用户名: 密码: 验证码:
混合地震采集数据成像改进方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文首先从频率域Helmholtz方程出发,详细描述频率域正演过程和频率域混合激发采集正演过程。以“蘑菇状”模型为代表,通过频率域正演得到了频率切片以及转换到时间域的地震记录。在频率域使用相位编码方法,实现了模型的频率域混合激发采集正演,得到了不同频率的频率切片。通过求解Helmholtz方程,推导出频率域的逆时偏移方法。基于频率域的逆时偏移方法,给出了频率域最小二乘逆时偏移技术。以典型的Marmousi模型为代表,通过该方法进行了频率域的混合偏移取得了较好的效果。对比分析了影响频率域最小二乘逆时偏移的因素及优缺点。
     以上方法都是基于理论数据的,从而取得了非常好的效果。但是实际地震勘探中往往存在很多的问题,例如:同一地区不同年代的地震数据存在不匹配、地震道存在缺失道、海上检波器漂移等对采集资料造成影响。这些因素都制约着地震勘探的精度,造成地震数据同相轴不连续、信噪比低、分辨率低等。尤其对于二次地震勘探的地区,因而必须进行高精度匹配滤波处理。
     通过高精度匹配处理提取更有价值的信息越来越受到地球物理学家的关注。匹配滤波广泛应用于新老资料匹配、不同震源资料匹配、四维地震监测等重要领域。传统地匹配滤波方法受多方面限制,难以克服噪声影响。把同一地区的不同年代或者震源的地震资料进行匹配处理,使能量特征和相位特征得到匹配。然后进行地震资料的后续处理。当地下构造十分复杂时,如何进行高精度数据匹配地震数据处理。如何从匹配后的地震数据中获得高精度的地下构造,是地球物理学家非常关注和关心的问题。
     基于以上问题,本文提出了在小波域内进行L1最优范数匹配处理,振幅、波形、相位一致性问题都得到了较好解决。对地震资料进行小波分解,提取有效信号进行L1范数最优匹配处理,提高了资料品质,保真性较好,波组特征清晰,所反映的地质信息丰富。采用本文方法对不同年代采集的地震资料进行匹配,在频率、相位、振幅等方面的处理效果都较常规方法有显著提升,为地质综合研究提供了极具应用价值的基础资料。由于Curvelet变换稀疏性更好,比小波域变换更为精细,文章进一步在Curvelet域使用L1最有范数进行Curvelet域精细尺度下地震数据匹配,匹配后地震数据的波形一致性很高,噪声得到了一定的压制。
     地震勘探中,受地表因素、检波器等其他因素影响,地震数据往往存在缺失道。对不同程度缺失的地震数据进行Curvelet域缺失道插值,尤其在缺失道数的情况下,插值效果明显。高精度高信噪比的插值和匹配结果验证了本方法的优越性。文中对不同程度缺失的含噪声数据进行了Curvelet域地震缺失道插值,不仅使数据插值效果明显且插值后的数据具有波形、振幅谱和相位谱较高的一致性。本文对实际地震数据进行匹配插值,取得了让人满意的结果。混合激发采集的地震数据往往也存在缺失道问题,本文对于混合激发采集的地震数据进行匹配插值,获得了高精度的地震数据。
     深入研究了多次产生的主要过程。并对多次波偏移成像技术进行了研究。多次波偏移技术为高精度地震勘探提供了一定的新思路。通过研究混合激发采集技术,正演出含有多次波的混合地震记录。基于多次波的偏移成像研究,论文重点研究了混合多次波的偏移成像。对同时激发采集的多次波(不含一次反射波)进行混合多次波偏移成像得到了凹型模型的构造。论文深入研究了单炮记录中一次波和多次波联合偏移成像,用此方法可以提高偏移成像的精度。在此基础上研究了同时激发采集数据的一次波和多次波联合成像,并给出了同时激发采集的一次波和多次波联合成像的。对混合采集记录中的一次波和多次波进行联合成像得到了较为精确的地质模型。
     同时激发(混合)采集数据在偏移成像中也存在较多的问题,理论推导出混合采集偏移中存在串扰噪声(crosstalk)。通过模型数据的模拟试算,也证实了混合偏移成像中存在串扰噪声现象。针对串扰噪声存在的特点,提出了一种自适应加权中值滤波新方法对偏移成像中的串扰噪声进行压制。该方法基于前人的研究基础上,利用加权改进窗口的多级二维中值滤波。设计了一个权函数应用到改进窗口的多级二维中值滤波器。通过对模拟的数据进行测试和与其它压制噪声方法进行对比,验证了该方法能有效的去除噪声和保护有效信号。最后将此方法用于同时激发(混合)采集的地震数据偏移成像处理中。为了更好的克服混合采集数据偏移过程中的噪声,根据噪声特点,将所有单个混合炮抽取共检波点成像道集,将连续的噪声变为不连续的噪声,用新方法进行去除串扰噪声,得到了高精度的地震偏移成像结果。众所周知,偏移成像往往是很费时间的,为了提高计算速度,提出了并行的混合偏移成像方法,从而在一定程度上提高了计算效率。
Firstly, from the point of view of the frequency domain Helmholtz equation, a detaileddescription of the frequency domain modeling process and frequency domain blendedseismic acquisition forward process were given. Take "Mushroom" model as therepresentative, the frequency domain forward got frequency slice and conversion toseismic record in time domain. The use of phase encoding method in frequencydomain, the frequency domain hybrid model of excitation acquisition forward, thefrequency of different frequency slices. By solving the Helmholtz equation,reverse-time migration method in frequency domain is derived. Reverse timemigration method based on frequency domain, the frequency domain least-squaresreverse-time migration technology. Based on the Marmousi model, the typicalrepresentative, through the method of mixing the offset frequency domain andachieved good results. Comparative analysis of the factors of the frequency domainleast-squares reverse-time migration effect and advantages and disadvantages.
