰江,陶果.改进的模拟退火算法及其在正交偶极子各向异性反演中的应用[J].石油大学学报(自然科学版),2005,1:005.
    [26].王才志,石广仁,张丽君.基于极快速模拟退火算法的地层横波各向异性反演[J].石油学报,2007,28(1):37-72.
    [27]. Smith G C, Gidlow P M. Weighted Stacking for Rock Property Estimationand Detection of GAS[J]. Geophysical Prospecting,1987,35(9):993-1014.
    [28]. Goodway, Bill, Taiwen Chen, and Jon Downton."Improved AVO FluidDetection And Lithology Discrimination Using Lamé Petrophysical Parameters;“λρ”,μρ, λμ Fluid Stack”, From PAnd S Inversions."1997SEGAnnual Meeting.1997.
    [29]. Russell B H, Hedlin K, Hilterman F J, et al. Fluid-property discriminationwith AVO: A Biot-Gassmann perspective[J]. Geophysics,2003,68(1):29-39.
    [30].宁忠华,贺振华,黄德济.基于地震资料的高灵敏度流体识别因子[J].石油物探,2006,45(3):239-241.
    [31].刘国强,谭廷栋.孔隙度和含气饱和度的弹性模计算方法[J].石油勘探与开发,1993,20(5):33-41.
    [32].王才志,张丽君.基于地层弹性模量建立含气饱和度模型[J].石油勘探与开发,2007,34(5):598-602.
    [33].王磊,王学琴,吴胜,等.利用弹性模量计算含气饱和度方法研究[J].西南石油大学学报(自然科学版),2011,33(4):69-72.
    [34]. Han D, Nur A, Morgan D. Effects of porosity and clay content on wavevelocities in sandstones[J]. Geophysics,1986,51(11):2093-2107.
    [35]. Katahara K W. Clay mineral elastic properties[C]//1996SEG AnnualMeeting.1996.
    [36]. Mollison R A, Sch n J H, Fanini O, et al. A model for hydrocarbonsaturation determination from an orthogonal tensor relationship in thinly laminatedanisotropic reservoirs[J]. Society of Petrophysicists and Well Log Analysts, Paper OO,1999.
    [37]. Sams M S, Andrea M. The effect of clay distribution on the elasticproperties of sandstones[J]. Geophysical prospecting,2001,49(1):128-150.
    [38]. Chi, S., and X. M. Tang."Accurate approximations to QSV and QP wavespeeds in TIV media and Stoneley wave speed in general anisotropic media."44thAnnual Logging Symposium.2003:22–25.
    [39]. Georgi D, Atlas B, Sch n J. Elastic Wave Anisotropy and ShaleDistribution[J].2005.
    [40]. Gassmann F. Elastic waves through a packing of spheres[J]. Geophysics,1951,16(4):673-685.
    [41]. Brown R J S, Korringa J. On the dependence of the elastic properties of aporous rock on the compressibility of the pore fluid[J]. Geophysics,1975,40(4):608-616.
    [42]. Berryman J G. Single‐scattering approximations for coefficients inBiot’s equations of poroelasticity[J]. The Journal of the Acoustical Society of America,1992,91:551.
    [43]. Wang Z, Nur A. Elastic wave velocities in porous media: a theoreticalrecipe[J]. Seismic and acoustic velocities in reservoir rocks,1992,2:1-35.
    [44]. Kuster G T, Toks z M N. Velocity and attenuation of seismic waves intwo-phase media: Part I. Theoretical formulations[J]. Geophysics,1974,39(5):587-606.
    [45]. Hill R. A self-consistent mechanics of composite materials[J]. Journal ofthe Mechanics and Physics of Solids,1965,13(4):213-222.
    [46].史燕红.基于Gassmann方程的流体替换[D].成都:成都理工大学,2009.
    [47].林凯.基于Gassmann方程的弹性参数数值模拟研究[D].成都:成都理工大学,20010.
    [48].李舟波.钻井地球物理勘探[M].北京:地质出版社,2005.
    [49].王文文.阵列声波测井信号分析及其流体识别方法研究[D].西南石油大学,2010.
    [50].王朝辉.交叉偶极声波测井(XMAC)信息提取方法研究[D].吉林大学,2005.
    [51].宋传星.交叉偶极横波测井高分辨率处理方法研究[D].大庆石油学院,2005.
    [52].王才志.交叉阵列偶极声波测井的处理方法研究及软件开发[D]:博士学位论文[D].,2003.
    [53].唐晓明,郑传汉,赵晓敏.定量测井声学[M].石油工业出版社,2004.
    [54].钟剑.阵列声波测井属性信息提取方法研究[D].西南石油大学,2011.
    [55].王少鹤.利用阵列声波测井资料预测静态压裂参数[J][J].测井技术,2011,35(3):270-274.
    [56].陈颙,黄庭芳,刘恩儒.岩石物理学[M].中国科学技术大学出版社,2009.
    [57]. Alford R M. Shear data in the presence of azimuthal anisotropy: Dilley,Texas[C]//1986SEG Annual Meeting.1986.
    [58]. Tang X, Chunduru R K. Simultaneous inversion of formation shear-waveanisotropy parameters from cross-dipole acoustic-array waveform data[J]. Geophysics,1999,64(5):1502-1511.
    [59].余兵,贺时兴.差分进化算法及其应用[D].西安:西安工程大学,2007.
