用户名: 密码: 验证码:
多源地震混合采集波场高保真分离方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震采集往往是在经济效益和采集质量之间寻求平衡,传统的地震采集在相邻震源之间设置足够的激发间隔,以避免接收记录相互混合,其代价是地震测量的参数(炮距、道距、方位角、偏移距分布等)都不一定能够达到最佳。与地震勘探作业链的其它环节相比,地震采集方法技术特别是采集思路的变化是缓慢的。多源同时激发采集(simultaneous acquisition)是地震数据记录方面的重大变革,多个不同空间位置的震源以一定编码方式同时激发,获得时间空间波场相互干涉的混合炮记录。从时间域的间断激发、逐炮接收,到同时激发、连续接收,这是地震采集思路的重要突破,极大加快了数据记录速度,进而提升采集效率和成像质量。
     多源同时激发采集的关键在于炮分离,即将多震源混合激发的在时域中相互重叠的超炮道集分离成为相当于传统采集得到的单炮记录,才能进行常规的数据处理和解释。从数学上看,炮分离可以看做形如Ax=b的线性反问题,当采用可控震源时,不同位置处的震源需按照不同的相位多次扫描,当扫描次数高于或等于震源数量时,能够通过最小平方法求解该线性方程组得到分离炮记录;但当采用脉冲型震源时,其震源相位无法控制,而由于采集成本所限,无法在同一位置多次激发,此时该线性方程组转变为欠定方程组,简单的最小平方算法无法有效求解,只能得到伪分离记录,不能实现炮分离。我们针对二维数据矩阵观测系统,通过互易定理将同时激发采集记录的共炮点道集和共检波点道集联合,降阶该欠定方程组。在具体实现过程中,首先通过稀疏反褶积从混合记录中得到稀疏的反射系数,然后通过基追踪稀疏反演算法求解单炮记录的反射系数,最终褶积得到分离结果。模型试算以及实际资料处理都取得了较好效果。
     多源混合激发采集(blended acquisition)是在同时激发采集的基础上进一步发展起来的。与同时激发采集技术不同的是,为不同的震源设置一定范围内的随机激发时间,而不是在同一时间同时激发。混合激发采集记录的伪分离结果与同时激发采集所得结果不同的是,混合噪声仅在共炮点道集连续分布,而在共炮点道集以外的其他时域均呈现为随机分布,因此去噪滤波成为了一种思路。在高混合度的混合数据中,混合噪声的能量往往数倍于有效信号,炮分离难度倍增。我们研究提出了一种多时域组合迭代去噪的炮分离技术:通过运用多级中值滤波与Curvelet阈值迭代去噪算法,在不同时域根据混合噪声特性采用相应的去噪手段,并设计迭代算法优化炮分离结果。实际资料处理结果证明:将本方法应用于高混合度的混合数据,无论是分离质量还是计算效率,都有明显提升。
     多源同时激发采集技术带来了地震数据采集方法的一场变革,必将使得许多地震数据处理方法从中受益。我们将这种采集方法应用到虚拟震源法中,将常规采集记录构建的虚源道集与多震源同时激发采集后炮分离记录所构建的道集对比:由于虚源构建质量与震源间距密切相关,常规采集往往需要兼顾质量和效益,因此震源密度的不足严重影响所构建道集的质量,而多震源同时激发采集技术能够很好的改善这一点,从而得到高质量的虚源道集。
Seismic acquisition is a trade-off between economic and quality. Conventional acquisitionsurveys are designed such that the time intervals between successive shots are sufficientlylarge to avoid the interference between different source responses. However in thissituation both the image quality and measure parameters, such as azimuths and samplingdensity may not be achieve the best. Unfortunately the improvement of seismic acquisitionmethod is fall behind other technologies in seismic processing. Recently a great change ofmindset in seismic acquisition has occurred which is known as blended acquisition orsimultaneous acquisition, where different sources at different locations are shot in anoverlapping fashion. Both which significantly improved the acquisition efficiency andpotentially image quality can be significantly improved.