     The above methods are based on the theory of data, and achieved very good results.But there are many problems, practical seismic exploration for example: there aredifferent in the same area does not match the seismic data, seismic deficiencies,marine detector drift impact on data acquisition. These factors restrict the accuracy ofseismic exploration, seismic events caused by discontinuous, the signal-to-noise ratiois low, low resolution. Especially in the area of seismic exploration for the two time,and therefore must be high precision matching filter.
     Using the high precision matching processing to extract valuable information is moreand more concerned by geophysicists. Widely used in new and old data matching,different source data matching, important field of4D seismic monitoring, matchedfiltering. The traditional matched filtering method by a number of limitations, difficultto overcome the influence of noise. Match processing of seismic data in the same areain different years or source, the energy and phase features matching. Then for thesubsequent processing of seismic data. When the underground structure is verycomplex, how to carry out high precision data matching seismic data processing. Howto get high accuracy of underground structure from seismic data after matching,geophysicist very attention and concern of the problem.
     Based on the above problems, this paper puts forward the optimal L1norm in thewavelet domain matching processing, amplitude, waveform, phase consistencyproblems have been solved. The wavelet decomposition of seismic data, matching the L1norm optimal extraction of effective signal, improve the quality of data, highfidelity, clear wave group character, reflects the rich geological information. Themethod of matching of different ages of seismic data acquisition, processing effectson the frequency, phase, amplitude and other aspects of the conventional method aresignificantly improved, and provide basic information is very useful for geologicalresearch. Because the Curvelet transform sparsity better, than the wavelet transform ismore precise, the article further in the Curvelet domain using L1's Curvelet domain atfine scale seismic data matching norm, seismic data waveform consistency is veryhigh after matching, noise can be suppressed.
     In seismic exploration, the affected factors, other factors such as surface geophones,seismic data are often missing word. The seismic data of different degrees of deletionof Curvelet domain missing trace interpolation, especially in the absence of channelnumber, the interpolation effect is obvious. Interpolation with high accuracy and highsignal-to-noise ratio and matching results show the superiority of the method. Noisedata on different levels of deletion in the Curvelet domain seismic loss traceinterpolation, not only the effect of data interpolation is obvious and interpolation datais consistent with the waveform, amplitude spectrum and phase spectrum of higher.This paper matching interpolation of real seismic data, achieved satisfactory results.Seismic data acquisition is often mixed excitation absence question, the seismic dataacquisition of the mixed excitation matching interpolation, seismic data with highprecision is obtained.
