用户名: 密码: 验证码:
红旗岭铜镍硫化物矿床地质地球化学特征及找矿技术方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红旗岭矿床是我国的第二大岩浆型铜镍硫化物矿床。本文系统地研究了该矿床的地质特征、镁铁—超镁铁岩体的时空分布规律、成矿岩体的地质地球化学特征和矿床成矿机理,深化了红旗岭铜镍矿床的成岩成矿机理认识;在此基础上,对各种找矿方法的有效性进行了研究,首次系统阐述了同类型矿床的找矿技术流程。
     红旗岭铜镍矿床位于兴安—蒙古造山带东部,中朝准地台与天山—兴安地槽区之交汇处。红旗岭矿区内出露的地层主要为下古生界寒武—奥陶系呼兰群变质岩系,茶尖矿区内出露的地层主要为下二叠统寿山沟组碎屑岩系。北东向辉发河深大断裂诱导出的北西向断裂是该矿床的控岩控矿构造,也是主要的导矿和容矿构造。
     红旗岭铜镍矿床包括红旗岭和茶尖两个矿区。红旗岭矿区由3个镁铁—超镁铁岩带组成:Ⅰ岩带包括1号、7号、3号、2号和32号等含矿岩体及33号、23号等不含矿岩体,其中多为多岩相岩体;Ⅱ、Ⅲ岩带岩相相对简单,未发现工业矿体,且Ⅱ岩带岩体普遍具有片麻状构造。茶尖矿区由3个岩带组成:西部超镁铁质亚带分布有8号和9号岩体;后水—茶尖—南水镁铁—超镁铁质亚带分布有1号、2号、14号、10号、5号等岩体;和平—齐家—上富太镁铁—超镁铁质亚带分布有3号、6号、7号岩体等。其中含矿性较好的岩体主要有1号、9号和新6号岩体。红旗岭铜镍矿床成矿岩体均形成于印支期。茶尖矿区的成矿岩体年龄略早于红旗岭矿区,显示了成矿岩体形成时代具有由西南至东北逐渐变新的趋势。
     成矿岩体的岩相组合主要有3种型式:1号岩体型、7号岩体型和3号岩体型。1号岩体型为辉长岩相+辉岩相+辉石橄榄岩相+橄榄二辉岩相,含矿岩相为橄榄二辉岩相;7号岩体型为二辉岩相+辉石橄榄岩相,两相均为含矿岩相;3号岩体型为辉长岩相+含长角闪辉石岩相+橄榄二辉岩相,含矿岩相主要为含长角闪辉石岩相。红旗岭矿区各岩体橄榄石和斜方辉石均以富镁为特点,橄榄石均为贵橄榄石,斜方辉石En一般在80%以上。成矿岩体单斜辉石主要为顽透辉石、普通辉石和异变普通辉石,化学成分变化大,尤其是单斜辉石Di端元的比例变化最大。成矿岩体角闪石均属于钙质角闪石类,化学成分变化大。
     成矿岩体岩石化学成分变化大,表现出岩浆强烈分异的特点。红旗岭1号岩体的镁铁比值(m/f)为2.69~5.99,平均为4.79,Mg~#为73.40~85.89,平均为82.31;7号岩体的镁铁比值(m/f)为1.01~5.03,平均为3.75,Mg~#为50.49~83.84,平均为77.44;3号岩体的镁铁比值(m/f)为0.74~5.11,平均为2.98,Mg~#为42.76~83.84,平均为72.58。成矿岩体总体成分均属于铁质超基性岩。
     成矿岩体U、K、Pb含量相对富集以及Nb、Ta含量的相对亏损是本区成矿岩体固有的地球化学特征,与岩浆演化分异无明显关系。Nd稳定同位素显示,成矿岩浆来自亏损地幔。Sr、Os同位素等研究显示成矿岩体均具有明显的地壳物质混染,而成矿岩体中发现的捕获锆石为地壳物质混染提供了直接证据。综合研究表明,岩浆来源应为亏损地幔,并受到明显的地壳物质混染。
     稀土元素、铂族元素研究显示,成矿岩体经历了明显的岩浆分离结晶作用。红旗岭1号岩体和3号岩体成矿作用以就地熔离为主,7号岩体以深部熔离为主。分离结晶作用和地壳物质混染是促使硫饱和而发生硫化物熔离成矿的主要机制。成矿后期热液的叠加改造对矿化的再富集有一定的作用,甚至局部(如7号岩体深部)存在富PGE的热液脉状矿体。岩体强烈蚀变以及闪长伟晶岩、石英—硫化物脉等广泛分布是成矿岩体重要的地质标志之一。
     根据造岩矿物地质温压计,估算红旗岭成矿岩体橄榄石结晶的开始温度为1400~1500℃,主要成矿岩体二辉石共结温度为1000~1200℃。成矿岩体冷凝固结温度略低于不成矿岩体,与成矿岩体普遍挥发性组分较高有关。成矿岩体的成岩压力为3.7~6.2kb,深度为12.3~20.7km。成矿温度为300℃~500℃,成矿深度与成岩深度相近。
     研究表明,与岩浆硫化物矿床有关的镁铁—超镁铁岩群均产出于板块边缘带、槽台边界或造山带中深大断裂旁侧次一级断裂中。矿化较好的镁铁—超镁铁岩群在1:20万水系沉积物中常具有较明显的Ni异常,且Ni/Co高;但对矿化程度较低、岩体规模较小的镁铁—超镁铁岩群Ni、Ni/Co的指示效果不明显。在中比例尺的航磁中,镁铁—超镁铁岩群常位于条带状、线状以及串珠状的负磁异常带中或正负异常的分界处。
     镁铁—超镁铁岩体与大比例尺高磁异常、重力高值圈闭以及Ni、Co、Cu组合异常均有较好的对应关系,表明高精度地磁、高精度重力以及土壤地球化学测量是寻找镁铁—超镁铁岩体的有效方法。而岩体的地质地球化学评价是筛选成矿岩体,寻找矿体的最佳途径。瞬变电磁法是铜镍硫化物矿体定位的有效手段,可控源音频大地电磁测深法和地电化学法对铜镍硫化物矿体定位也具有一定的效果。
     综合研究提出的岩浆型铜镍硫化物矿床找矿技术流程分为战略选区阶段、岩体定位阶段、岩体评价阶段以及矿体定位4个阶段。战略选区阶段:通过构造背景分析、区域化探异常分析以及航磁异常分析等确定镁铁—超镁铁岩体分布远景区;岩体定位阶段:通过高精度地磁、高精度重力以及土壤地球化学测量圈定镁铁—超镁铁岩体;岩体评价阶段:对镁铁—超镁铁岩体的含矿性进行评价,选出成矿潜力较高的镁铁—超镁铁岩体;矿体定位阶段:采用瞬变电磁法、可控源音频大地电磁测深法和地电化学法联用对深部矿体进行定位。
Hongqiling deposit is a magmatic Cu-Ni sulfide deposit that ranks second in China. Thegeological characteristics of Cu-Ni deposit, temporal and spatial distribution of mafic-ultramafic intrusions and the geological and geochemical characteristics of metallogenicintrusions have been studied systematically in this thesis, to deepen the understanding of itsmetallogenic mechanism. The effectiveness of various prospecting methods is studied and theprospecting technical process for this type Cu-Ni sulfide deposits has been carried out for thefirst time.
     Hongqiling Cu-Ni deposit is located in the east of Xing’an-Mongolia Orogenic belt, theintersection of Xing’an geosyncline and Sino Korean paraplatform. The stratum outcroppedare mainly the Cambrian-Ordovician Hulan Group metamorphic rocks of Lower Paleozoic inHongqiling mine field and Shoushangou formation clastic rock series of Lower Permian inChajian mine field. NW-trending faults induced by the NE-trending Huifahe deep fracture arethe rock and ore controlling structures. Meanwhile, they are also the ore leading and hostingstructures of the deposit.