     Deblending is the procedure of recovering data as if they were acquired in theconventional survey. From the mathematics point of view, deblending can be regarded assolving an underdetermined equation such as Ax=b, yet a simple least-squares procedurecannot remove the blending noise. Focus on the2D regularized acquisition system, wecombine the blended data in common source domain and common receiver domain underthe umbrella of reciprocity theorem, In this paper we focus on the blended acquisitionsystem instead of the inversion algorithm for the purpose of solving this ill posed inversionproblem. According to our derivation in the regularized2D acquisition system, the blendeddata in common receiver domain can be connected with that in common source domain,which making this inversion problem the above mentioned equation less moreunderdetermined. When applied to a numerically blended dataset, reflection coefficients ofsingle source gather is calculated using a simple spgL1norm basic pursuit sparse inversionalgorithm at first, and then separation results are acquired via convolution. Field data testshows that our method can get high quality separation results, which verified our theoryand derivation.
     While dealing with blended seismic acquisition data, a simple least-squares procedure isonly able to get pseudodeblend results, where the blending noises cannot be removed. Inhigh blending factor data, the blending noises are usually several times higher than theuseful signals, which multiply the difficulty of source separation. Fortunately in pseudodeblend records, these noises are only coherent in the common source domain, butincoherent in other domain. For this character, multilevel median filter and Curveletthreshold iteration denoising are combined used in this paper, and a new source separationmethod based on the iterative denoising in different domain is introduced: Focus on thedifferent character of blendiong noises in different domain, corresponding denoisingmethod is utilized, and an iteration method is designed for the optimization. While dealingwith numerical blended real dataset, ideal results could be produced after only a fewiterations, which verify that our method can largely improve the separation quality andcalculation efficiency.
     Multi-source simultaneous acquisition has brought a revolution of seismic data acquisitionmethods, from which many seismic data processing methods will benefit. This acquisitionmethod is applied to the virtual source method. Compare the virtual source gathersconstructed by the conventional acquisition method and the simultaneous method we canfind that: the virtual source records builded from the separation results of blended data aremuch more closed to the synthetic ones.
引文
[1] Sorkin, S. A., Sweep signal seismic exploration [M]: U. S. Patent3,786,409,1972.
    [2] Silverman, D. Method of three dimensional seismic prospecting [M]. U.S.Patent4,159,463,1979.
    [3] Rietsch, E., Reduction of harmonic distortion in vibratory source records [J]: GeophysicalProspecting,1981,29:178–188.
    [4] Andersen, K. D., Method for cascading sweeps for a seismic vibrator [M]: U. S. Patent4,410,517,1994.
    [5] Ward, R. M., R. H. Brune, A. Ross, and L. H. Kumamoto, Phase encoding of Vibroseis signals forsimultaneous multisource acquisition [C]:60th Annual International Meeting, SEG, ExpandedAbstracts,1990:938–941.
    [6] Martin, J. E., Simultaneous Vibroseis recording [J]: Geophysical Prospecting,41,1993:943–968.
    [7] Allen, K. P., M. L. Johnson, and J. S. May, High Fidelity Vibratory Seismic (HFVS) Method foracquiring seismic data [C]:68th Annual International Meeting, SEG, Expanded Abstracts,1998:140–143.
    [8] Rozemond, H. J., Slip-sweep acquisition [C]:66th Annual International Meeting, SEG, ExpandedAbstracts,1996:64–67.
    [9] Jeffryes, B., A method of seismic surveying with overlapping shot times [M]: Great Britain Patent,2,387,226,2002.
    [10]Meunier, J., and T. Bianchi, Harmonic noise reduction opens the way for array size reduction invibroseis operations [C]:72nd Annual International Meeting, SEG, Expanded Abstracts,2002:70–73.
    [11]Moerig, R., F. Barr, and D. Nyland, Simultaneous shooting using cascaded sweeps [C]:72ndAnnual International Meeting, SEG, Expanded Abstracts,2002:74–76.
    [12]Hufford, J., J. May, H. Pardue, and J. Thomas, Union HFVS with slip-sweep for improved spatialresolution and acquisition efficiency [C]:73rd Annual International Meeting, SEG, ExpandedAbstracts,2003:39–42.
    [13]Sallas, J., D. Corrigan, and K. P. Allen, High-fidelity vibratory source method with sourceseparation [M]. U.S. patent5721,1998,710.