     In-depth study of the main process of repeatedly produced. And the multiple wavemigration imaging technique is studied. Provides a new idea of multiple wavemigration technology for high precision seismic exploration. Through the research ofhybrid excitation acquisition technique, is performed with mixed seismic multiples.Migration of multiple wave based on, the paper focuses on the hybrid multiple wavemigration imaging. The simultaneous excitation of acquisition multiples (notincluding a reflected wave) mixed multiple wave migration imaging is tectonicconcave model. This dissertation focuses on the study of a wave in single shot recordand multiple joint migration imaging, using this method can improve the imagingaccuracy. On the basis of this study also triggers a wave data acquisition and multiplejoint imaging, and gives also triggers a wave acquisition and multiple joint imaging. Amore accurate geological model was obtained on a wave mixing collection recordsand multiple joint imaging.
     At the multi-source simultaneous (blended) acquisition data, there are more problemsin migration imaging, derived from the theory of existence of crosstalk noise blendedacquisition migration (crosstalk). Through the numerical model data, also confirmedthe existence of the phenomenon of crosstalk noise mixed in migration imaging.According to the characteristics of crosstalk noise exists, puts forward a new method of adaptive weighted median filter to suppress the crosstalk noise of migrationimaging. The method is based on the basis of the former study, multileveltwo-dimensional improved median filtering window using the weighted. The designof a weight function is applied to multilevel two-dimensional improved median filterwindow. Based on the simulated data are tested and compared with other noisesuppression methods, show that this method can effectively.
引文
[1] Weiner N. Extrapolation,Interpolation and Smoothing of Stationany TimeSeries[M]. Cambridge:Technology Press of The Massachusetts Institute ofTechnology,1949.
    [2] Lee Y W. Statistical Theory of Communication[M]. New York:John Wileyand Sons.1960
    [3] Robinson, E A.. Predictive decomposition of seismic traces[J], Geophysics,1957,22(4):767-778.
    [4] Treitel S. Principles of Digital Multichannel Filtering[J], Geophysics,1970,35(5):785-811.
    [5]林必荣,李培基,陈繁勤.三维地震资料的区块拼接方法及效果[J],石油地球物理勘探,1995,30(s1):156-159.
    [6]王西文,周立宏.三维地震资料拼接中的地震子波处理[J],石油物探,2002,41(4):448-451.
    [7] Wang Y H. Multiple subtraction using an expanded multichannel matchingfilter[J], Geophysics,2003,68(1):346-354.
    [8]程金星,朱立华,杨长春,等.基于小波变换的三维地震资料拼接方法:石油地球物理勘探,2004,39(4):406-408.
    [9]邬达理,姜游,陈竹梅.串联匹配滤波法在混合震源资料处理中的应用[J],石油物探,2006,45(6):611-614.
    [10] Kalmanovitch N. Using an interactive match filter to advance interpretation[J],76th Annual Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts,2006:1068-1072.
    [11] Herrmann F J. Curvelet-domain matched filtering[C].79th Annual Internat. Mtg,Soc. Expl. Geophys., Expanded Abstracts,2009:3643-3649.
    [12] Yan J P. Herrmann F.J.. Groundroll prediction by interferometry and separationby curvelet-domain matched filtering[C].79th Annual Internat. Mtg, Soc. Expl.Geophys., Expanded Abstracts,2009:3297-3301.
    [13] Wang Y B, Zhu Z Y, Jiang X D. A Pseudo-multichannel Matching Filterapplication to time-lapse seismic matching processing[C]. Shenzhen2011International Geophysical Conference Technical Program Expanded Abstracts,2011:1803-1807.
    [14] Claerbout J F, Doherty S M. Downward continuation of moveout-correctedseismograms [J]. Geophysics,1972,37(5):741-768.
    [15] Schneider W A. Integral formulation for migration in two dimensiions and threedimensions [J]. Geophysics,1978,43(1):49-76.
    [16] Gazdag J. Wave equation, migration with the Phase-shift method[J]. Geophysies,1978,43(7):1342-1351.
    [17] Stolt R H. Migration by Fourier transform[J]. Geophysics,1978,43(1):23-48
    [18] Whitmore N D. Iterative depth migration by backward time propagation [C].53rd Ann. Internat. Mtg., Sot. Expl. Geophys, Expanded Abstracts,1983:382-385.
    [19] Baysal E, Kosloff D D. Sherwood J W C.Reverse time migration[J].Geophysics,1983,48(11):1514-1524.
