用户名: 密码: 验证码:
金刚石定位仿生取芯钻头研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国国民经济的快速发展,对地下各种矿产资源的需求量也与日俱增。导致地质钻探工作量和钻头消耗量也越来越大,2010年的小口径地质钻探量超过了2000万米,按照平均金刚石钻头的寿命为40m,则2010年地质钻探所需钻头量超过了50万只。随着对资源量的需求,未来将向地层深部钻探和和一些恶劣条件地区开展钻探,所钻遇的地层会很复杂,对钻头综合性能的要求也越来越高。因此,设计出地层适应性好,钻进效率高,寿命长的钻头十分必要。
     为了提高金刚石钻头的钻进效率和使用寿命,引入仿生学理论为提高钻头质量提供了新的依据。随着材料行业和金刚石工具行业的发展,金刚石均匀分布技术使金刚石在工具中得到充分的使用,提高了金刚石的使用效率,延长了金刚石工具的使用寿命,也可以节约金刚石,降低成本,提高效率。本文针对金刚石在胎体中分布不均、钻头寿命低等问题,结合仿生金刚石钻头和金刚石定位排布研究成果,从金刚石选择、胎体配方研究、金刚石定位模具研制、仿生金刚石定位钻头制造工艺等方面开展深入研究,研制出兼有仿生钻头减阻耐磨特性,又能避免金刚石不正常磨损的高效—长寿命金刚石钻头。
     论文共分八章,第1章为绪论,介绍了选题依据和研究意义,总结了孕镶金刚石钻头、金刚石定位技术研究的国内外现状,并介绍了论文的主要内容和技术路线。第2章主要从仿生原形、金刚石定位对胎体、金刚石的要求介绍及进行了胎体料制粒的试验和试块的测试试验。第3章主要对定位金刚石的静压强度、热稳定性和磁性等性能进行了试验研究。第4章介绍了胎体配方的基本性能,并对WC基胎体配方进行了试验研究,基于配方试验结果进行了野外钻头设计及生产试验。第5章分析总结了仿生孕镶金刚石钻头和仿生金刚石定位钻头的碎岩机理。并采用LS-DYNA软件对仿生沟槽金刚石钻头、仿生凹坑金刚石钻头和常规金刚石钻头进行非线性分析。第6章金刚石定位仿生取芯钻头的制造工艺研究。第7章对室内岩样进行了测试,并根据测试结果选择了配方和金刚石进行了钻头设计并进行了室内试验。第8章为结论和展望,总结了论文的所有结论和创新点,并提出了一些本文不足和以后工作建议。
In order to improve the drilling efficiency and working life-span of impregnateddiamond bit, the bionics theory was introduced. With the development of materialindustry and diamond tools industry, the uniform distribution technology of diamondis greatly used in the grinding tool. This method not only increases the diamondutilization efficiency and prolongs the working life-span of the diamond tools, butalso saves the usage of diamond grains and reduces the cost in manufacturing.
     This thesis chooses “The study of positioned diamond bionic coring bit” asresearch topic, especially for the problems, such as the uneven distribution ofdiamond grains and short life-span of drill bit. This research combines thecharacteristics of bionic diamond bit and diamond positioning arrangementtechnology to manufacture a high efficient and long-life diamond bit, the drill bitperforms well in wear resistance characteristics and avoiding the abnormal wear ofdiamond. The research contents include the choice of diamond, matrix formulationresearch; manufacturing of diamond positioned mould and bionic drill bitmanufacturing processes. The results obtained from the research are as follows:
     1. The geometry morphology of mole cricket toe is chosen as the biologicalprototype of positioned diamond bionic coring bit. Through copying this biologicalmorphology, the bionic wedge groove is designed, and this method is proved to befeasible after tests. The performance of positioned diamond bionic coring bit is betterthan that of bionic diamond bit and common bit. That's because the positioneddiamonds make the groove array in good order and avoid the aggregation or blank of diamonds in the drill bit.
     2、Static strength results show that the difference in static strength betweenimported diamonds and domestic diamonds is very small. To some extent, the staticstrength of domestic diamonds is higher than that of imported one; Under the vacuumcondition, in1200℃, the carbonization of diamonds occur only among thediamonds with internal defects; On the same size of diamonds, static strength ofdiamonds coated with Titanium is higher than common diamonds, and in hightemperature the diamonds coated with Titanium also have good antioxidant capacity.The thermal test results show that under the condition of N2as a separate gas,heat-resistant temperature of imported diamonds is1050℃, while that of domesticdiamond is1040℃.So it is easy to see that the thermal stability of the importeddiamonds is higher than the domestic one only by10℃. Magnetic test resultsshow that translation phenomenon of magnetic hysteresis loop happen in two types ofdiamonds. In conclusion, during the drilling process, diamond bits withstand not onlythe temperature, but also the impact and friction. Therefore it is necessary to considerthe factors of diamond static strength, thermal stability and magnetism to evaluate theoverall performance of the diamond.