    [14]Krohn, C. E., and Johnson M. L.,2003, High fidelity vibratory seismic (HFVS) II:Superior sourceseparation [C].73th Annual International Meeting, SEG, Expanded Abstracts, Expanded abstracts.
    [15]Beasley, C. J. R. E. Chambers, and Z. Jiang. A new look at simultaneous sources [C].68th AnnualInternational Meeting, SEG, Expanded Abstracts,1998:133–135.
    [16]Beasley, C. J. A new look at marine simultaneous sources [J]. The Leading Edge,2008,27(7):914–917.
    [17]Beasley, C. J. Simultaneous sources: A technology whose time has come [C].78th AnnualInternational Meeting, SEG, Expanded Abstracts,2008:2796–2800.
    [18]Bagaini, C. Overview of simultaneous vibroseis acquisition methods [C].76th AnnualInternational Meeting, SEG, Expanded Abstracts,2006:70–74.
    [19]Vaage, S. Method and system for acquiring marine seismic data using multiple sources [M]. U.S.Patent6,906,981B2,2002.
    [20]Berkhout, A. J. G. Changing the mindset in seismic data acquisition [J]. The Leading Edge,2008,27(7):924–938.
    [21]Berkhout, A. J., G. Blacquiere, and D. J. Verschuur. The concept of double blending: Combiningincoherent shooting with incoherent sensing [J]. Geophysics,2009,74(4): A59–A62.
    [22]Blacquiere G., G. Berkhout and E. Verschuur. Double illumination in blended acquisition [C].81thAnnual International Meeting, SEG, Expanded Abstracts,2011:11-15.
    [23]Ikelle, L.T., Reducing the pressure on data acquisition and processing: I. Multishooting processingof single-shot data [J]. Journal of Seismic Exploration,2009,18:93-102.
    [24]Ikelle, L.T., and Sturzu, I., Reducing the pressure on data acquisition and processing: II.Data-driven compression using conic coding [J]. Journal of Seismic Exploration,2009,18:119-133.
    [25]佘德平.多震源地震正演数值模拟技术[J].地球物理学进展,2012,27(4):1533-1540.
    [26]陈生昌,马在田.广义地震数据合成及其偏移成像[J].地球物理学报,2006,49(4):1144-1149.
    [27]陈生昌,王汉闯,陈林.三维VSP数据高效偏移成像的超道集方法[J].地球物理学报,2012,55(1):232-237.
    [28]Ikelle,L., Coding and decoding: Seismic data modeling, acquisition and processing [C].77thAnnual International Meeting, SEG, Expanded Abstracts,2007:51-55.
    [29]Ikelle, L.T., Coding and decoding: seismic data [M]. Elsevier,2010.
    [30]Lin, T. T. Y., and F. J. Herrmann, Designing simultaneous acquisitions with compressive sensing
    [C].71st Annual International Meeting, EAGE, Extended Abstracts,2009, S006.
    [31]Abma, R., and J. Yan, Separating simultaneous sources by inversion [C].71st Annual InternationalMeeting, EAGE, Extended Abstracts,2009, V002.
    [32]Abma, R. T. Manning, M. Tanis, J. Yu, and M. Foster, High quality separation of simultaneoussources by sparse inversion [C].72nd Annual International Meeting, EAGE, Extended Abstracts,2010, B003.
    [33]Ayeni g. and Almomin a., On the separation of simultaneous source data by inversion [C].81Annual International Meeting, SEG, Expanded Abstracts,2011:20-25.
    [34]Moore, I., Simultaneous sources—processing and applications [C].72nd Annual InternationalMeeting, EAGE, Extended Abstracts,2010, B001.
    [35]Akerberg, P. G. Hampson, H. Richett, H. Martin, and J. Cole. Simultaneous source separation bysparse radon transform [C].78th Annual International Meeting, SEG, Expanded Abstracts,2008:2801–2804.
    [36]Huo, S. Y. Luo, and P. Kelamis. Simultaneous sources separation via multi-directionalvector-median filter [C].79th Annual International Meeting, SEG, Expanded Abstracts,2009:31–35.
