用户名: 密码: 验证码:
基于有限元法的复电阻率正反演研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复电阻率法以岩、矿石的频谱参数特性为勘探依据,多参数的组合解释能为评价异常源的性质提供更为丰富的信息。但是,反演问题一直没有得到较好的解决,已经严重影响和制约了该方法的应用和发展。因此,可靠和实用的正、反演算法已成为复电阻率法研究的关键。本文基于有限元法开展了2.5维和3维复电阻率正演模拟研究,并以实际应用为目的,对2.5维复电阻率法全区反演开展了研究。
     推导了同时包含激电效应和电磁效应的复电阻率法基本边值问题。从标准变分原理出发,推导并证明了适用于地球物理场中有耗电磁介质的广义变分原理,该部分作为本文三维矢量有限元分析的基础理论。针对电磁学领域中不存在相应变分的边值问题,给出了构建有限元公式的伽辽金法,该部分作为本文2.5维节点有限元分析的理论基础。
     研究并实现了基于节点有限元法的2.5维复电阻率正演模拟。从复电阻率法基本边值问题出发,推导了频率域电、磁场对耦偏微分方程,并利用伽辽金法完成离散化。考虑到地形影响,采用双二次插值的等参单元完成区域剖分。用伪Delta函数等效偶极源,以提高近区数据的模拟精度。考虑到内存占用和计算效率等问题,对总体系数矩阵中的非零元素直接进行一维压缩存储,并采用IC-CBCG法求解正演方程组。在反傅里叶变换时,给出了有效波数的取值规则。最后,模拟了二维复地电模型的视电阻率和视相位响应,并对响应特征进行了分析和总结。
     研究了基于矢量有限元法的三维复电阻率正演模拟技术。针对复电阻率法的近区观测方式,采用将总场分解为背景场和二次场的求解方案。推导了长导线源激发下,层状介质的电场解析式,从而实现了背景场的高精度计算。对于二次场计算,首先利用广义变分原理推导了三维边值问题的变分方程,然后将求解区域采用规则的六面体单元剖分,并使用矢量插值函数完成单元分析,避免了常规有限元法中出现“伪解”的问题。系数矩阵存储和方程组求解采用与2.5维正演相同的方案,最终实现了大尺寸区域可细密网格剖分的三维复电阻率正演模拟。在验证算法及程序正确性的基础上,分析了三维数值模拟精度并探讨了复电阻率模型的二次场响应特征。
     提出了电场振幅和电场相位联合反演的方案,基于此实现了2.5维复电阻率法全区反演。在反演算法中施加了模型光滑度约束和参数界限约束,有效降低了问题的多解性。借助电场的偏导数形式,推导出了电场振幅和电场相位灵敏度元素的解析表达式,并应用互换定理直接求解,提高了反演效率。试算了多种复电阻率理论模型,并对反演结果及分辨率问题展开分析。最后,对沙溪地区的SIP实测数据进行反演成像,并与已知钻井及其它地球物理资料进行了对比验证,取得了较好的地质效果。
Complex resistivity method is based on the characteristics of SIP parameters ofrocks and ores, and the multiple parameters provide more information for evaluatinganomalous bodies. However, the inverse problem of SIP has not been resolved well,and has seriously restricted the application and development of SIP. In this paper, the2.5D and3D SIP numerical simulations using finite element method were studied, anda large-scale2.5D SIP inversion algorithm for application was proposed and finished.
     The basic boundary value problem of SIP is derived by using Maxwell’s equationand Cole-Cole model. From the standard variational principle, the generalizedvariational principle is derived which is the basic theory of3D vector finite elementanalysis in this paper. At last, the Galerkin finite element method is introduced, whichis the basic theory of2.5D node finite element analysis in this paper.
     Based on the node finite element method, the2.5D complex resistivity forward isstudied. From the basic boundary value problem of SIP, the frequency domain electricand magnetic fields coupled partial differential equations were derived, and they werediscretized by Galerkin method. Considering the effect of topography, the solvedregion is divided into small units with isoparametric element,and the pseudo-deltafunction is used to improve the simulation precision of electromagnetic fields near thesource region. Considering the computational efficiency, the non-zero elements ingeneral coefficient matrix is stored directly by using1D compressing method and theIC-CBCG method is used in solving forward equations. The rule of selecting effectivewave numbers is proposed for carrying out inverse Fourier Transform. The apparentresistivity and apparent phase of2D complex resistivity model were calculated, and itscharacteristics were also analyzed.