     3、In this study, for getting better properties of WC matrix composites, theRockwell Hardness and bending strength, etc. Of30WC matrix composites, preparedby10different formulas, were tested. These samples were manufactured by thevacuum hot-pressing sintering process using intermediate-frequency furnace under theconditions of13MPa (Sintering pressure), the heating time of6min and the holdingtime of5min. The influence of WC, ZQSn663copper, Mn, Co, and Ni on thehardness and bending strength properties of matrix was investigated by data analysis.The results indicated that the content of WC is the major factor to influence thehardness and bending strength of matrix. Internal logic existed between the matrix’shardness and bending strength. The matrix with high hardness always has highstrength. To get excellent performance of the matrix, the proportion of elements by mass should be controlled in formula: w(WC)<59.1%, w(ZQSn663)>25%,3%     4、The rock fragmentation mechanisms of bionic impregnated diamond bit andpositioned diamond bionic bit are analyzed and summarized. Software LS-DYNA isused to analyze Φ135.5/72mm bionic impregnated diamond bit and commonimpregnated diamond bit with nonlinear analysis. The simulation result shows thatunder the same WOB (weight on bit), rotary speed, rock conditions and simulationtime, compared with common bit, bionic groove diamond drill bit and bionic pitdiamond drill bit make the rock suffer tensile stress, drill deeper than conventionaldrill bit, and crush the rock in large degree.
     5、According to the manufacturing processes of positioned diamond bionic bit,three new coring bits are designed and manufactured. By testing the drill-ability ofgranite, Ⅳ Formula is selected, and this formula would make the hardness of matrixbody reach38.6. The grain size of diamonds is30/35from imported diamonds. Thesintering parameters are listed as follows: temperature is970℃, and the temperaturerising gradient is uniform. Sintering pressure is14Mpa, and heat preservation time is8~10min. Experimental results show that the positioned diamond bionic bitperforms well in the low WOB and small torque drilling conditions. When the WOBis2000N, the ROP (rate of penetration) of positioned diamond bionic bit is1.433times as fast as bionic diamond bit, and it is3.160times as fast as common diamondbit. The ROP of bionic diamond bit is2.206times as fast as common bit.
引文
[1]屠厚泽.岩石破碎学[M].北京:地质出版社,1990:25-35.
    [2]赵尔信,蔡家品,贾美玲,张建元.浅谈国内外金刚石钻头的发展趋势——高效、低耗[J].探矿工程(岩土钻掘工程),2010,37(10):70-73.
    [3]马保松,张祖培,孙友宏.钻井工程用超硬材料及钻头的发展[J].地质与勘探,1998,34(2):50-54.
    [4]何龙飞.可再生沟槽式仿生金刚石钻头的试验研究[M].长春:吉林大学建设工程学院,2009.
    [5]张绍和,鲁凡,杨凯华.高时效长寿命弱包镶钻头研究[J].煤田地质与勘探,2001,29(2):62-64.
    [6]罗爱云,王伟雄,段隆臣.强、弱混镶新型金刚石钻头的研究[J].金刚石与磨料磨具工程,2003,134(2):48-50.
    [7] Gao Ke, Sun Youhong, Ren Luquan. Design and Analysis of Ternary CouplingBionic Bits[J].Journal of Bionic Engineering,2008(9):53-59.
    [8] D.S.哈拉西.仿生学[M].科学出版社,1975.
    [9]李子章.金刚石定位排布的热压孕镶钻头研究[D].成都:成都理工大学,2010.
    [10]姜荣超.金刚石均匀分布并有序排列是改善金刚石工具性能的有效途径[J].石材,2006.
    [11]王训波,谭刚,高晓亮.多层水口高胎体孕镶金刚石钻头研究[J].硬质合金,2011(2):93-97.
    [12]方俊,鄢泰宁,李田军.双层水口超高胎体金刚石钻头孔底磨损过程分析[J].煤田地质与勘探,2011(1):74-77.
    [13]王传留,孙友宏,刘宝昌,等.仿生耦合孕镶金刚石钻头的试验及碎岩机理分析[J].中南大学学报(自然科学版),2011(5):1321-1325.