    [20] Loewenthal D. Irshad R Mufti. Reverse time migration in spatial frequencydomain[J]. Geophysics,1983,48(5):627-635.
    [21]姜忠纪.变延拓步长在相移法偏移中的应用[J].石油地球物理勘探,1984(1):34-39
    [22] Levin S A. Principles of reverse time migration[J]. Geophysics,1984,49(5):581~583.
    [23] Hildebrand S T. Reverse-time depth migration: Impedance imaging condition[J].Geophysics,1987,52(8):1060-1064
    [24] Etgen J. Prestack reverse time migrationof shot profiles[J]. SEP–50,1986:151–170.
    [25]邵玉海.空间频率域的波动方程深度偏移[J].石油地球物理勘探,1986,21(3):250-258.
    [26]刘清林. Tau-P变换的频率域算法及Tau-P域的偏移处理[J].长春地质学院学报,1986(4):77-80.
    [27]刘清林,何樵登. Tau—p变换与Tau—p域偏移[J].石油地球物理勘探,198823(2):171-187
    [28] Chang W F. McMechan G. A.,3D acoustic reverse time migration[J].Geophysical prospecting,1989,37(3):243-256.
    [29]朱金明.垂直地震剖面的波动方程有限差分模拟与偏移[J].石油地球物理勘探,1990,29(2):40-47
    [30] Stoffa P L, Fokkema J T, Luna Freire R M, et al. Split-step Fourier migration[J].Geophysics,1990,55(4): P410-421.
    [31] Wu R S, Huang L J. Scattered field calculation in heterogeneous media usingthe phase-screen propagator[C].62th Ann. Internat.Mtg., Soc, Expl, Geophys.,Expanded Abstracts,1992:1289-1292.
    [32] Gazdag J, Sguazzero P. Migration of seismic data by phase shift plusinterpolation [J]. Geophysics,1984,49(2):124-131.
    [33] Margrave G F. Theory of nonstationary linear filtering in the Fourier domainwith application to time-variant filtering [J]. Geophysics,1998,63(1):244-259.
    [34] Margrave G F, Robert J. F. Wavefield extrapolation by nonstationary phaseshift[J]. The Crewes Project, University of Calgary,1997:1599~1602.
    [35] Berkhout A J. Areal shot-record technology [J]. Journal of Seismic Exploration,1992,1(3):251-264.
    [36]刘清林,骆毅. VSP资料的叠前波动方程逆时偏移[J].石油地球物理勘探,1989,24(3):281-289.
    [37] Hildebrand S T. Carroll R J. Radon depth migration[J]. GeophysicalProspection.1993,41(2):229-240.
    [38]涂国田,串联F-K加相移插值法偏移[J].地球物理学报,1992,35(6):762-769
    [39] Whitmore N D, Garing J D. Interval velocity estimation using iterative prestackdepth migration in the constant angle domain [J]. First Break,1993(12):757–762.
    [40]尧德中.单程弹性波逆时偏移和相移偏移方法[J].石油地球物理勘探,1994,29(4):449-455
    [41]金胜汶,马在田.三维波动方程全倾角偏移[J].同济大学学报,1994,22(2):192-197.
    [42] Akbar F E, Sen M K, Stoffa P L.Prestack plane-wave Kirchhoff migration inlaterally varying media[J]. Geophysics,1996,61(4):1068-1079.
    [43]王华忠,马在田,曹景忠.优化系数旁轴近似方程三维一步法偏移[J].石油地球物理勘探,1998,22(2):170-184.
    [44] Mosher C C, Foster D J, Hassanzadeh S.Common angle imaging with offsetplane waves[C]. Expanded Abstract of67th Annual Internat SEG Mtg,1997:1379-1382.
    [45]底青云,王妙月.弹性波有限元逆时偏移技术研究[J].地球物理学报,1997,40(4):570-579.
    [46] Schuster G. Acquisition footprint removal by least square migration[R]:1997Annual UTAM Report,1997:73-99.
    [47] Nemeth T, Wu C, Schuster G T. Least-squares migration of incompletereflection data[J]. Geophysics,1999,64(1):208-221.
    [48]吴如山,金胜汉,谢小碧.广义屏传播算子及其在地震偏移成像方面的应[J].石油地球物理勘探,2001,36(6):655-665
    [49] Ferguson R J and Margrave G F. Depth migration by nonstationary phaseshift[C].68th Ann. Internat. Mtg., Can.Soc. Expl. Geophysics, ExpandedAbstracts,1998:150-151.