     Based on the vector finite element method, the3D complex resistivity forwardmodeling is studied. In order to improve the precision of numerical simulation in thenear source region, the total field is decomposed into the background and secondaryfields. The field analysis formula of layered media under the excitation of long wiresource is derived, thus the high-precision calculation of the background field is achieved. For the secondary field, the rectangular elements are used to split the solvedregion, and vector interpolation function is used to complete the unit analysis, whichavoids the “pseudo-solution” in node finite element method. The same scheme as2.5Dforward is used in coefficient matrix storage. The3D forward method is verified andsome typical model’s responses are analyzed by SIP3D numerical simulation.
     A reliable and practical2.5D combined inversion algorithm is proposed in thispaper, which used amplitudes and phases of electric fields of multi-arrangements. Themodel’s smoothness and parameter variation range as two kinds of constraints areintroduced into2.5D SIP inversion, thus the multiplicity of inversion is efficientlyimproved. The analytical expression of the sensitivity matrix is derived with the partialderivatives of the electric field, and calculated by the reciprocity theorem. Thealgorithm can perform a large-scale inversion and take advantage of geologicalinformation. Finally, the inversion procedure was used in Anhui SIP measured data,and the result shows good consistence with known drilling data and CSAMT inversionresult.
引文
[1] Anderson W. Computation of Green’s tensor integrals for three-dimensionalelectromagnetic problems using fast Hankel transforms[J]. Geophysics,1984,49(10):1754-1759.
    [2] Anderson W. Numerical integration of related Hankel transforms of order0and1by adaptive digital filtering[J]. Geo-physics,1979,44(7):1287-1305.
    [3] Badea E, Everett M. Newman G, et al. Finite-element analysis ofcontrolled-source electromagnetic induction using Clulomb-gauged potentials[J].Geophysics,2001,66(3):786-799.
    [4] Benzi M. Preconditioning techniques for large linear systems: a survey[J].Comput. Phys,2002,182(2):418-477.
    [5] B rner R U, Ernst O G, Spitzer K.. Fast3-D simulation of transientelectromagnetic fields by model reduction in the frequency domain using Krylovsubspace projection[J].Geophys. J. Int.,2008,173(3):766-780.
    [6] Brown R J. EM coupling in multi-frequency IP and a generalization of theCole-Cole impedance model[J]. Geophysical prospecting,1985,33(2):282-302.
    [7] Buell J C. A hybrid numerical method for three-dimensional spatiallydeveloping frees-hear flows[J]. Comput. Phys,1991,95:313–338.
    [8] Chave A D, Cox C S. Controlled electromagnetic sources for measuringelectrical conductivity beneath the oceans:1. forward problem and modelstudy[J].GeoPhys. Res.,1982,87(B7):5327-5338.
    [9] Coggon J H, Morrison H F. Electromagnetic investigation of the sea floor[J].Geophys,1970,35(3):476-489.
    [10] Coggon J. Electromagnetic and electrical modeling by the finite elementmethod[J].Geophysics,1971,36(1):132-155.
    [11] Commer M, Newman G A. New advances in three-dimensional controlled-source electromagnetic inversion[J]. Geophys. J. Int.,2008,172(2):513-535.
    [12] Constable S, Parker R, Constable C. Occam’ inversion: A practical algorithm forgenerating a smooth models form electromagnetic sounding data[J].Geophysics,1987,52(3):289-300.
    [13] Das U. A Reformalism for computing frequency and time domain EMResponses of a buried, finite-loop[C]. Houston: Annual Meeting Abstracts, SEG,1995.
    [14] de Lugao P P, Wannamaker P E. Calculating the two-dimensional magnetotelluricJacobian in finite elements using reciprocity[J]. Geophys. J. Int.,1996,127(3):806-810.
    [15] deGroot-Hedlin C, Constable S. Occam’s inversion to generate smooth, two-dimensional models from magneto-telluric data[J]. Geophysics,1990,55(12):613-1624.
    [16] Dey A, Morrison H. Electromagnetic coupling in frequency and time-domaininduced-polarization surveys over a multilayered earth[J]. Geophysics,1973,38(2):380-405.