    [14]蒋青光,张绍和,陈平,等.新型优质孕镶金刚石钻头研制[J].金刚石与磨料磨具工程,2008(6)::12-16.
    [15]贾美玲,蔡家品,黄玉文,赵尔信.大陆科学钻探用新型镶嵌式钻头的研究[J].探矿工程(岩土钻掘工程),2003,(sup):289-292.
    [16]吉林大学.可再生水口的金刚石取芯钻头:中国,200810051152.9[P].2009-01-28.
    [17]王传留,孙友宏,高科,范黎明.金刚石钻头可再生水口的试验[J].吉林大学学报:地球科学版,2010,40(3):694-698.
    [18]邹德永,梁尔国.硬地层PDC钻头设计的探讨[J].石油机械,2004,32(9):28-31.
    [19]彭军生,杨利.PDC钻头技术的新进展[J].石油机械,2001,29(11):49-51.
    [20] Ohno T, Karasawa H. Cost reduction of PDC bits through improved durability[J]. Geothermic,2002,(31):245-262.
    [21]段隆臣,杨凯华.新型金刚石工具研究(第一版)[M].武汉:中国地质大学出版社,2001.
    [22]宋月清,孙毓超.金刚石工具制造理论与实践[M].第一版.郑州:郑州大学出版社,2005.
    [23] Anon. Diamond tools enter Iron Age. Metal Powder Report, December1997:10-12.
    [24] H.Sumiya S.Satoh. Synthesis of Polycrystalline Diamond with NewNon-Metallic Catalyst under High Pressure and High Temperature. InternationalJournal of Refractory Metals and Hard Materials,17(1999):345-350.
    [25]宋月清,甘长炎,夏志华,等.预合金粉末在金刚石工具中的应用研究[J].金刚石与磨料磨具工程.1997(1):2-7.
    [26]叶培松,吴贻琨,张弘,等.金刚石钴基结合剂材料的表面分析[J].大连理工大学学报,1994(5):551-555.
    [27]丘定辉,肖俊玲,胡国程.高磷铁基金刚石工具胎体合金的研究[J].湖南冶金,2001(6):21-26.
    [28]傅定发,隆威.金刚石锯片刀头铁基胎体研制[J].非金属矿,1996(6):56-57.
    [29]杨凯华,秦昊,潘秉锁.稀土在热压人造金刚石工具中的应用研究[J].地质科技情报,2001(3):110-112.
    [30]汤凤林,杨凯华,段隆臣.金刚石表面金属化(镀膜)的试验研究[J].探矿工程(岩土钻掘工程),2000(5):14-16.
    [30]邓华,隋锦.真空热压烧结工艺及设备在超硬材料制品生产中的应用[J].金刚石与磨料磨具工程,2004(3):63-65.
    [31] N.Tohge.D.Ide,Y.Inoue,H. Funahashi, Precise grinding with single layered Metalbonded Diamond Wheel. Intertech2003, proceeding CD paper.
    [32] M. Park. ARIX-a major advance in diamond segment design, IDR2005,40-42.
    [33] RIX: A revolution in the diamond tool industry. The Korea Post News andBusiness,2005,17(3).
    [34] P.W. Butler-Smith, D.A.Axinte, M.Daine. Ordered diamond micro-arrays forultra-precision grinding—An evaluation in Ti–6Al–4V [J]. International Journal ofMachine Tools&Manufacture,2011(51):54–66.
    [35] G.Burkhard,M.Burotis,B.Zigrlig.Verfahren zum Aufbringen Von Partikeln anfeinen Tiager EP1208345A1.
    [36]宋健民.超硬材料[M].全华科技图书股份有限公司印制,1989,7:44-58.
    [37]杨仙.定位排布金刚石锯片的研究[D],长沙:中南大学,2008.
    [38]郭和惠.多层均布金刚石结块及其锯片:中国,200620033694. X [P],2006-4-3.
    [39]章文姣.钎焊一热压多层有序排列金刚石钻头的研究[D],武汉:中国地质大学(武汉),2012.
    [40] Chien-Min Sung. Brazed Diamond Grid by Infiltration [P].US:6,039,641,2000-3-21.
    [41] G.burkhard,M.boretius,B.Zigerlig.Spanenmit definier tange ordnaten diamondorder CBN-komern.IDR2002(36):96-102.
    [42]郭和惠.真空布料机:中国,200820061656.4[P].2008-1-8.