    [50] Ferguson R J, Margrave G F. Depth migration in TI media by nonstationaryphase shift[C].68th Ann. Internat. Mtg., Can.Soc. Expl. Geophysics, ExpandedAbstracts,1998:164-166.
    [51] Margrave G F, Ferguson R J. An explicit, symmetric wavefield extrapolator fordepth migration[C].69th Ann. Internat. Mtg., Can. Soc. Expl. Geophysics,Expanded Abstracts,1999:164-166.
    [52] Biondi B, Shan G J. Pre-satck imaging of overturned reflections by reverse timemigration[C].72th Annual International Meeting, SEG, Expanded Abstracts.2002:1284-1287.
    [53]张会星,宁书年.弹性波动方程叠前逆时偏移[J].中国矿业大学学报,2002,31(5):371-375.
    [54]陈生昌,曹景忠,马在田.共偏移距道集波动方程叠前深度偏移的Green函数法[J].石油地球物理勘探,2002,37(1):1-10.
    [55] Yu J H, Schuster T G. Migration Deconvolution versus Least SquaresMigration[C].73th Ann. Internat. Mtg., Soc, Expl, Geophys., ExpandedAbstracts,2003:1047-1050.
    [56]李振春,张凯等.共聚焦点偏移成像方法研究[J].石油物探,2003,42(1):16-21.
    [57] Biondi B. Least-squares joint imaging of multiples and primaries[D]. California:Stanford University.2004.
    [58]孟祥宾,杨淑卿等.波动方程叠前深度偏移并行计算及其应用效果[J].勘探地球物理进展,2004,27(3):213-231
    [59] Kwangjin Y, Kurt J. Challenges In Reverse-time Migration[C].74th Ann.Internat. Mtg., Soc, Expl, Geophys., Expanded Abstracts,2004:1454-1458
    [60] Kaelin B, Guitton A, Imaging condition of reverse time migration[C].76th Ann.Internat. Mtg., Soc, Expl, Geophys., Expanded Abstracts,2006:2594-2598.
    [61] Guitton A, Kaelin B, Biond B. Least-squares attenuation of reverse timemigration artifacts[J]. Geophysics,2007,72(1):S19–S23..
    [62] Kaelin B, Guitton A, Illumination effects in reverse time migration[C]. EAGE69th Conference&Exhibition,2007.
    [63]陈生昌,马在田.广义地震数据合成及其偏移成像[J].地球物理学报2006,49(4):1144-1149.
    [64] Kwangjin Y, Kurt J. Marfurt. Reverse-time migration using the Poyntingvector[J]. Exploration Geophysics,2006,37(1):102-107.
    [65] Gutton A, Kaelin B, Biondi B. Least square attenuation of reverse timemigration artifacts[C].76th Ann. Internat. Mtg., Soc, Expl, Geophys., ExpandedAbstracts,2006(25):2348-2352.
    [66]陈生昌,马在田, Wu Ru shan.波动方程角度域共成像道集[J].地球科学—中国地质大学学报,2007,32(4):569-574.
    [67] Naoshi A, Schuster T G. Fast least-squares migration with a deblurring filter [J].Geophysics.2009,74(6): WCA83-WCA93
    [68]李振春,杨敬磊.平滑算子在地震叠前深度域成像中的应用[J].中国石油大学学报(自然科学版),2008,3(6):47-50.
    [69]韩利,韩立国,巩向博,等. TTI介质隐式有限差分平面波偏移[J].地球物理学报,2011,54(4):1090-1097.
    [70]龙云,韩立国,韩利,等.单程波逆时偏移[C].地球物理年会,2011:728.
    [71] Dong S, Cai J, Guo M, et al. Least-squares reverse time migration: towards trueamplitude imaging and improving the resolution [C].82rd Ann. Internat. MtgSoc Expl, Geophys., Expanded Abstracts,2012:2472-2476.
    [72] Silverman D, Method of three dimensional seismic prospecting: U.S.Patent4,1979,159,463.
    [73] Beasley C J, Chambers R E, Jiang Z. A new look at simultaneous sources[C].68th Annual International Meeting, SEG, Expanded Abstracts,1998:133–135.