     Hongqiling Cu-Ni deposit includes two mine fields, Hongqiling and Chajian. There arethree mafic-ultramafic zones in Hongqiling mine field. Metallogenic intrusions such as No.1,No.7, No.3, No.2and No.32as well as other non ore-bearing intrusions such as No.33andNo.23are located in zone Ⅰ, most of which are multi-lithofacies. The lithofacies of zoneⅡand Ⅲ are relatively simple with no industrial ore-body. Intrusions in zoneⅡcharacterizedby gneissic structures generally. Chajian mine field also comprise three mafic-ultramaficzones. There are No.8and No.9intrusion distributed in western ultramafic sub zone, No.1,No.2, No.14, No.10and No.5intrusion in Houshui-Chajian-Nanshui mafic-ultramafic subzone and No.3, No.6, No.7intrusion in Heping-Qijia-Shangfutai mafic-ultramafic sub zone.Among them, No.1, No.9and new No.6intrusion are metallogenic intrusions. Themetallogenic intrusions in Hongqiling Cu-Ni deposit all formed in Indosinian. The ages ofmetallogenic intrusions in Chajian mine field is slightly older, shows a trend that therock-forming ages of metallogenic intrusions become younger from southwest to northeastgradually.
     There are mainly three types of lithofacies association of the metallogenic intrusions:type No.1, No.7and No.3. The lithofacies association of type No.1is gabbro+pyroxenolite+pyroxene+peridotite+olivine-websterite, and ore-bearing lithofacies are lherzolites. Type No.7intrusion includes websterite+pyroxene peridotite, and they are also the ore-bearinglithofacies. No.3intrusion includes gabbro+anorthose-bearing hornblende pyroxenite+olivine-websterite, and the ore-bearing lithofacies are mainly anorthose-bearing hornblendepyroxenites. The olivines and orthopyroxenes are magnesium-rich in all intrusions ofHongqiling mine field. The olivines belong to chrysolite and En of orthopyroxenes isgenerally above80%. Clinopyroxenes in metallogenic intrusions mainly belong to diopside,augite and pigeonite-augite with great variation in chemical composition, especially thevariation of clinopyroxene Di end member. Amphiboles in metallogenic intrusions all belongto calcic amphibole with great variation in chemical composition.
     The chemical composition of metallogenic intrusions varies greatly. It shows that thecharacteristic of strong magma differentiation. The ratio (m/f) of No.1intrusion ranges from2.69to5.99with an average of4.79, and Mg~#ranges from73.40to85.89with an average of82.31. No.7intrusion ranges from1.01to5.03with an average of3.75, and Mg~#ranges from50.49to83.84with an average of77.44. The ratio (m/f) of No.3intrusion ranges from0.74to5.11with an average of2.98, and Mg~#ranges from42.76to83.84with an average of72.58.The metallogenic intrusions all belong to iron ultrabasic rocks by constituents.
     The enrichment of U, K and Pb and relative loss of Nb, Ta in metallogenic intrusions aretheir intrinsic geochemical characteristics which have no relationship with magma evolutionand differentiation. Stable isotope Nd indicates that the metallogenic magma originated fromdepleted mantle. The research on Sr, Os shows that metallogenic intrusions all have obviouscrustal contamination, and the found of capture zircon in metallogenic intrusions provides adirect evidence for crustal contamination. Comprehensive study shows that the magmaoriginated from depleted mantle and was affected by crustal contamination.