    [37]Doulgeris, P. A. Mahdad, and G. Blacquiere. Separation of blended impulsive sources using aniterative approach [C].72nd Annual International Meeting, EAGE, Extended Abstracts,2010, B004.
    [38]Mahdad, A., Doulgeris P. and G. Blacquiere. Separation of blended data by iterative estimation andsubtraction of blending interference noise [J]. Geophysics,2011,76(3): Q9-Q17.
    [39]Doulgeris, P. A. Mahdad, and G. Blacquiere. Iterative separation of blended marine data:discussion on the coherence-pass filter [C].81th Annual International Meeting, SEG, ExpandedAbstracts,2011:26-31.
    [40]C. Tan, L. Han, Y. Zhang and W. Deng. Separation of blended data by iterative denoising [C].74ndAnnual International Meeting, EAGE, Extended Abstracts,2012, A045.
    [41]宋焕生,梁德群,刘春阳.一种新的自适应多级中值滤波器[J].信号处理,1996,12(4):297-304.
    [42]冯晅,刘财,杨宝俊,李哲,张凤琴,刘洋.中值滤波器对信号相位和形状影响的研究[J].石油物探,2002,41(1):37-41.
    [43]秦涛.智能监控系统算法研究[D].浙江大学,2004.
    [44]路鹏,刘财,刘万崧,邢立新,刘洋,王典.中值滤波技术在遥感图像处理中的应用[J].吉林大学学报(地球科学版),35:151-154.
    [45]刘财,王典,刘洋,王培茂,李勤学.二维多级中值滤波技术在随机噪声消除中的应用初探[J].石油地球物理勘探,2005,40(2):163-167.
    [46]王典.地震勘探几种数字新技术及其应用[D].吉林大学,2006.
    [47]王旭松,杨长春.对地震图像进行保边滤波的非线性各向异性扩散算法[J].地球物理学进展,2006,21(2):452-457.
    [48]刘财,李红星,陶春辉等.模糊嵌套多级中值滤波方法及其在地震数据处理中的应用[J].地球物理学报,2007,50(5):1534—1542.
    [49]刘洋,王典,刘财等.局部相关加权中值滤波技术及其在叠后随机噪声衰减中的应用[J].地球物理学报,2011,54(2):358—367.
    [50]张尔华,王伟,高静怀等.非线性各向异性扩散滤波器用于三维地震资料噪声衰减与结构特征增强[J].地球物理学进展,2010,25(3):866-870.
    [51]Hennenfent G, Herrmann F.G. Simply denoise: Wavefield reconstruction via jittered undersampling[J]. Geophysics,2008,73(3): V19-V28.
    [52]Herrmann F.J, Hennenfent G. Non-parametric seismic data recovery with curvelet frames [J].Geophysical Journal International,2008,173(1):233-248.
    [53]仝中飞. Curvelet阈值迭代法在地震数据去噪和插值中的应用研究[D].吉林大学,2009.
    [54]韩佳君. Curvelet变换组合法压制地震随机噪声研究[D].吉林大学2010.
    [55]刘磊,刘振,张军华.曲波阈值法地震弱信号识别及去噪方法研究[J].地球物理学进展,2011,26(4):1415-1422.
    [56]Berkhout A.J. Seismic Migration: Imaging of acoustic energy by wave field extrapolation. ElsevierScientific Pub.Com.,1982.
    [57]Dianne P., Robust regression computation using iteratively reweighted least squares SIAM J [J].Matrix Anal. Appl.11,1990:466-480
    [58]Saunders M. A., Solution of sparse rectangular systems using LSQR and CRAIG [J].1995, BIT35:588-604
    [59]Ewout V. D. B., Michael P. F., Probing the pareto frontier for basis pursuit solutions SIAM J.SCI[J].2008, Comput31:890-912
    [60]Kim S. J., Koh K., Lustig M and Stephen B Dimitry G., An Interior-point method for large-scaleL1-regularized least squares [J]. IEEE Journal of selected topics in signal processing1,2007:606-617
    [61]David W. Eaton, Bernd Milkereit, et al. Seismic methods for deep mineral exploration: Maturetechnologies adapted to new targets [J]. The Leading Edge,2003,22:580-585.