    [74] Sallas J, Corrigan D, Allen K P, High-fidelity vibratory source method withsource separation[M]. U.S. patent5,1998:721-710.
    [75] Krohn C E, Johnson M L. High fidelity vibratory seismic (HFVS) II:Superiorsource separation[C],73th Ann. Internat. Mtg., Soc, Expl, Geophys., ExpandedAbstracts,2003.
    [76] Romero L A, Ghiglia D C, Ober C C, et al. Phase encoding of shot records inprestack migration[J]. Geophysics,2000,65(2):426–436.
    [77] Brown M. Simultaneous estimation of two slopes from seismic data, applied tosignal/noise separation[D]. SEP-112,2002:181-194.
    [78] Bagaini C. Overview of simultaneous vibroseis acquisition methods[C].76thAnnual International Meeting, SEG, Expanded Abstracts,2006:70–74.
    [79] Ikelle L. Coding and decoding: Seismic data modeling, acquisition andprocessing[C].77th Annual International Meeting, SEG, Expanded Abstracts,2007:51-55.
    [80] Beasley C J. Simultaneous sources: A technology whose time has come[C].78th Annual International Meeting, SEG, Expanded Abstracts,2008:2796–2800.
    [81] Berkhout A J G. Changing the mindset in seismic data acquisition[J]. TheLeading Edge,2008,27(7):924–938.
    [82] Berkhout A J G. Blacquie`re, Verschuur D J. The concept of double blending:Combining incoherent shooting with incoherent sensing[J]. Geophysics,2009,74(4):A59–A62.
    [83] Spitz S, Hampson G, Pica A. Simultaneous source separation: A predictionsubtraction approach[C]:78th Annual International Meeting, SEG, ExpandedAbstracts,2008:2811–2815.
    [84] Akerberg P, Hampson G, Rickett J, et al. Simultaneous source separation bysparse radon transform[C].78th Annual International Meeting, SEG, ExpandedAbstracts,2008(27):2801–2805.
    [85] Tang Y, Biondo B. Least-squares Migration/inversion of Blended Data [D],SEP–138,2009:1–18.
    [86] Tang Y, Biondo B. Least-squares Migration/inversion of Blended Data [C].79thAnn. Internat. Mtg., Soc, Expl,Geophys.,Expanded Abstracts,2009:2859-2863
    [87] Ikelle L T. Reducing the pressure on data acquisition and processing: I.Multishooting processing of single-shot data[J]. Journal of Seismic Exploration,2009,18(1):93-102.
    [88] Ikelle L T, Sturzu I. Reducing the pressure on data acquisition and processing: II.Data-driven compression using conic coding[J]. Journal of Seismic Exploration,2009,18(1):119-133.
    [89] Lin T Y, Herrmann F. Designing simultaneous acquisitions with compressivesensing[C].71st Annual International Meeting, EAGE, Extended Abstracts,2009:S006.
    [90] Abma R, Yan J. Separating simultaneous sources by inversion[C].71st AnnualInternational Meeting, EAGE, Extended Abstracts,2009:V002.
    [91] Abma R T, Manning M, Tanis J, et al. High quality separation of simultaneoussources by sparse inversion[C].72nd Annual International Meeting, EAGE,Extended Abstracts,2009: B003.
    [92] Moore I. Simultaneous sources-processing and applications[C].72nd AnnualInternational Meeting, EAGE, Extended Abstracts,2010:B001.
    [93] Ikelle L T. Coding and decoding: seismic data[M]. Texax: Elsevier Science2010.
    [94] Krebs J R, Anderson J E, Hinkley D, et al. Fast full-wavefield seismic inversionusing encoded sources[J]. Geophysics,2009,74(6): WCC177–WCC188.
    [95] Zhan G, Schuster G T. Skeletonized least-squares wave equation migration[C].80th Annual International Meeting, SEG, Expanded Abstracts,2010(29):3380–3384.
    [96] Mahdad A, Doulgeris P, Blacquiere G. Separation of blended data by iterativeestimation and subtraction of blending interference noise[J]. Geophysics,2011,76(3):Q9-Q17.
    [97] Doulgeris P, Mahdad A, Blacquie`re G. Iterative separation of blended marinedata: discussion on the coherence-pass filter[C].81th Annual InternationalMeeting, SEG, Expanded Abstracts,2011:26-31.