     Rare earth elements and PGE characteristics show that metallogenic intrusionsunderwent obvious magmatic fractional crystallization. The mineralization of No.1and No.3intrusions are mainly in-situ liquiation, while No.7intrusion is liquation at deep-level. Strongfractional crystallization and crustal contamination are the main mechanism promoting thesulfur supersaturated and sulfide liquated to mineralize. Superimposition-reformation of thelatter metallogenic stage hydrotherm acts a part in the re-enrichment for mineralization, evenPGE-rich hydrothermal vein-like ore bodies exist (especially in deep No.7intrusion). Theappearance of alteration, diorite pegmatite and products of hydrothermal such as sulfide-quartz are the significant geological signs of metallogenic intrusions.
     According to the geological thermobarometer of rock-forming minerals, the calculatedtemperature of crystallization beginning of olivines in metallogenic intrusions is1400℃-1500℃. Eutectic temperature of websterite is1000℃-1200℃. Condensation and console-dation temperature of metallogenic intrusions is slightly lower than that of none-metallogenicintrusions, which is related to high volatile components in metallogenic intrusions. Thediagenetic pressure and depth of the metallogenic intrusions are3.7to6.2kb and12.3to20.7km. The metallogenic temperature is300℃-500℃. The metallogenic depth is consistentwith diagenetic.
     The research shows that the mafic-ultramafic rocks related to magmatic sulfide depositsare located in the plate margin, boundary between platform and geosyncline or secondaryfaults of the deep fracture in the orogenic belt. The better mineralized mafic-ultramaficintrusions often have a prominent Ni abnormalities and high Ni/Co in1:200000streamsediment. The indication effect of Ni, Ni/Co is not obvious when the level of mineralization islow or the scale of mafic-ultramafic intrusion is small. In medium-scale aeromagneticprospecting, mafic-ultramafic intrusions are often located in banded, lined and beadednegative magnetic anomaly zones or the boundary between positive and negative anomalies.
     Mafic-ultramafic intrusions have good correlations with large-scale high magneticanomalies, the high value gravity traps and Ni, Co, Cu combination anomalies. Thehigh-precision geomagnetism, gravity and geochemical soil survey are effective ways formafic-ultramafic intrusions prospecting. Geological and geochemical evaluation of theintrusions is the best way to screen metallogenic intrusions and find ore bodies. Transientelectromagnetic method is an effective mean for positioning the Cu-Ni sulfide ore bodies,controlled source audio-frequency magnetotellurics and geo-electrochemical method alsopossess certain effects.
     Prospecting technology process for magmatic Cu-Ni sulfide deposits can be grouped intofour stages: strategic area selection stage, intrusions positioning stage, intrusions evaluationstage and ore bodies positioning stage. Strategic area selection stage: distribution prospect ofmafic-ultramafic intrusions are determined by tectonic setting, regional geochemicalexploration and aeromagnetic anomalies. Intrusions positioning stage: mafic-ultramaficintrusions are determined by high-precision geomagnetic and gravity measurement and soilgeochemical measurement. Intrusions evaluation stage: ore-bearing potential of mafic-ultramafic intrusions are evaluated by geological and geochemical characteristics. Ore bodiespositioning stage: deep ore bodies are located by means of transient electromagnetic method,controlled source audio-frequency magneto-tellurics and and geo-electrochemical method.
引文
[1]郗爱华.红旗岭铜镍硫化物矿床地质成因模型[D].长春:吉林大学,2002.
    [2]郗爱华,任洪茂,李宝林,等.吉林省红旗岭铜镍硫化物矿床的岩石学和地球化学研究[J].吉林大学学报(地球科学版),2002,32(2):140-145.
    [3]秦宽.红旗岭岩浆硫化铜镍矿床地质特征[J].吉林地质,1995,14(3):17-30.
    [4]刘俊梅,张宏,冯修云,等.红旗岭矿区2号岩体岩浆型硫化铜镍矿床成矿规律及找矿意义[J].吉林地质,2012,29(4):39-42.
    [5]刘月星,唐红松,吴厚泽.中国铜镍硫化物矿床类型及控矿条件[J].矿产与地质,1998,12(2):86-90.
    [6]徐贵东,黄继军,刘德君.瞬变电磁在吉林省红旗岭铜镍矿勘查中的应用[J].吉林地质,2010,29(4):79-82.
    [7]罗先熔,周涛发.吉林红旗岭铜镍矿床地电化学异常特征、成晕机制及找矿预测[J].吉林大学学报(地球科学版),2004,34(2):304-308.
    [8]杨言辰,孙德有,马志红,等.红旗岭镁铁—超镁铁岩侵入体及铜镍硫化物矿床的成岩成矿机制[J].吉林大学学报(地球科学版),2005,35(5):593-600.
    [9]郗爱华,顾连兴,李绪俊,等.吉林红旗岭铜镍硫化物矿床的成矿时代讨论[J].矿床地质,2005,24(5):521-526.
    [10]王瑞廷,毛景文,柯洪,等.铜镍岩浆硫化物矿床成矿作用研究综述[J].矿产与地质,2003,17(97):281-284.
    [11] HOATSON D M, JAIRETH S, JAQUES A L. Nickel sulfide deposits in Australia Characteri-stics, resources, and potential[J]. Ore Geology Reviews,2006,29:177-241.
    [12]罗照华,马拉库舍夫,潘妮娅,等.铜镍硫化物矿床的成因—以诺里尔斯克(俄罗斯)和金川(中国)为例[J].矿床地质,2000,19(4):330-339.