    [17] Dias C A. A non-grounded method for measuring electrical induced polarizationand conductivity[M]. Univ. California Berkeley,1968.
    [18] Dias C A. Analytical model for a polarizable medium at radio and lowerfrequencies[J].Journal of Geophysics Res,1972,77(26),:4945-4956.
    [19] Dias C. Developments in a model to describe low-frequency electricalpolarization of rocks[J].Geophysics,2000,65(2):437-451.
    [20] Flis M, Newman G, Hohmann G. Induced-polarization effects in time-domainelectromagnetic measurements[J]. Geo-physics,1989,54(4):514-523.
    [21] Freund R, Nachtigal N. QMR: A quasi-minimal residual method fornon-Hermitian linear systems[J]. Numer Math,1991,60(1):15-339.
    [22] Freund R W. Conjugate gradient-type methods for linear systems with complexsymmetric coefficient matrices[J]. SIAM J. Sci. and Stat. Comput,1992,13(1):425-448.
    [23] Furumura T, Takenaka H.2.5-D modeling of elastic waves using thepseudospectral method[J]. Geophys. J. Int.,1996,124(3):820-832.
    [24] Ghorbani A, Camerlynck C, Florsch N. CR1Dinv: A Matlab program to invert1D spectral induced polarization data for the Cole–Cole model includingelectromagnetic effects[J]. Computers&Geosciences,2009,35(2):255-266.
    [25] Goldman M. Non-conventional methods in geoelectrical prospecting[M]. EllisHorwood Ltd.,1990.
    [26] Hallof P G, Zonge K L. EM coupling, its intrinsic, its removal and culruralproblem[J]. Geophysics,1965,30:650-665.
    [27] Harrington R F. Field computation by moment methods[M]. New York:MacMillan,1968.
    [28] Herrmann R B. SH-Wave generation by dislocation source—A numericalstudy[J]. Bull Seis Soc Am,1979,69(1):1-15.
    [29] Hohmann G. Electromagnetic coupling between grounded wires at the surface oftwo-layer earth[J]. Geophysics,1973,38(5):854-863.
    [30] Hohmann G. Electromagnetic scattering by conductors in the earth near a linesource of current[J]. Geophysics,1971,36(1):101-131.
    [31] Hohmann G. Three-dimensional induced polarization and electromagneticmodeling[J]. Geophysics,1975,40(2):309-324.
    [32] Jaggar S R, Fell P A. Forward and inverse Cole–Cole modeling in the analysis offrequency domain electrical impedancedata[J]. Exploration Geophysics,1988,19(3):463–470.
    [33] Johansen H K. Fast Hankel transform[J].Geophys. Prosp.,1979,27:877-901.
    [34] Kaikkonen P. Numerical VLF modeling[J].Geophysical Prospecting,1979,27(4):815-834.
    [35] Kaufman A, Dashevsky Y A. Principles of induction logging[M].ElsevierScience B V: Amsterdam,2003.
    [36] Key K, Weiss C. Adaptive finite-element modeling using unstructured grids: The2D magnetotelluric example[J]. Geophysics,2006,71(6):291-299.
    [37] Kim H J, Song Y, Lee K H. Inequality constraint in leas-squares inversion ofgeophysical data[J]. Earth Planets Space,1999,51:255-259.
    [38] Kong F, Johnstad S, Rosten T. A2.5D finite-element-modeling differencemethod for marine CSEM modeling in stratified anisotropic media[J].Geophysics,2008,73(1):F9-F19.
    [39] Krivochieva S, Chouteau M. Whole-space modeling of a layered earth intime-domain electromagnetic measurements [J]. Journal of Applied Geophysics,2002,50(4):375-391.
    [40] Li Y, Key K.2D marine controlled-source electromagnetic modeling: Part1-Anadaptive finite-element algorithm[J]. Geophysics,2007,72(2):WA51-WA62.
    [41] Li Y, Constable S.2D marine controlled-source electromagnetic modeling: Part2-The effect of bathymetry[J]. Geo-physics,2007,72(2):WA63-WA71.
    [42] Liu S, Vozoff K. The complex resistivity spectra of models consisting of twopolarizable media of different intrinsic properties [J]. Geophysical prospecting,1985,33(7):1029-1062.