    [60].伍军.解决多目标优化问题的差分进化算法研究[D].湘潭大学,2009.
    [61].赵艳丽.差分进化算法在图像处理中的应用研究[D].中国石油大学,2010.
    [62].杨启文,蔡亮,薛云灿.差分进化算法综述[J].模式识别与人工智能,2008,21(4):506-513.
    [63].魏周拓,范宜仁,陈雪莲,等.横波各向异性分析方法及其在复杂储层中的应用[J].石油物探,2011,50(3):275-280.
    [64].郭云峰,王易安,李文博,等.偶极声波数据滤波及各向异性计算的研究[J].科学技术与工程,2012,12(9):2033-2035.
    [65].吴春萍.鄂尔多斯盆地北部上古生界致密砂岩储层测井地质评价[J].特种油气藏,2004,11(1):9-11.
    [66].李留中,韩成,王鹏,等.北部山前带致密砂岩储层测井评价方法[J].吐哈油气,2010,15(002):257-262.
    [67].黄龙,鲍志东,刘俊东,等. DG油田油气层高侵实例分析[J].测井技术,2007,6:021.
    [68].孙越,李振苓,郭常来.致密砂岩气层测井评价方法研究[J].科学技术与工程,2012,12(19):4607-4615.
    [69].罗兴平,张大勇,王燕,等. MDT单压力点确定油/气/水界面方法[J].测井技术,2011,35(2):180-182.
    [70].张齐.三孔隙度重叠法和三孔隙度差值及比值法在保山盆地永铸街气田气层识别中的应用[J].石油天然气学报,2010(002):90-93.
    [71].李雄炎,李洪奇,谭锋奇,等.天然气有效储层的测井勘探技术——以准噶尔盆地东部五彩湾凹陷为例[J].地球物理学进展,2009,24(2):609-619.
    [72].徐忠清,陈草棠,罗学东,等.偶极子声波的正交原理及其在地层评价中的应用[J].石油仪器,2009,23(5):62-64.
    [73].邵维志,刘德武,韩成.利用T2谱评价板桥潜山油气藏[J].测井技术,2000,24(5):345-350.
    [74].王炳章.地震岩石物理学及其应用研究[D].成都:成都理工大学,2008.
    [75].张宪旭.弹性阻抗岩性和流体特性识别研究[D].西北大学,2009.
    [76].陈信平,刘素红.浅谈Gassmann方程[J].中国海上油气(地质),1996,11(2):122-127.
    [77].李景叶.砂岩油藏地震数据流体替换[J].石油学报,2012,33(4):633-639.
    [78].轩义华,袁立忠,汪瑞良,等.基于Biot-Gassmann方程的流体替换技术在番禺天然气区PY气田的应用[J].世界地质,2011,30(1):60-64.
    [79].张金强,曲寿利,孙建国,等.一种碳酸盐岩储层中流体替换的实现方法[J].石油地球物理勘探,2010(3):406-409.
    [80].周水生,张波,伍向阳.流体替换方法研究及应用分析[J].地球物理学进展,2009(005):1660-1664.
    [81].张金强,马中高,曲寿利,等.碳酸盐岩储层流体替换中混相流体体积模量的计算[J].石油物探,2012,51(2):133-137.
    [82].巫芙蓉,李亚林,王聃,等. AVO属性在致密砂岩储层流体检测中的应用[J].天然气工业,2011,31(5):55-57.
    [83].张永军,顾定娜,马肃滨等.阵列声波测井资料在吐哈油田致密砂岩气层识别中的应用[J].测井技术.2012,36(2):175-178.
    [84].李山生,赵辉,司马立强,等.利用弹性参数识别气,水层[J].西南石油大学学报(自然科学版),2012,34(3).
    [85].章成广,江万哲,肖承文,等.声波全波资料识别气层方法研究[J].测井技术,2004,28(5):397-401.
    [87].谭廷栋.用等效弹性模量差比法识别裂缝性气层[J].天然气工业,1985,5(1):12-20.
    [88].赵建,高福红.测井资料交会图法在火山岩岩性识别中的应用[J].世界地质,2003,22(2):136-140.
    [89].刘卫华,高建虎,陈启艳,等.测井资料岩石物理分析在苏西地区储层预测研究中的应用[J].地球物理学进展,2010,25(3):939-945.
    [90].冯国庆,杨琨,陈忠强,等.提高测井曲线纵向分辨率的小波变换技术[J].新疆石油地质,2004,25(5):529-531.
    [91].王鑫,孙建孟,田艳,等.小波能谱识别储层流体性质[J].勘探地球物理进展,2010,33(001):36-39.
    [92].岳文正,陶果.小波变换在识别储层流体性质中的应用[J].地球物理学报,2003,46(6):863-869..
    [93].章成广,江万哲,肖承文,等.声波全波资料识别气层方法研究[J].测井技术,2004,28(5):397-401.
    [94]. Sch n J, Georgi D Tang X. Elastic Wave Anisotropy and ShaleDistribution[C]. SPWLA46th Annual Logging Symposium.2005:1-15.
    [95].李舟波,潘保芝,范晓敏.地球物理测井数据处理与综合解释[M].北京:地质出版社,2008.
    [96].边会媛.砂泥岩薄互层电性各向异性及薄储层综合评价[D].吉林大学,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700