    [13] SOBOLEV A V MIKHAILOV V N et al. KRIVOLUTSKAYA N A. Parental Melt of theNadezhdinsky Formation: Geochemistry, Petrology and Connection with Cu-Ni Deposits(noril'sk Area, Russia)[J]. Chemical Geology,2012,302-303:87-105.
    [14] NALDRETT A J. World-class Ni-Cu-PGE deposits: key factors in their genesis[J].Mineralium Deposita,1999,34:227-240.
    [15]吕林素,汪云峰,李宏博,等.南非布什维尔德岩浆型Cu-Ni-PGE硫化物矿床成因探讨[J].矿床地质,2011,30(6):1129-1148.
    [16] LI C, RIPLEY E M, MAIER W D, et al. Olivine and sulfur isotopic compositions of theUitkomst Ni-Cu sulfide ore-bearing complex, South Africa: evidence for sulfurcontamination and multiple magma emplacements[J]. Chemical Geology,2002,188:149-159.
    [17] MEURER W P, WILLMORE C C, BOUDREAU A E. Metal redistribution during fluidexsolution and migration in the Middle Banded series of the Stillwater Complex, Montana[J].Lithos,1999,47:143-156.
    [18] LOTTER N O. Distribution modelling of the nickel assay grades in final tailings at Raglan,Que′bec[J]. Minerals Engineering,2007,20:1067-1074.
    [19] EVANS D M, BOADI I L, BYEMELWA, et al. Kabanga magmatic nickel sulphide deposits,Tanzania: morphology and geochemistry of associated intrusions[J]. Journal of African EarthSciences,2000,30(3):651-674.
    [20] OBERTHUR T, DAVIS D W, BLENKINSOP T G, et al. Precise U-Pb mineral ages, Rb–Srand Sm–Nd systematics for the Great Dyke, Zimbabwe-constraints on late Archean events inthe Zimbabwe craton and Limpopo belt[J]. Precambrian Research,2002,113(31):293-305.
    [21] BROOKS C K, KEAYS R R, LAMBERT D D, et al. Re-Os isotope geochemistry of Tertiarypicritic and basaltic magmatism of East Greenland: constraints on plume–lithosphereinteractions and the genesis of the Platinova reef, Skaergaard intrusion[J]. Lithos,1999,47:107-126.
    [22]宋谢炎,肖家飞,朱丹,等.岩浆通道系统与岩浆硫化物成矿研究新进展[J].地学前缘,2010,17(1):153-163.
    [23] NALDRETT A J. An overview of Ni-Cu mineralization with conclusions guide in explora-tion[C]//International Geological Correlation Programme479short course notes,2004:154-164.
    [24]李文渊.岩浆Cu-Ni-PGE矿床研究现状及发展趋势[J].西北地质,2007,40(2):1-28.
    [25]范育新,张铭杰.超大型铜镍硫化物矿床研究进展[J].甘肃地质学报,1999,8(2):47-52.
    [26]李献华,苏犁,宋彪,等.金川超镁铁侵入岩SHRIMP锆石U-Pb年龄及地质意义[J].科学通报,2004,49(4):401-402.
    [27]张宗清,杜安道,唐索寒,等.金川铜镍矿床年龄和源区同位素地球化学特征[J].地质学报,2004,78(3):359-365.
    [28]杨刚,杜安道,卢记仁,等.金川镍-铜-铂矿床块状硫化物矿石的Re-Os(ICP-MS)定年[J].中国科学D辑:地球科学,2005,35(3):241-245.
    [29]王瑞廷,毛景文,赫英,等.煎茶岭硫化镍矿床的铂族元素地球化学特征及其意义[J].岩石学报,2005,21(1):219-226.
    [30]庞春勇,陈民扬.煎茶岭地区同位素地质年龄数据及其地质意义[J].矿产与地质,1993,7(37):354-360.
    [31]李华芹,陈富文,路远发,等.东天山三岔口铜矿区矿化岩体SHRIMP U-Pb年代学及锶同位素地球化学特征研究[J].地球学报,2004,25(2):191-195.
    [32]韩宝福,季建清,宋彪,等.新疆喀拉通克和黄山东含铜镍矿镁铁—超镁铁杂岩体的SHRIMP锆石U-Pb年龄及其地质意义[J].科学通报,2004,49(22):2324-2328.
    [33]张作衡,柴凤梅,杜安道,等.新疆喀拉通克铜镍硫化物矿床Re-Os同位素测年及成矿物质来源示踪[J].岩石矿物学杂志,2005,24(4):285-293.
    [34]陶琰,胡瑞忠,屈文俊,等.力马河镍矿Re-Os同位素研究[J].地质学报,2008,82(9):1292-1304.
    [35]石贵勇,孙晓明,王生伟,等.云南白马寨铜镍硫化物矿床Re-Os同位素定年及其地质意义[J].岩石学报,2006,22(10):2451-2456.
    [36] MOLNAR F. Fluid-inclusion characteristics of hydrothermal Cu-Ni-PGE veins in graniticand metavolcanic rocks at the contact of the Little Stobie deposit, Sudbury, Canada[J].Chemical Geology,1999,154:279-301.
    [37] LAMBERT D D, FOSTER J G, FRICK L R, et al. Re–Os isotopic systematics of the Voisey'sBay Ni-Cu-Co magmatic ore system, Labrador, Canada[J]. Lithos,1999,47:69-88.
    [38] BARNES S J, SAVARD D, BEDARD L P, et al. Selenium and sulfur concentrations in theBushveld Complex of South Africa and implications for formation of the platinum-groupelement deposits[J]. Miner Deposita,2009,44:647-663.
    [39] STAROSTIN V I, SOROKHTIN O G. A new interpretation for the origin of the Norilsk typePGE-Cu-Ni sulfide deposits[J]. Geoscience Frontiers,2011,2(4):583-591.