    [43] Loke M H, Chambers J E, Ogilvy R D. Inversion of2D spectral inducedpolarization imaging data[J]. Geophysical Prospecting,2006,54(3):287–301.
    [44] Lytle R, Jeffrey, Dines K A. Iterative ray tracing between boreholes forunderground image reconstruction[J]. Electron. Eng. Trans. Geosic. RemoteSensing,1980,18(3):234-239.
    [45] Major J, Silic J. Restrictions on the use of Cole-Cole dispersion models incomplex resistivity interpretation[J]. Geo-physics,1981,46(6):916-931.
    [46] Marquardt D W. An algorithm for least-squares estimation of non-linearparameters[J]. Soc. Indust. App. Math.,1963,11(2):431-441.
    [47] Marquardt D W. Generalized inverses ridge regression, biased linear estimationand nonlinear estimation[J]. Techno-metrics,1970,12(3):591-612.
    [48] Meijerink J A, Van Der Vorst H A. An iterative solution method for linearsystems of which the coefficient matrix is a symmetric M-matrices[J]. Math.Comp.,1977,31:148-162.
    [49] Meng Y L, Luo Y Z. Calculation of harmonic electromagnetic field and scalemodeling laws for surface polarizable bodies[J]. Chinese journal ofGeophysics,1989,32:145-158.
    [50] Mitsuhata Y, Uchida T, Amano H.2.5-D inversion of frequency-domainelectromagnetic data generated by a grounded-wire source[J]. Geophysics,2002,67(6):1753-1768.
    [51] Mitsuhata Y.2-D electromagnetic modeling by finite-element method with adipole source and topography[J]. Geo-physics,2000,65(2):465-475.
    [52] Mitsuhata Y. Computation of the electrical responses of mid-ocean ridgedstructures[D]. Toronto: University of Toronto,1994.
    [53] Mukherjee S, Everett M.3D controlled-source electromagnetic edge-based finiteelement modeling of conductive and permeable heterogeneities[J].Geophysics,2011,76(4):F215-F226.
    [54] Nam M J, Kim H J, Song Y, et al.3D electromagnetic modeling includingsurface topography[J]. Geophysical Pros-pecting,2007,55(2):277-287.
    [55] Newman G A, Alumbaugh D L. Frequency-domain modeling of airborneelectromagnetic responses using staggered finite differences[J].Geophys. Prosp.,1995,43(8):1021-1042.
    [56] Newman G A, Hoversten G M. Solution strategies for2D and3D EM inversesproblems[J]. Inv. Prob.,2000,16:1357-1375.
    [57] Oldenburg D W, McGillivray P R, Ellis R G. Generalized subspace methods forlarge-scale inverse problems[J]. Geophys. J. Int.,1993,114(1):12-20.
    [58] Pelton, W H, Smith B D, Sill W R. Interpretation of complex resistivity anddielectric constant data, part II[J]. Geophys. Trans.,1984,29(4):11-45.
    [59] Pelton W, Ward S, Hallof P. Mineral discrimination and removal of inductivecoupling with multrfrequency IP[J]. Geophysics,1978,43(3):588-609.
    [60] Pelton W, Ward S, Hallof P. Mineral discrimination and removal of inductivecoupling with multifrequency IP[J]. Geophysics,1978,43(3):588-609.
    [61] Pelton W H. Interpretation of complex resistivity and dielectric data[D].SaltLake City: Univ. of Utah,1977.
    [62] Peterson A F. Absorbing boundary conditions for the vector wave equation[J].Microwave Opt. Tech. Lett.,1988,1(2):62-64.
    [63] Pridmore D, Hohmann G, Ward S, et al. An investigation of finite-elementmodeling for electrical and electromagnetic data in three dimensions[J].Geophysics,1981,46(7):1009-1024.
    [64] Rijo L. Modeling of electric and electromagnetic data[D]. Salt Lake City: Univ.of Utah,1977.
    [65] Rodi W, Mackie R. Nonlinear conjugate gradients algorithm for2-Dmagnetotelluric inversion[J].Geophysics,2001,66(1):174-187.
    [66] Rodi W L. A technique for improving the accuracy of finite element solutionsfor magnetotelluric data[J]. Geophys. J. Int.,1976,44(2):483-506.
    [67] Saad Y, Sehultz M H. GMRES: a generalized minimal residual algorithm forsolving non-symmetric linear systems[J]. SIAM J. Sci. and Stat.Comput,1986,7(3):856-869.