    [62]Graham Stuart, Stephen J., et al. Structural and stratigraphic analysis of3D seismic attributesapplied to mine planning: Target gold deposit, South Africa [C]. SEG Expanded Abstracts,1999,18:997-1000.
    [63]C. C. Pretorius, W. F. Trewick, et al. Application of3-D seismics to mine planning at Vaal Reefsgold mine, umber10shaft, Republic of South Africa [J]. Geophysics,2000,65:1862-1870.
    [64]徐明才,高景华.金属矿地震反射勘探[J].国外地质勘探技术,1990(10):23-27.
    [65]徐明才,髙景华,等.散射波地震方法在蔡家营多金属矿区的试验研究[J].物探与化探,2003,27(1):49-54.
    [66]徐明才,髙景华,等.从金属矿地震方法的试验效果探讨其应用前景[J].中国地质,2004,31(1):108-112.
    [67]徐明才等.地面地震层析技术在金属矿勘查中的试验研究[J].物探与化探,2005,29(4):299-303.
    [68]徐明才,柴铭涛,荣立新,等.厚覆盖区金属矿地震方法技术研究[J].物探化探计算技术,29,2007(6):492-497.
    [69]高景华,徐明才.小热泉子铜矿区地震方法试验研究[J].地质与勘探,2004,40(6):47-52.
    [70]贺冬生.复杂地形地区金属矿地震勘探资料处理的探讨[J].物探与化探,1992,16(7):391-393.
    [71]贺冬生.九江-瑞昌地区金属矿地震勘探方法技术研究[J].物探与化探,1994,18(1):76-79.
    [72]王庆海,崔占荣.试论金属矿地震勘探技术[J].1993,17(5):354-361.
    [73]Tonglin Li, David W. Eaton. Delineating the Tuwu porphyry copper deposit at Xinjiang, China,with seismicreflection profiling [J]. Geophysics,2005,70: B53-B60.
    [74]梁光河,蔡新平,地震勘探在山东蓬家夼金矿深部预测中的应用[J].矿产与地质[J],2001,15(6):743-749.
    [75]梁光河,蔡新平,张宝林,徐兴旺.浅层地震勘探方法在金矿深部预测中的应用[J],2001,37(6):29-33.
    [76]吕庆田,侯增谦,史大年等,铜陵狮子山金属矿地震探测结果及对区域找矿的意义[J],矿床地质,2004,23(3):390-398;
    [77]吕庆田,史大年,赵金花,严加永,徐明才.深部矿产勘查的地震学方法:问题与前景—铜陵矿集区的应用实例[J],地质通报,2005,24(3):211-218.
    [78]严加永,滕吉文,吕庆田.深部金属矿产资源地球物理勘查与应用[J],地球物理学进展,2008,23(3):871-891.
    [79]孙明,林君.金属矿地震散射波场的数值模拟研究[J].地质与勘探,2001,37(4):68-70.
    [80]李灿苹,刘学伟,王祥春,杨丽.地震波的散射理论和散射特征及其应用[J].勘探地球物理进展,2005,28(2):81-89.
    [81]匀丽敏,刘学伟,雷鹏,刘士军.金属矿地震勘探技术方法研究综述—金属矿地震勘探技术及其现状[J].勘探地球物理进展,2007,30(1):16-24.
    [82]匀丽敏,刘学伟,雷鹏,刘士军.金属矿地震勘探技术方法研究综述—散射波地震勘探方法[J].勘探地球物理进展,2007,30(2):85-90.
    [83]徐明才,高景华,柴铭涛,王广科.寻找隐伏金属矿的地震方法技术研究[J].物探与化探,1997,21(6):468-474.
    [84]徐明才,高景华,柴铭涛,王广科.金属矿地震勘探的方法技术[J].有色金属矿产与勘查,1997,6(4):232-237.
    [85]徐明才,高景华,王广科.用于地学研究的小宽线深反射地震技术[J].物探与化探,1997,21(1):6-14.
    [86]陈萌,傅平,张红梅,陈贺新.全方位多级中值滤波器的理论分析[J],数据采集与处理,1992,7(5):25-27.
    [87]赵继印,陈贺新,付平,陈萌.全方位二维多级中值滤波器[J],仪器仪表学报,1993,14(1):46-52.