    [40] ATHANAS S, MACHEYEKI. Application of lithogeochemistry to exploration for Ni–Cusulfide deposits in the Kabanga area, NW Tanzania[J]. Journal of African Earth Sciences,2011,61:62-81.
    [41]杨胜洪,陈江峰,屈文俊,等.金川铜镍硫化物矿床的Re-Os年龄及其意义[J].地球化学,2007,36(1):27-36.
    [42]沈宏飞.金川岩浆铜镍硫化物矿床的流体组成及其成矿意义[D].兰州:兰州大学,2010.
    [43]王瑞廷,赫英,王东生,等.略阳煎茶岭铜镍硫化物矿床Re-Os同位素年龄及其地质意义[J].地质论评,2003,49(2):205-221.
    [44]谢燮.热液作用对铜镍硫化物矿床成矿的贡献—以金川矿床和拉水峡矿床为例[D].西安:长安大学,2010.
    [45]武殿英.红旗岭硫化铜镍矿床成岩成矿作用的再认识[J].吉林地质,1987,4:45-51.
    [46]傅德彬.论401矿区一号岩体硫化铜镍矿床的成因问题[J].吉林地质,1982,4:1-16.
    [47]王炳恩,王泽利,秦宽.吉林省红旗岭矿区磁黄铁矿-镍黄铁矿矿石建造特征及其成因分析[J].矿物岩石,1997,17(2):22-27.
    [48]柴社立,任洪茂,申庆贵,等.吉林红旗岭地区含矿与不含矿岩体的地质地球化学对比[J].地质找矿论丛,2003,18(4):229-232.
    [49]郗爱华,顾连兴,李绪俊,等.中国北方造山带岩浆铜镍硫化物矿床及其地球动力学背景—以吉林红旗岭矿床为例[J].地质学报,2006,80(11):1721-1729.
    [50]郗爱华,葛玉辉,蔡元峰,等.红旗岭铜镍硫化物矿床磁性矿物学研究及矿床成因意义[J].自然科学进展,2006,16(9):1109-1115.
    [51]吉林省地质矿产局.吉林省区域地质志[M].北京:地质出版社,1988.
    [52]张广良,吴福元.吉林红旗岭地区造山后镁铁—超镁铁岩体的年代测定及其意义[J].地震地质,2005,27(4):600-608.
    [53]刘金玉,郗爱华,葛玉辉,等.红旗岭3号含矿岩体地质年龄及其岩石学特征[J].吉林大学学报(地球科学版),2010,40(2):321-326.
    [54] LV L S, MAO J W, LI H B, et al. Pyrrhotite Re-Os and SHRIMP zircon U-Pb dating of theHongqiling Ni-Cu sulfide deposits in Northeast China[J]. Ore Geology Reviews,2011,43:106-119.
    [55]冯光英,刘燊,冯彩霞,等.吉林红旗岭超基性岩体的锆石U-Pb年龄、Sr-Nd-Hf同位素特征及岩石成因[J].岩石学报,2011,27(6):1594-1606.
    [56]薛顺荣,肖克炎,丁建华.基于GIS技术下思茅—景洪地区铜多金属矿综合信息成矿预测[J].地质学报,2008,82(5):648-654.
    [57]陈毓川,朱裕生,李文祥,等.中国矿床成矿模式[M].北京:地质出版社,1993:1-367.
    [58]彭省临,邵拥军,张建东.金属矿山隐伏矿找矿预测理论与方法[J].地质通报,2011,30(4):538-543.
    [59]郑之英.矿产勘查中地质物探化探最佳组合[J].中国地质,1989,6:26-27.
    [60] MAIER W D, LI C S, DE WALL S A. Why are there no major Ni-Cu sulfide deposits in largelayers mafic-ultramafic intrusions[J]. Can. Mineral.,2001,39:547-556.
    [61]柴凤梅,张招崇,毛景文,等.岩浆型Cu-Ni-PGE硫化物矿床研究的几个问题探讨[J].矿床地质,2005,24(3):325-335.
    [62]潘振兴,许程,田战武,等.喀拉通克铜镍硫化物矿床地质特征、成因探讨及新的找矿方向[J].内蒙古石油化工,2007,1:125-127.
    [63]张照伟,李文渊,高永宝,等.南祁连化隆微地块铜镍成矿地质条件及找矿方向[J].地质学报,2009,83(10):1483-1489.
    [64]秦克章,孙赫,唐冬梅,等.东天山镁铁—超镁铁岩含矿性评价以及Cu-Ni(PGE)成矿规律与隐伏矿定位预测[J].矿物学报,2009,29(S1):80-81.
    [65]李志杰,杨瑞亭.地球物理勘探方法及其在多金属找矿中的应用[J].黄金科学技术,2009,18(2):38-41.
    [66]杨庆华,张小路,王钟,等.物探方法寻找隐伏岩浆岩型铜镍矿床[J].桂林理工大学学报,2010,30(2):208-216.
    [67]张洪瑞,熊盛青,范正国,等.青海祁漫塔格地区航磁异常特征及找矿前景[J].物探与化探,2012,36(2):163-169.
    [68]陈旺.小南山铜镍矿区及外围地质地球物理特征及其找矿方法试验研究[J].矿产与地质,1997,11(61):347-352.
    [69]黄建姿,张学书,洪托,等.土壤地球化学测量及应用效果-以云南省金平县那兰铜镍矿为例[J].科学技术与工程,2012,12(12):2786-2790.
    [70]张翔,赵晓平,谢志峰.重磁方法在金川铜镍矿东延M-15异常勘查中的应用[J].物探与化探,2010,34(2):139-143.