    [68] Saad Y. ILUT: A dual threshold incomplete LU factorization[J]. NumericalLinear Algebra with Applications,1994,1(4):387-402.
    [69] Smith J T. Conservative modeling of3-D electromagnetic fields, Part2:Biconjugate gradient solution and an acele-rator[J]. Geophysics,1996,61(5):1319-1324.
    [70] Smith J T. Conservative modeling of3D electromagnetic fields; part I:properties and error analysis[J]. Geophysics,1996,61:1308-1318.
    [71] Soininen H. The behavior of the apparent resistivity phase spectrum in the caseof a polarizable prism in an unpola-rizable half-space[J]. Geophysics,1984,49:1534-1540.
    [72] Soininen H. The behavior of the apparent resistivity phase spectrum in the caseof two polarizable media[J]. Geophy-sics,1985,50(5):810-819.
    [73] Streich R, Becken M, Ritter O.2.5D controlled-source EM modeling withgeneral3D source geometries[J]. Geophy-sics,2011,76(6):387-393.
    [74] Sunde E D. Earth conduction effects in transmission systems[M].New York:Dover Publications,1949.
    [75] Takenaka H. Computational methods for seismic wave propagation in complexsubsurface structures[J]. J. Seimol. Soc. Japan,1993,2:191–205.
    [76] Tikhonov A N, Arsenin V Y. Solution of ill-posed problems[M]. WashingtonD.C: V.H.Winston&Sons,1977.
    [77] Torres C, Habashy T M. Rapid2.5D forward modeling and inversion via a newnonlinear scattering approximation[J]. Radio Science,1994,29(4):1051-1079.
    [78] Unsworth M, Traves B, Chave A. Electromagnetic induction by a finite electricdipole source over a2-D earth[J]. Geo-physics,1993,58(2):198-214.
    [79] Van der Vorst H A, Melissen J B M. A Petrov-Galerkin type method for solvingAxk=b, where A is symmetric com-plex[C]. IEEE Trans Mag,1990,26(2):706-708.
    [80] Van der Vorst H A. Bi-CGSTAB: A fast and smoothly converging variant ofBi-CG for the solution of nonsymmertric linear systems[J]. SIAM J. Sci. andStati. Comput,1992,13(2):631-644.
    [81] Wannamaker P, Hohmann G, SanFilipo W. Electromagnetic Modeling of threedimensional bodies in layered earth using integral equations[J].Geophysics,1984,49(1):60-74.
    [82] Wannamaker P E, Stodt J A, Rijo L. Two-dimensional topographic responses inmagnetorellurics modeled using finite elements[J].Geophysics,1986,51(11):2131-2144.
    [83] Wannamaker P E, Stodt J A, Rijo L. PW2D finite element program for solutionof magnetotelluric responses of two-dimensional earth resistivity structure[R].Utah Univ. Research Inst., Earth Sciences Lab,1985.
    [84] Ward S, Hohmann G. Electromagnetic theory for geophysical applications[M].Electromagnetic Methods in Applied Geophysics,1988,1:131-311.
    [85] Wong J. An electrochemical model of the induced-polarization phenomenon indisseminated sulfide ores[J]. Geophy-sics,1979,44(7):1245-1265.
    [86] Wynn J, Zonge K. EM coupling, its intrinsic value, its removal and culturalproblem[J]. Geophysics,1975,40(5):831-850.
    [87] Xiang J, Jones N, Cheng D, et al. Direct inversion of the apparentcomplex-resistivity spectrum[J]. Geophysics,2001,66(5):1399-1404.
    [88] Xiong Z, Luo Y, Wang S, et al. Induced-polarization and electromagneticmodeling of a three-dimensional body in a two-layer anisotropic earth[J].Geophysics,1986,51(12):2235-2246.
    [89] Xiong. Z. Electromagnetic modeling of3-D structures by the method of systemiteration using integral equations[J]. Geophysics,1992,57(12):1556-1561.
    [90] Zhdannov M S, Wannamaker P E. Three-dimensional electromagnetic, proceedingsof the second international symposium[J]. Methods in Geochemistry andGeophysics,2002,35:3-290.