    [43]姚炯彬等,实现金刚石在刀头中定向定位排布的方法:中国,200910085453.8[P].2009-5-22.
    [44]徐良,孙友宏,高科.仿生孕镶金刚石钻头高效碎岩机理[J].吉林大学学报(地球科学版),2008,38(6):1015-1019.
    [45]高科,孙友宏,任露泉,等.仿生非光滑钻头非光滑度优化设计及试验研究[J].吉林大学学报(工学版).2009(3):721-725.
    [46]徐良.硬岩钻进用仿生耦合金刚石取芯钻头研究[D].长春:吉林大学,2009.
    [47]刘广志主编.金刚石钻探手册[M].地质出版社,1991.
    [48]王镇全,王克雄,翟应虎,周伟汉,唐念登.新型金刚石孕镶块的研究[J].石油机械,1992,7(10):11-13.
    [49]罗爱云,段隆臣,王伟雄等.打滑地层新型孕镶金刚石钻头[J].地质科技情报,2007,26(1):109-112.
    [50]王发明.适合坚硬地层孕镶金刚石钻头优化设计研究[M].北京:中国石油大学,2009.
    [51]任露泉,杨卓娟,韩志武.生物非光滑耐磨表面仿生应用研究展望[J].农业机械学报,2005,36(7):144-147.
    [52]孙友宏.仿生非光滑孕镶金刚石钻头的研究[D].长春:吉林大学博士后论文,2006.
    [53]王宁,杜文灿.仿生学在汽车设计上的应用[C].2009国际工业设计研讨会论文集:12-16.
    [54任露泉,丛茜,吴连奎,方瑛.仿生非光滑推土板减粘降阻的试验研究[J].农业机械学报,1997,28(2):1-5.
    [55] Lu Y X. Significance and progress of bionics [J]. Journal of Bionics Engineering,2004,1(1):1–3.
    [56]叶青会,陶健,俞冬良,李忠学.仿生学原理在空间结构中的应用[J].结构工程师,2010,6:13-18.
    [57]任露泉,张建伟,陈秉聪,齐宝山.仿生挠性铲斗减粘脱土的研究[J].农业机械学报,1990,21(4):33-39.
    [58]孙世元,任露泉,佟金等.仿生钢布兜式铲斗的研究[J].农业机械学报,1993,24(4):18-22.
    [59]张献振.土壤动物爪趾仿生PDC钻头研制与试验研究[M].长春:吉林大学,2012.
    [60] N.N.Novikov,V.J.Malhev and G.A.Voronin IDR[J],1985(1):17.
    [61]佟金,高吭,孙霁宇.东方蝼蛄前足爪趾结构与表皮纳米力学性能[J].农业机械学报,2009,5:190-193.
    [62]高吭.东方蝼蛄:特征、功能、力学及其仿生分析[D].长春:吉林大学博士论文,2009.
    [63]李享德、刘全贤等.人造金刚石热稳定性研究[J].磨料磨具与磨削,1995(3):2-4.
    [64]傅凤理、彭振宇.人造金刚石磁化率测定及磁化率测定仪[J].金刚石与磨料磨具工程,1997(4):30-33.
    [65]谭顺英.人造金刚石单颗粒静压强度测定和计算方法[J].矿产与地质,1985(3):99-101.
    [66]杨俊德,金刚石钻头和金刚石锯片磨损机理、设计及性能测试研究,中南大学博士论文2004.
    [67]金小平,姜荣超编译.金刚石特殊排列的均布金刚石锯片的开发[J].石材,2007,(11):27-29.
    [68]陈凡,吕海波等.石材切割锯片结合剂中铁含量对金刚石把持力的影响[J].金刚石与磨料磨具工程,1997:12-13.
    [69]穆云超,卢金斌等.实际烧结条件下铁元素对金刚石形貌和性能的影响[J].金刚石与磨料磨具工程,2007,(6):42.
    [70]赵尔信.人造金刚石孕镶钻头部分结构参数的选择[J].煤田地质与勘探,1980,(5):93-95.
    [71] P. R. Davis etc. An indicator system for saw grit [J]. IDR,1993,(3):78-80.
    [72] De Beers. Expanded choice of saw grit products from De Beers [J].IDR1996,(1):1-3.
    [73]霍喜平,何远航,宋媛媛.人造金刚石热稳定性的实验研究[J].矿业纵横,2002,11(4),62-63.
    [74] P. R. Davis etc. An indicator system for saw grit [J]. IDR,1993(3):78-87.