    [98] Tan C, Han L, Zhang Y, Deng W. Separation of blended data by iterativedenoising[C].74th Annual International Meeting, EAGE, Expanded Abstracts,2012: A045.
    [99] Wapenaar K,van der Neu J, Thorbecke J. Deblending by direct inversion[J].Geophysics,2012,77(3): A9-A12.
    [100] Lynn W, Doyle M, Larner K, Marschall R. Experimental investigation ofinterference from other seismic crews[J]. Geophysics,1987,52(2):1501–1524.
    [101] Hampson G, Stefani J, Herkenhoff F. Acquisition using simultaneous sources[J].The Leading Edge,2008,27(7):918–923.
    [102] Fromyr E, Cambois G, Loyd R., Kinkead J. FLAM-A simultaneous source wideazimuth test[C].78th Annual International Meeting,SEG, Expanded Abstracts,2008(27):2821–2825.
    [103] Schuster G T, Wang X, Huang Y, Dai W, et al. Boonyasiriwat. Theory ofmultisource crosstalk reduction by phase-encoded statics[J]. GeophysicalJournal International,2011,184(3):1289–1303.
    [104] Dai W, Fowler P, Schuster G T. Multisource least squares reverse timemigration[J]. Geophysical Prospecting,2012,60(4):681-695.
    [105] Dai W, Wang X, Schuster G T. Least-squares migration of multisource data witha deblurring filter[J]. Geophysics,2011,76(5):135–146.
    [106] Dai W, Schuster G T. Least squares migration of simultaneous sources data witha deblurring filter[C].79th Annual International Meeting, SEG, ExpandedAbstracts,2009(28):2990–2994.
    [107] Dai W, Schuster G T. Multi-source wave equation least-squares migration witha deblurring filter[C].72nd EAGE Conference&Exhibition, ExtendedAbstracts,2010:276–279.
    [108] Dai W, Zhan G, Wang X, Schuster G T. Multi-source least squares migration,waveform inversion, and MVA analysis[C]. Presented at the SEG InvitedWorkshop Talk.2009.
    [109]巩向博.金属矿地震高精度成像与数据处理方法研究[D].长春:吉林大学,2011.
    [110]韩利,李翔,等.二阶声波方程频域PML边界条件及频域变网格步长并行计算[J].吉林大学学报-地球科学,2011,41(4):1226-1234
    [111]马召贵,王尚旭,宋建勇.频率域波动方程正演中的多网格迭代算法[J].石油地球物理勘探,2010,45(1):1-5.
    [112] Plessix R, Mulder W. Frequency-domain finite difference amplitude preservingmigration[J]. Geophysical Journal International,2004,157(3):975–987.
    [113] Herrmann F J, Li X. Efficient least-squares migration with sparsitypromotion[C]. EAGE, Expanded Abstracts.2011.
    [114]张显文,韩立国,黄玲,等.基于递归积分的复频移PML弹性波方程交错网格高阶差分法[J].地球物理学报,2009,52(7):1800-1807.
    [115]邓武兵.基于混合采集技术的频率域全波形反演研究[D].吉林大学,2012.
    [116] Mallat,S.G.. A theory for multiresolution signal decomposition:the waveletrepresentation[J]. IEEE Transactions on Pattern Analysis and MachineIntelligence,1989,11(7):674-693.
    [117] Vishwanath M. The recursive pyramid algorithm for the discrete wavelettransform[J]. IEEE Transactions on Signal Processing,1994,42(3):673-676.
    [118]程乾生.信号数字处理的数学原理[M].北京:石油工业出版社,1993.
    [119]胡昌华,张军波,夏军,等.基于MATLAB的系统分析与设计-小波分析西安:西安电子科技大学出版社,1999.
    [120] Mallat S, Zhong S F. Characterization of signals from multiscale edges[J]. IEEETransactions on Pattern Analysis and Machine Intelligence,1992,14(7):710-732.
    [121] Chen S S, Donoho D L, and Saunders M A. Atmoic decomposition by basispursuit[J]. Society for Industrial and Applied Mathematics,2001,43(1):129-159.
    [122] Yilmaz O. Seismic Data Analysis: Processing, Inversion and Interpretation ofSeismic Data I[M]. Tulsa: Society of Exploration Geophysicists,2000.
    [123] Verschuur D J. Surface-related multiple elimination, an inversion approach [D].Delft University of Technology,1991.