    [71]颉颃强,张福勤,苗来成,等.吉林中部漂河川镁铁—超镁铁质杂岩带的特征:对华北东北缘构造带性质和演化的约束[J].地质通报,2007,26(7):38-50.
    [72]周树亮,张向东,李海斌,等.吉林省茶尖矿区镁铁—超镁铁质岩体地质特征及找矿方向[J].地质与资源,2009,18(3):170-176.
    [73]陈子诚.吉林省岩浆铜镍硫化物矿床地质特征及成矿模式[J].地质与勘探,1991,26(10):1-10.
    [74] COMPSTON W, WILLIAMS I S, KIRSCHVINK J L, et al. Zircon U-Pb Ages from the EarlyCambrian time-scale[J]. Journal of Geological Society of London,1992,49:171-184.
    [75]宋彪,张拴宏,王彦斌,等.锆石SHRIMP年龄测定数据处理时系统偏差的避免:标准锆石分段校正的必要性[J].岩矿测试,2006,5(1):9-14.
    [76] CLAOUE-LONG J C, COMPSTON W, ROBERTS J, et al. Two Carboniferous ages: Acomparison of SHRIMP zircon dating with conventional zircon ages and40Ar/39Aranalysis[J]. Special Publication,1999,5:3-31.
    [77] WILLIAMS I S, BUICK C I. An extended episode of early Mesoproterozoic metamorphicfluid flow in the Reylolds Range, central Australia[J]. Journal of Metamorphic Geology,1996,14:29-47.
    [78]宋彪,张玉海,万渝生,等.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J].地质论评,2002,48(增刊):26-30.
    [79] MOELLER A, O BRIEN P J, KENNEDY A, et al. Linking growth episodes of zircon andmetamorphic textures to zircon chemistry: An example from the ultrahigh-temperaturegranulites of Rogaland, SW Norway[J]. EMU Notes in Mineralogy,2003,220:65-81.
    [80] BELOUSOVA E A, SUZANNE G W, FISHER Y. Igneous zircon: Trace elementcomposition as an indicator of source rock type[J]. Contributions to Mineralogy andPetrology,2002,143:602-622.
    [81]郗爱华,任洪茂,张宝福,等.吉林中部呼兰群同位素年代学及其地质意义[J].吉林大学学报(地球科学版),2003,33(1):15-18.
    [82]池永一,苏养正,南润善.吉中呼兰镇地区呼兰群的划分及时代[J].地球学报,1997,18(2):205-214.
    [83]陈列锰,宋谢炎,聂晓勇,等.甘肃金川Ⅱ号岩体辉石化学特征及其地质意义[J].矿物岩石,2008,28(1):88-96.
    [84]王润民,赵昌龙.新疆喀拉通克一号铜镍硫化物矿床[M].北京:地质出版社,1991:56-68.
    [85] POLDERVAART A, HESS H H. Pyroxenes in the crystallization of basaltic magma[J]. TheJournal of Geology,1951,59:472-489.
    [86] TROGER W E. Optische bestimmung der gesteinsbildenden minerale, Teil Bestimmung-stabellen[M]. Stuttgart: Schweizerbart che Verlagsbuchhandlung,1971.
    [87] LE BAS M J. The role of aluminum in igneous clinopyroxenes with relation to theirparentage[J]. American Journal of Science,1962,260:267-288.
    [88]邱家骧,廖群安.浙闽新生代玄武岩的岩石成因学与Cpx矿物化学[J].火山地质与矿产,1996,17(1):16-25.
    [89] SEYLER M, BONATTI E. Na, Al (IV) and Al (VI) in clinopyroxenes of subcontinental andsuboceanic ridge peridotites: a clue to differentmelting processes in the mantle[J]. EarthPlanet Science Letter,1994,122:281-289.
    [90]姜常义,安三元.论火成岩中钙质角闪石的化学组成特征及其岩石学意义[J].矿物岩石,1984,3:1-7.
    [91]柴凤梅,张招崇,毛景文,等.中天山白石泉镁铁超镁铁质岩体岩石学与矿物学研究[J].岩石矿物学杂志,2006,25(1):1-12.
    [92] SUZANNE M K. Upper mantle and crustal fragments in the Ithaca kimberlites[J]. TheJournal of Geology,1983,91(3):277-288.
    [93]刘民武.中国几个镍矿床的地球化学比较研究[D].西安:西北大学,2003.
    [94]支学军.吉林红旗岭铜镍矿床成矿规律及找矿远景评价[D].长春:吉林大学,2004.
    [95]戚长谋.辽、吉、黑三省基性、超基性岩分布与成矿预测[R].长春:吉林大学,1979.
    [96] SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological society special publication,1989,42:313-345.
    [97] BOYONTON W V. Cosmochemistry of the rare earth elements: meteorite studies[M].Armsterdam: elsevier science publishers,1984.
    [98] MCKENZIE, O’NIONS R K. Partial melt distributions from inversion of rare Earth elementconcentrations[J]. Journal of Petrology,1991,32:1021-1091.
    [99]储雪蕾,孙敏,周美夫.化学地球动力学中的铂族元素地球化学[J].岩石学报,2001,17(1):112-122.
    [100] NALDRETT A J. Nickel sulfides deposits:classification,composition, and genesis[J]. EeonGeol.,1981,6:28-85.
    [101] KEAYS R R. The role of komatiitic and picritic magmatism and saturation in the formationof the ore deposits[J]. Lithos,1995,34:1-18.
    [102] KEAYS R R. Palladium and iridium in komatiites and associated rocks: Application topetrogenetic problems[M]. Arndt N T, Nesbitt E G. Komatiites. London: George Allen andUnwin,1982.