    [91] Zienkiewicz O. C. The finite element method, third edition:McGraw-Hill.1977
    [92] Zonge K L, Hughes L J, Carlson N R. Hydrocarbon exploration using inducedpolarization, apparent resistivity and electromagnetic scattering[C].Thefifty-first annual international meeting and exposition SEG,1981.
    [93]蔡军涛,阮百尧,罗润林.一种快速准确求取复电阻率真频参数的反演方法[J].工程地球物理学报,2005,2(5):338-342.
    [94]蔡军涛,阮百尧,赵国泽.复电阻率法二维有限元数值模拟[J].地球物理学报,2007,50(6):1869-1876.
    [95]常印佛,刘湘培,吴言昌.长江中下游铜铁成矿带[M].北京:地质出版社,1991.
    [96]陈向斌.庐枞火山岩盆地电性结构及深部找矿方法试验研究[D].北京:中国地质科学院,2012.
    [97]付长民,底青云,王妙月.计算层状介质中电磁场的层矩阵法[J].地球物理学报,2010,53(1):177-188.
    [98]傅良魁,李金铭,陈兆洪.埋藏极化体激电时间谱视参数的试验研究结果[J].地质与勘探,1985,21(12):38-43.
    [99]傅良魁,张虎豹.频谱激电法若干理论研究[J].物探与化探,1985,9(6):410-419.
    [100]傅良魁.复电阻率法异常的频谱及空间分布规律[J].地质与勘探,1981,(2):48-53.
    [101]金建铭.电磁场有限元方法[M].西安:西安电子科技大学出版社,1998.
    [102]李建平.带地形的三维复电阻率电磁场正反演研究[D].长春:吉林大学地球探测科学与技术学院,2008.
    [103]李金铭,陈兆洪.埋藏极化体上时间域激电谱的理论研究[J].桂林冶金地质学院学报,1987,7:295-305.
    [104]梁盛军.复电阻率法三维正反演问题研究[D].北京:中国地质大学,2011.
    [105]林莘,刘志刚.ICCG算法在SF6罐式高压断路器三维电场有限元计算中的应用[J].中国电机工程学报,2001,21(2):21-24.
    [106]刘崧.激电法在寻找深埋金属矿中的应用前景及方法理论中值得研究的一些问题[J].地质科技情报,1986,5(1):104-114.
    [107]刘崧,官善友,高鹏飞.求极化椭球体真cole-cole参数的联合谱激电反演[J].地球物理学报,1994,37(s2):542-551.
    [108]刘崧,薛继安,徐建华.求地下极化体真柯尔—柯尔参数的研究[J].物探与化探,2000,24(1):51-61.
    [109]刘崧.谱激电法[M].武汉:中国地质大学出版社,1998.
    [110]刘云鹤.三维可控源电磁法非线性共轭梯度反演[D].长春:吉林大学地球探测科学与技术学院,2011.
    [111]柳建新,刘海飞.计算最优化离散波数的优化算法[J].物探化探计算技术,2005,27(1):34-38.
    [112]罗延钟,方胜.极化椭球体上频谱激电法的异常形态[J].桂林冶金地质学院学报,1985(1):49-63.
    [113]罗延钟,方胜.视复电阻率频谱的一种近似反演方法[J].地球科学,1986,11(1):93-102.
    [114]罗延钟,罗永良.关于用有限元法对二维构造作电阻率法模拟的几个问题[J].地球物理学报,1986,29(6):613-621.
    [115]罗延钟,吴之训.研究剩余电磁效应的理想参数[J].物探与化探,1992,16(5):370-375.
    [116]罗延钟,误之训.谱激电法中频率相关系数的应用[J].地球物理学报,1992,35(4):490-499.
    [117]罗延钟,许妙立,吴之训.面极化球体上视复电阻率的频谱特征和模拟相似性准则[J].桂林冶金地质学院学报,1986,6:145-155.
    [118]罗延钟,姚建阳,何展翔,等.球形极化体上点源装置频谱激电异常的高级近似算法[J].物探化探计算技术,1987,9(2):113-122.
    [119]罗延钟,张桂青.电子计算机在电法勘探中的应用[M].武汉:武汉地质学院出版社,1987.
    [120]罗延钟,张桂青.频率域激电法原理[M].北京:地质出版社,1988.
    [121]孟永良,罗延钟,昌彦君.时间谱电阻率法的二维正演算法[J].地球科学-中国地质大学学报,2000,25(6):656-662.