    [88]Calvert, R. W., Bakulin, A.,&Jones, T. C. Virtual Sources, a new way to remove overburdenproblems [C].66th Annual Meeting, EAGE, Expanded Abstracts,2002, P234.
    [89]Bakulin, A.,&Calvert, R. Virtual source: new method for imaging and4D below complexoverburden [C].74th Annual Meeting, SEG, Expanded Abstracts,2004:2477-2480.
    [90]Bakulin, A.,&Calvert, R. The virtual source method: theory and case study [J]. Geophysics,2006,71: SI139-SI150.
    [91]Korneev, V.,&Bakulin, A. On the fundamentals of the virtual source method [J]. Geophysics,2006,71: A13-A17.
    [92]Kees Wapenaar, Joost van der Neut and Elmer Ruigrok. Passive seismic interferometry bymultidimensional deconvolution [J]. Geophysics,2006,73(6): A51-A56.
    [93]Mehta, K.,&Snieder, R. Time reversed imaging for perturbed media [J]. American Journal ofPhysics,2006,74:224-231.
    [94]Mehta, K., Snieder, R., Calvert, R.,&Sheiman, J. Virtual source gathers and attenuation offree-surface multiples using OBC data: implementation issues and a case study [J].76th AnnualMeeting, SEG, Expanded Abstracts,2006:2669-2673.
    [95]Mehta, K., Snieder, R.,&Graizer, V. Extraction of near-surface properties for a lossy layeredmedium using the propagator matrix [J]. Geophysical Journal International,2007,169:271-280.
    [96]Mehta, K., Bakulin, A., Sheiman, J., Calvert, R.,&Snieder, R. Improving virtual source methodby wavefield separation [J]. Geophysics,2007,72(4): V79-V86.
    [97]Mehta, K., Snieder, R.,&Graizer, V. Downhole receiver function: a case study [J]. Bulletin ofSeismological Society of America,2007,97(5):1396-1403
    [98]Andrey Bakulin, Rodney Calvert. Virtual Source Method: Overview of History And Development[C].78th Annual Meeting, SEG, Expanded Abstracts,2008:2669-2673.
    [99]Tatanova, M., Bakulin, A., Kashtan, B., and Korneev, V. Head-wave monitoring with virtualsources [C]. SEG Technical Program Expanded Abstracts2007:2994-2998.
    [100]Bakulin, A., Mateeva, A., Mehta, K., Jorgensen, P., Ferrandis, J., Herhold, I., and Lopez, J.Virtual source applications to imaging and reservoir monitoring [J]. The Leading Edge,2007,26(6):732–740.
    [101]Lobkis, O. I.,&Weaver, R. L. On the emergence of the Green’s function in the correlations of adiffuse field [J]. Journal of Acoustical Society of America,2001,110:3011-3017.
    [102]Derode, A., Lacrose, E., Campillo, M.,&Fink, M. How to estimate the Green’s function for aheterogeneous medium between two passive sensors? Application to acoustic waves [J]. AppliedPhysics Letters,2003,83:3054-3056.
    [103]Schuster, G. T., Yu, J., Sheng, J.,&Rickett, J. Interferometric/daylight seismic imaging [J].Geophysical Journal International,2004,157:838-852.
    [104]Snieder, R. Extracting the Green’s function from the correlation of coda waves: A derivationbased on stationary phase [J]. Physics Review E,2004,69,046610.
    [105]Snieder, R., Wapenaar, K.,&Larner, K. Spurious multiples in interferometric imaging ofprimaries [J]. Geophysics,2006,71: SI65-SI78.
    [106]Snieder, R., Sheiman, J.,&Calvert, R. Equivalence of the virtual source method and wavefielddeconvolution in seismic interferometry [J]. Physics Review E,2006,73,066620.
    [107]Snieder, R.,&S afak, E. Extracting the building response using seismic interferometry; theoryand application to the Millikan Library in Pasadena, California [J]. Bulletin of SeismologicalSociety of America,2006,96(2):586-598.
    [108]Snieder, R., Wapenaar, K.,&Wegler, U. Unified Greens function retrieval by crosscorrelation;connection with energy principles [J], Physical Review E.,2007,75,036103.