    [103] MAIER W D, BARNES S J, DE WAAL S A. Exploration for magmatic Cu-Ni-PGE sulfidedeposits: A review of recent advances in the use of geochemical tools, and their applicationto some south African ores[J]. South African Geol.,1998,101(3):237-253.
    [104] BARNES S J, NALDRETT A J, GORTON M P. The origin of the fractionation of platinum-group elements in terrestrial magmas[J]. Chemical Geology,1985,53(3):303-323.
    [105] GARUTT G, FERSHTATER G, BEA F, et al. Platinum-group elements as petrologicalindicators in mafic-ultramafic complexes of the central and southern Urals: preliminaryresults[J]. Tectonophysics,1997(276):181-194.
    [106] WALKER R J, CARLSON R W, SHIREY S B, et al. Os, Nd and Pb isotope systematics ofsouthern African peridotite xenoliths: Implications for the chemical evolution ofsubcontinetal mantle[J]. Geochimica et Cosmochimica Acta,1989,53:1583-1595.
    [107]毛景文,张光弟,杜安道,等.遵义黄家湾镍钼铂族元素矿床地质、地球化学和Re-Os同位素年龄测定—兼论华南寒武系底部黑色页岩多金属成矿作用[J].地质学报,2001,75(2):234-243.
    [108]蒋少涌,杨竟红,赵葵东,等.金属矿床Re-Os同位素示踪与定年研究[J].南京大学学报(自然科学),2000,36(6):669-677.
    [109] FOSTER J G, LAMBERT D D, FRICK L R. Re-Os isotopic evidence for genesis ofArchaean nickel ores from uncontaminated komatiites[J]. Nature,1996,382:703-706.
    [110] WALKER R J, MORGAN J W, NALDRETT A J, et al. Re-Os isotope systematics of Ni-Cusulfide ores, Sudbury Igneous Complex, Ontario: Evidence for a major crustalcomponent[J]. Earth and Planetary Science Letters,1991,105:416-429.
    [111] SHIREY S B, WALKER R J. The Re-Os isotope system in cosmochemistry and high-temperature geochemistry[J]. Annu Rev Earth Plant Sci,1998,26:423-500.
    [112] RIPLEY E M, LAMBERT D D, FRICK L R. Re-Os, Sm-Nd and Pb isotopic constraints onmantle and crustal contributions to magmatic sulfide mineralization in the Duluthcomplex[J]. Geochimica et Cosmochimica Acta,1998,62:3349-3365.
    [113] WALKER R J, MORGAN J W, HORAN M F, et al. Re-Os isotopic evidence for an enrichedmantle source for the Noril'sk-type, orebearing intrusions, Siberia[J]. Geochimica et Cosmo-chimica Acta,1994,58:4179-4197.
    [114]毛景文,杨建民,屈文俊,等.新疆黄山东铜镍硫化物矿床Re-Os同位素测定及其地球动力学意义[J].矿床地质,2002,21(4):323-330.
    [115] HAN C M, XIAO W J, ZHAO G C, et al. Re-Os dating of the Kalatongke Cu-Ni deposit,Altay Shan, NW China, and resulting geodynamic implications[J]. Ore Geology Reviews,2007,32:452-468.
    [116] SPROULE R A, LAMBERT D D, HOATSON D M. Re-Os isotopic constraints on thegneiss of the Sally Malay Ni-Cu-Co deposit, East Kimberley, Western Australia[J]. Lithos,1999,47:89-106.
    [117]吴福元,孙德有,林强.东北地区显生宙花岗岩的成因与地壳增生[J].岩石学报,1999,15(2):181-189.
    [118] GLAYTON R N, O’NEIL J R, MAYEDA T K. Oxygen isotope exchange between quartzand water[J]. Journal of Geophysical Research,1972,77:3057-3067.
    [119] SUZUOKI T, EPSTEIN S. Hydrogen isotope fractionation between OH-bearing mineralsand water[J]. Geochim. Cosmochi. Acta,1976,40:1229.
    [120]郑永飞.角闪石族矿物的氧同位素分馏[J].地质科学,1995,30(1):1-11.
    [121]夏林圻.橄榄石地质温度计[J].中国地质科学院院报西安地质矿产研究所分刊,1981,2(1):73-81.
    [122]马鸿文.介绍改进的单斜辉石地质温度计公式[J].地质科技情报,1985,4(2):82-84.
    [123] WOOD B J, BANNO S. Garnet-orthopyroxene and orthopyroxene clinopyroxenerelashiship in simple and complex systems[J]. Contrib. Mineral. Petrol.,1973,42:109-124.
    [124] WELLS R A. Pyroxene thermaometry in simple and complex systems[J]. Contrib. Mineral.Petrol.,1977,62:129-139.
    [125] GASPARIK T. Two-pyroxene thermobarometry with new experimental data in the systemCaO-MgO-A12O3-SiO2[J]. Contrib. Mineral. Petrol.,1984,87:87-97.
    [126]骆华宝.中国主要硫化铜镍矿床及其成因研究[D].北京:中国地质科学院矿床研究所,1990.
    [127]汤中立.金川铜镍硫化物(含铂)矿床成矿模式及地质对比[M].北京:地质出版社,1995.
    [128]徐庆生,宋学信,张凯文,等.金川超镁铁质岩体矿物化学特征及矿物地质温度计、压力计研究[J].甘肃地质学报,1994,3(1):59-69.
    [129]吴志勇,郭原生,孙淑荣.金川铜镍硫化矿床成矿温度压力计算及成矿机制探讨[J].矿物岩石,1992,12(1):89-95.
    [130]周珣若.氧逸度的估算及其在岩矿方面的应用[J].地质与勘探,1981,11:38-46.