    [122]宁石英.ICCG算法在解复线性代数方程组中的应用[J].哈尔滨电工学院学报,1990,13(2):213-218.
    [123]任启江,邱检生,徐兆文,等.安徽沙溪斑岩铜(金)矿床矿化小岩体的形成条件[J].矿床地质,1991,10(3):232-241.
    [124]阮百尧,熊彬,徐世浙.三维地电断面电阻率测深有限元数值模拟[J].地球科学-中国地质大学学报,2001,26(1):73-77.
    [125]阮百尧,熊彬.电导率连续变化的三维电阻率测深有限元数值模拟[J].地球物理学报,2002,45(1):131-138.
    [126]王大勇,李桐林,李建平,等.三维复电阻率模型电磁场正演模拟研究[J].地球物理学进展,2010,25(1):266-271.
    [127]王家映.地球物理反演理论[M].北京:高等教育出版社,2002.
    [128]王烨.基于矢量有限元的高频大地电磁法三维数值模拟[D].湖南:中南大学,2008.
    [129]文代刚,姜可薰,黄健.求解有限元复代数方程组的实型ICCG法[J].电工技术学报,1996,11(4):61-64.
    [130]翁爱华,王雪秋.利用数值积分提高一维模型电偶源电磁测深响应计算精度[J].西北地震学报,2003,25(3):193-197.
    [131]吴小平,徐果明.不完全Cholesky共轭梯度法及其在地电场计算中的应用[J].石油地球物理勘探,1998,33(1):90-94.
    [132]徐凯军.2.5维复电阻率电磁场正反演研究[D].长春:吉林大学地球探测科学与技术学院,2007.
    [133]徐士良.FORTRAN常用算法程序集[M].北京:清华大学出版社,1995.
    [134]徐世浙,赵生凯.二维各向异性地电剖面的大地电磁场的有限单元解法[J].地震学报,1985a,7(7):80-90.
    [135]徐世浙.地球物理中的有限单元法[M].北京:科学出版社,1994.
    [136]徐世浙.点电源二维电场问题中付氏变换的波数K的选择[J].物探化探计算技术,1988,10(3):235-239.
    [137]徐世浙.点源二维各向异性地电断面直流电场的有限元解法[J].山东海洋学院学报,1988a,18(1):81-90.
    [138]徐世浙.电导率分段线性变化的水平层的点电源电场的数值解[J].地球物理学报,1986,29(1):84-90.
    [139]徐文艺,徐兆文,顾连兴,等.安徽沙溪斑岩铜(金)矿床成岩成矿热历史探讨[J].地质论评,1999,45(4):361-367.
    [140]徐志锋,吴小平.可控源电磁三维频率域有限元模拟[J].地球物理学报,2010,53(8):1931-1939.
    [141]闫述.基于三维有限元数值模拟的电和电磁探测研究[D].西安:西安交通大学,2003.
    [142]阎述,陈明生.电偶源频率电磁测深三维地电模型有限元正演[J].煤田地质与勘探,2000,28(3):50-56.
    [143]杨文采.地球物理反演的理论与方法[M].北京:地质出版社,1996.
    [144]杨晓勇,王奎仁,孙立广,等.沙溪斑岩型铜(金)矿床成矿地球化学研究及靶区圈定[J].大地构造与成矿学,2002,26(3):263-270.
    [145]姚姚.地球物理反演基本理论与应用方法[M].北京:中国地质大学出版社,2002.
    [146]张辉,李桐林.利用cole-cole模型组合得到SIP真参数的联合频谱最优化反演[J].西北地震学报,2004,26(2):108-112.
    [147]张继锋.基于电场双旋度方程的三维可控源电磁法有限元法数值模拟[D].湖南:中南大学.2008.
    [148]张赛珍,李英贤,张树椿,等.我国几个金属矿区岩(矿)石的低频相位频率特性及影响因素[J].地球物理学报,1984,27:176-189.
    [149]张献民,陈文华.点源二维势场问题的边界元法中点源处理方法[J].地质与勘探,1989,25(10):37-42.
    [150]周熙襄,钟本善.电法勘探数值模拟技术[M].成都:科学技术出版社,1986.
    [151]朱伯芳.有限单元法原理与应用[M].北京:水利出版社,1979.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700