    [109]Wapenaar, C. P. A, Herrmann, P., Verschuur, D. J.,&Berkhout, A. J. Decomposition ofmulticomponent seismic data into primary P-and S-wave responses [J]. Geophysical Prospecting,1990,38:633-661.
    [110]Wapenaar, C.P.A. The Infinite Aperture Paradox [J]. Journal of Seismic Exploration,1992.1:325-336.
    [111]Wapenaar, K. Retrieving the elastodynamic Green’s function of an arbitrary inhomogeneousmedium by cross-correlation [J]. Physics Review Letters,2004,93,254301.
    [112]Wapenaar, K., Fokkema, J.,&Snieder, R. Retrieving the Green’s function by crosscorrelation: acomparison of approaches [J]. Journal of Acoustical Society of America,2005,118:2783-2786.
    [113]Wapenaar, K.,&Fokkema, J. Green’s function representations for seismic interferometry [J].Geophysics,2006,71(4): SI33-SI46.
    [114]Wapenaar, K.,&Slob, E. Unified Green’s function retrieval by crosscorrelation [J]. PhysicalReview Letters,2006,97,234301.
    [115]Larose, E., Margerin, L., Derode, A., van Tiggelen, B., Campillo, M., Shapiro, N., Paul, A.,Stehly, L.,&Tanter, M. Correlation of random wavefields: an interdisciplinary review [J].Geophysics,2006,71: SI11-SI21.
    [116]Curtis, A., Gerstoft, P., Sato, H., Snieder, R.,&Wapenaar K. Seismic interferometry-turningnoise into signal [J]. The Leading Edge,2006,25:1082-1092.
    [117]Draganov, D., Wapenaar, K.,&Thorbecke, J. Seismic interferometry: Reconstructing the earth’sreflection response [J]. Geophysics,2006,71(4): SI61-SI70.
    [118]Sabra, K. G., Gerstoft, P., Roux, P.,&Kuperman, W. A. Extracting time-domain Green’sfunction estimates from ambient seismic noise [J]. Geophysics Research Letters,2005,32,L03310.
    [119]Shapiro, N. M.,&Campillo, M. Emergence of broadband Rayleigh waves from correlations ofthe ambient seismic noise [J]. Geophysics Research Letters,2004,31, L07614.
    [120]Shapiro, N. M., Campillo, M., Stehly, L.,&Ritzwoller, M. H. High-resolution surface-wavetomography from ambient seismic noise [J]. Science,2005,307:1615-1618.
    [121]Artman, B. Imaging passive seismic data. Geophysics [J],2006,71: SI177-SI187.
    [122]van Wijk, K. On estimating the impulse response between receivers in a controlled ultrasonicexperiment [J]. Geophysics,2006,71: SI79-SI84.
    [123]Fink, M. Time reversal mirrors [J]. Journal of Physics D: Applied Physics,1993,26:1333-1350.
    [124]Clouet, J. F.,&Fouque, J. P. A time-reversal method for an acoustical pulse propagating inrandomly layered media [J]. Wave Motion,1997,25:361-368.
    [125]Borcea, L., Tsogka, C., Papanicolaou. G.,&Berryman, J. Imaging and time-reversal in randommedia [J]. Inverse Problems,2002,18:1247-79.
    [126]Borcea, L., Papanicolaou, G.,&Tsogka, C. Theory and applications of time reversal andinterferometric imaging [J]. Inverse Problems,2003,19: S139-S164.
    [127]Parvulescu, A. Matched-signal(―MESS‖) processing by the ocean [J]. Journal of AcousticalSociety of America,1995,98(2):943-960.
    [128]Blomgren, P., Papanicolaou, G.,&Zhao, H. Super-resolution in time-reversal acoustics [J].Journal of Acoustical Society of America,2002,111:230-248.
    [129]Haider, M. A., Mehta, K. J.,&Fouque, J. P. Time-reversal numerical simulations for randomlylayered media [J]. Waves in Random Media,2004,14:185-198.
    [130]Petrashen, G. I.,&Nakhamkin, S. A. Continuation of wave fields in exploration seismology [J].Nauka,1973.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700