    [131] MAO J W, YANG J M, QU W J, et al. Re-os Age of Cu-ni Ores From the HuangshandongCu-ni Sulfide Deposit in the East Tianshan Mountains and Its Implication for GeodynamicProcesses[J]. Acta Geologica Sinica(english Edition),2003,77(2):84-90.
    [132]屈文俊,陈江峰,杜安道,等. Re-Os同位素定年对岩浆型Cu-Ni硫化物矿床成矿时代的制约[J].矿床地质,2012,31(1):151-160.
    [133]李华芹,梅玉萍,屈文俊,等.新疆坡北基性—超基性岩带10号岩体SHRIMP U-Pb和矿石Re-Os同位素定年及其意义[J].矿床地质,2009,28(5):122-131.
    [134] NALDRETT A J. Nickle Sulfide Deposits: Their Classification and Genesis with SpecialEmphasis on Deposits of Volcanic Association[J]. Canadian Mining and Metallurgical Bull.,1973,66:45-63.
    [135]解广轰,汪云亮,范彩云,等.金川超镁铁岩侵入体及超大型硫化物矿床的成岩成矿机制[J].中国科学:地球科学,1998,28(增刊):31-36.
    [136]谭劲,莫宣学,赵珊茸,等.岩浆不混溶分异过程动力学分析[J].岩石学报,1998,14(1):83-89.
    [137]张招崇,周刚,闫升好,等.新疆阿尔泰山南缘泥盆纪弧型苦橄岩铂族元素地球化学特征及其地质意义[J].现代地质,2006,20(4):519-526.
    [138]郗爱华,蔡元峰,葛玉辉,等.四平山门Cu-Ni矿化辉长岩体锆石LA-ICP-MS年龄及其地质意义[J].矿床地质,2008,27(1):57-63.
    [139]吴承烈,徐外生,刘崇民.中国主要类型铜矿勘查地球化学模型[M].北京:地质出版社,1998.
    [140]郝立波,李巍,陆继龙.确定岩性复杂区的地球化学背景与异常的方法[J].地质通报,2007,26(12):1531-1535.
    [141]焦保权,白荣杰,孙淑梅,等.地球化学分区标准化方法在区域化探信息提取中的应用[J].物探与化探,2009,33(2):165-169.
    [142]孙忠武.吉林东部山区重磁场特征线与基性超基性岩的分布关系[J].吉林地质,1983,3:51-57.
    [143]汪兴旺.青藏高原航磁双磁异常带与负磁异常区地质意义研究[D].成都:成都理工大学,2008.
    [144]谢江涛.西藏铬铁矿重磁异常特征及分布规律研究[D].成都:成都理工大学,2012.
    [145]邱伟,赵军,丁雷,等.地面高精度磁测在红旗岭镍矿资源接替勘查中的应用[J].吉林地质,2012,31(3):69-73.
    [146]刘天佑.地球物理勘探概论[M].北京:地质出版社,2007.
    [147]张志强,曹书武,宋雷鹰,等.两类岩体含矿性的地球化学评价方法[J].地质与勘探,2008,44(3):47-51.
    [148]娄德波.新疆东天山铜镍矿资源潜力评价方法研究[D].北京:中国地质科学院,2008.
    [149]秦克章,唐冬梅,苏本勋,等.北疆二叠纪镁铁—超镁铁岩铜、镍矿床的构造背景、岩体类型、基本特征、相对剥蚀程度、含矿性评价标志及成矿潜力分析[J].西北地质,2012,45(4):83-116.
    [150]李应桂,成杭新.铜镍矿床勘查中岩体含矿性的地球化学评价[J].物探与化探,1995,19(4):241-252.
    [151]高萍.新疆喀拉通克铜镍矿矿物特征研究[D].西安:长安大学,2011.
    [152]曹亚文.金川铜镍硫化物矿床矿物形成演化研究[D].北京:中国科学院,1994.
    [153]尹意求,唐红松,陈大经,等.新疆吉木乃县艾丁克罗赛岩体的铜镍含矿性评价[J].矿产与地质,2003,17(97):312-315.
    [154]韩春明,肖文交,赵国春,等.新疆喀拉通克铜镍硫化物矿床Re-Os同位素研究及其地质意义[J].岩石学报,2004,22(2):173-170.
    [155]张青杉,穆建强. CSAMT与地热勘查[J].地质找矿论丛,2003,18(增刊):184-207.
    [156]何展翔,罗延钟.西方地面瞬变电磁法理论的发展现状[J].国外地质勘探技术,1989,1:1-8.
    [157]钟立平,罗长青,牛军平,等.利用瞬变电磁系统进行深部隐伏矿体的定位预测—以吉林省某矿3号岩体为例[J].吉林地质,2003,28(3):87-91.
    [158]杨学立.铜镍硫化物矿床深部找矿地球物理方法综合研究[D].北京:中国地质大学,2012.
    [159] RYSS Y S, GOLDBERG I S. The partial extraction of metals method in mineralexploration[J]. Method and Technique.1973,84:5.
    [160]康明,罗先熔.地电化学方法的改进及应用效果[J].地质与勘探,2003,39(5):63.
    [161]康明,罗先熔.金属矿床地电化学勘查方法研究现状及前景展望[J].地质论评,2005,51(4):452.
    [162]张向文,文美兰,熊健.地电化学法在红旗岭铜、镍矿预测中的应用[J].甘肃地质,2010,19(4):65-69.
    [163]汤磊,熊健.干旱高山区地电化学法寻找铜镍矿研究—以青海化隆拉水峡铜镍矿区为例[J].矿产与地质,2010,24(5):475-480.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700