    [75]余家国等.人造金刚石在空气中的热稳定性研究[J].无机材料学报,1997(5):739-743.
    [76]荆运洁等.金刚石热稳定性与颗粒形状的关系探讨[J].金刚石与磨料磨具工程,1996(2):2-4.
    [77]马克新.影响人造金刚石强度的多因素实验与分析[J].世界采矿快报,1999(5):38-41.
    [78] Yamauchi Y et al. Mater Sci Eng,1991, A133:180.
    [79] Shin K-H et al. IEEE T rans on Mag,1992,28(5):2772.
    [80]陈文智.非晶合金磁滞回线的非对称现象[J],金属功能材料,1997,(4):155-158.
    [81] S haikhAK et al. J Mag Mag Mat er,1996,152:160.
    [82] Kohmot o O et al. Jpn J Appl Phys,1978,17(1):257.
    [83] Graham C D et al. J Korean Mag Societ y,1995,5(5):579.
    [84] Zhou PY et al. U S Patent,5304983.1994-04-19.
    [85] Zhou PY et al. U S Patent,5029291.1991-07-02.
    [86]方建锋,张晋远,金成海,等.人造金刚石的冲击强度与其中包裹体含量关系的研究[J].金刚石与磨料磨具工程,2001,(122):24-25.
    [87]段隆臣,等.金刚石工具的设计与制造[M].武汉:中国地质大学(武汉)工程学院,2003.
    [88]张士博.钻头与钻具设计制造新工艺新技术与质量验收标准规范实务全书[M].北方工业出版社,2005.
    [89]王好国.热压金刚石钻头胎体材料对钻头性能的影响[J].放射性地质1981(03),270-273.
    [90]鄢泰宁主编.岩土钻掘工程学[M].中国地质大学出版社,2000.
    [91] NevilleA,Reyesm,HodgkiessT,eta. Mechanisms of Wear on a Cobalt-base Alloyin Liquid-solid Slurries [J].Wear,2000,(238):138-150.
    [92] T.T. Shen, D.H. Xiao, X.Q. Ou, M. Song, Y.H. He, N. Lin, D.F. Zhang. Journal ofAlloys and Compounds.509(2011)1236–1243.
    [93] R. Koc, S.K. Kodambake, J. Eur. Ceram. Soc.20(2000)1859–1869.
    [94]王双喜,刘雪敬,耿彪,耿林.金属结合剂金刚石磨具的研究进展[J].金刚石与磨料磨具工程,2006(154):71-75.
    [95]史晓亮,刘晓阳,段隆臣等.新型打滑地层钻头的研究[J].吉林大学学报(地球科学版),2004,34(3):484-488.
    [96]刘宝昌,孙友宏,佟金,等. CVD金刚石条强化孕镶金刚石钻头的试验研究[J].金刚石与磨料磨具工程,2009(6):24–27.
    [97]杨洋,潘秉锁,杨凯华.热压铁基金刚石钻头胎体性能及钻进试验研究[J].金刚石与磨料磨具工程,2009(2):41-43.
    [98]马银龙,孙友宏,高科,刘宝昌,张献振,李小洋.热压碳化钨基复合胎体材料性能的试验分析[J].吉林大学学报:地球科学版,2013,43(1):207-211.
    [99]任露泉,杨卓娟,韩志武.生物非光滑耐磨表面仿生应用研究展望[J].农业机械学报,2005,36(7):144-147.
    [100]任露泉,李建桥,陈秉聪.非光滑表面的仿生降阻研究[J].科学通报,1995,40(19):1812-1814.
    [101]李世忠.钻探工艺学:上册[M].北京:地质出版社,1992.
    [102]段隆臣,汤凤林.高转速钻进时金刚石钻头磨损的试验研究进展[J].地质科技情报,2000,19(1):109-112.
    [103]高科.孕镶金刚石仿生钻头的研究[D].长春:吉林大学,2006.
    [104]邓凡平. ANSYS10.0有限元分析自学手册[M].北京:人民邮电出版社,2009:27-50.
    [105]纪晓宇.基于冷冻法防渗墙振动插管技术参数模拟研究[M].长春:吉林大学建设工程学院,2012.
    [106]孙斌.小型振动式树木移植机设计与仿真[D].西安:西安理工大学,2011.
    [107]佟洪江.钢筋混凝土构件的非线性分析[M].大连:大连理工大学,2009.
    [108]吴可胤,邬艳礼.岩石爆破过碎问题数值模拟研究[J].企业技术开发,2011:30(14):131-132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700