    [124] Ziolkowski A M, Taylor D B, Johnston R. G. Marine seismic wavefieldmeasurement to remove sea-surface multiples[J]. Geophysical Prospecting,1999,47(6):841–871.
    [125] Amundsen L. Elimination of free-surface related multiples without need of thesource wavelet[J]. Geophysics,2001,66(1):327–341.
    [126] Amundsen L, Ikelle L T, Berg L E. Multidimensional signature deconvolutionand free-surface multiple elimination of marine multicomponent ocean-bottomseismic data[J]. Geophysics,2001,66(5):1594–1604.
    [127] Reiter E C, Toksoz M N, Keho T H, et al. Imaging with deep-water multiples[J].Geophysics,1991,56(7):1081–1086.
    [128] Guitton A. Shot-profile migration of multiple reflections[C].72ndAnnualInternational Meeting, SEG, ExpandedAbstracts,2002:1296–1299.
    [129] Verschuur D J, Berkhout A J. Processing of multiples: Part II: Prestackmigration[M]. Delft: Delft University of Technology,1995.
    [130] Shan G. Source-receiver migration of multiple reflections[C].73rd AnnualInternational Meeting, SEG, ExpandedAbstracts,2003:1008–1011.
    [131] Brown M, Guitton A. Least-squares joint imaging of multiples and primaries[J].Geophysics,2005,70(5):S79–S89.
    [132] Berkhout A J. Multiple removal based on the feedback model[J]. The LeadingEdge,1999,18(1):127-131.
    [133] Liu Y K, Chang X, Jin D, et al,Reverse time migration of multiples for subsaltimaging[J]. Geophysics,2011,76(5):WB209–WB216,
    [134] Verschuur D J, Berkhout A J. Processing of multiples: Part II[M]. Delft: DelftUniversity of Technology,1995.
    [135] Guitton A. Shot-profile migration of multiple reflections[C].72nd AnnualInternational Meeting, SEG, Expanded Abstracts,2002:1296–1299.
    [136] Valenciano A, Biond B.2D deconvolution imaging condition for shot profilemigration[C].73rd Annual International Meeting, SEG, Expanded Abstracts,2003:1059–1062.
    [137] Reiter E C, Toksoz M N, Keho T H, et al. Imaging with deep-water multiples[J].Geophysics,1991,56(1):1081–1086.
    [138] Muijs R, Robertsson J O A, Holliger K. Prestack depth migration of primaryand surface-related multiple reflections, Part II: Identification and removal ofresidual multiples[J]. Geophysics,2007,72(2):S71-S76.
    [139] Bednar J B. Applications of median filtering to deconvolution, pulse estimation,and statistical editing of seismic data[J]. Geophysics,1983,48(12):1598~1610.
    [140] Wang X. On the max/median filter[J]. IEEE Transactions on Signal Processing,1990,38(8):1473~1475.
    [141] Duncan G, Beresford G. Median filter behavior with Seismic data[J].Geophysical Prospecting,1995,43(3):329~345.
    [142] Mi Y P, Li X X, Margrave G F. Median filtering in Kirchhoff migration fornoisy data[C]. Expanded Abstracts of SEG70th Annual Meeting, Calgary,2000:822~825.
    [143] Zhang R F, Ulrych T J, Multiple suppression based on the migration operatorand a hyperbolic median filter[C]. Expanded Abstracts of SEG73th AnnualMeeting,2003:1949~1952.
    [144] Liu C, Liu Y, Yang B J, et al. A2D multistage median filter to reduce randomseismic noise[J]. Geophyisics.2006,71(5):V105~V110.
    [145] Jin L, Chen X H. The combination of wavelet transform and nonlinear filteringfor time-lapse seismic difference analysis[C]. Expanded Abstracts of SEG78thAnnual Meeting,2008:3214~3218.
    [146] Liu Y, Liu C, Wang D. A1D time-varying median filter for seismic random,spike-like noise elimination[J]. Geophysics,2008,74(1): V17~V24.
    [147] Justusson B I. Median filtering: Statistical properties. In Two DimensionalDigital Signal Processing II. Berlin:Springer-Verlag,1981.
    [148]刘洋,李承楚.地震资料信噪比估计的几种方法[J].石油地球物理勘探,1997,32(2):257~262.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700