用户名: 密码: 验证码:
华北板块北缘东段晚古生代—早中生代火成岩的年代学与地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以吉林中部地区晚古生代—早中生代火成岩为研究对象,通过对火成岩中锆石的LA-ICP-MS和SIMS U-Pb年代学和火成岩的主量元素、微量元素及锆石Hf同位素的地球化学研究,确定了研究区火成岩的形成时代,讨论了研究区不同时代火成岩的岩石组合和岩浆源区性质及其形成的构造背景。最终结合区域地质资料,探讨了研究区晚古生代—早中生代区域构造演化历史。
     锆石U-Pb定年结果表明,该区晚古生代—早中生代岩浆作用可以进一步划分为五期:早二叠世(293~279Ma)、中二叠世(270Ma)、晚二叠世(262~255Ma)、早三叠世(249~247Ma)和晚三叠世(222Ma)。
     吉林中部地区早二叠世发育一套由粗面英安岩、英安岩和流纹岩组成的中钾—高钾钙碱性系列火山岩,它们形成于活动陆缘背景,揭示早二叠世华北板块北缘处于古亚洲洋的俯冲作用之下。吉林中部地区中二叠世岩浆作用以含石榴石二长花岗岩的产出为代表,负的εHf(t)值,表明其岩浆起源于华北板块古老地壳物质的部分熔融;地球化学特征显示其为同碰撞花岗岩,揭示该区处于松嫩—张广才岭地块与华北板块之间的碰撞环境。吉林中部地区晚二叠世发育辉长岩—花岗岩组合,辉长岩原始岩浆起源于曾经遭受过俯冲流体交代的亏损岩石圈地幔,花岗质岩石的原始岩浆起源于新元古代新增生下地壳的部分熔融;该期辉长岩和花岗质岩石构成了典型的双峰式岩石组合,暗示其形成于早二叠世华北板块北缘与松嫩—张广才岭地块碰撞造山后的伸展环境。吉林中部地区早三叠世二长花岗岩具有埃达克质岩石的地球化学特征,形成于加厚玄武质下地壳的部分熔融,这种陆壳加厚过程也是一次重要的造山过程,表明华北板块北缘与松嫩—张广才岭地块再次发生了碰撞,古亚洲洋最终闭合。吉林中部地区晚三叠世侵入岩主要由方辉橄榄岩组成,来源于亏损的岩石圈地幔;研究区和邻区晚三叠世镁铁质—超镁铁质侵入岩和花岗质岩石构成了典型的双峰式火成岩组合,暗示它们形成于华北板块北缘和兴蒙造山带最终碰撞造山后的伸展环境。
This thesis studies the geochronology and geochemistry of the Late Paleozoic-EarlyMesozoic igneous rocks in the central Jilin Province, NE China, with the aim of providingconstraints on the Late Paleozoic-Early Mesozoic tectonic evolution in the eastern segment ofthe northern margin of the North China Block (NCB). Main achievements are as follows:
     1. Late Paleozoic–Early Mesozoic magmatic events in the eastern segment of thenorthern margin of the NCB
     Zircons from the Late Paleozoic-Early Mesozoic igneous rocks in the central JilinProvince, NE China are euhedral-subhedral in shape and display fine-scale oscillatory growthzoning and striped absorption as well as their high Th/U ratios, implying their magmatic origin.LA-ICP-MS and SIMS zircon U-Pb dating results indicate that the Late Paleozoic-EarlyMesozoic magmatic events can be subdivided into five stages, i.e., Early Permian (293–279Ma), Middle Permian (~270Ma), Late Permian (262–255Ma), Early Triassic (249–247Ma),and Late Triassic (~222Ma).
     2. Early Permian–an active continental margin setting
     The volcanic rocks from the Daheshen Formation are representative as the Early Permianmagmatic event in the central Jilin Province, and are composed mainly of the trachytic dacite,dacite, and rhyolite. They are rich in SiO2and alkali contents, poor in MgO, with their εHf(t)values and Hf two-stage model ages of+0.23~+10.37and1240~785Ma, respectively, suggesting that their primary magmas could be mainly derived from partial melting of theMeso-Neoproterozoic accretted lower crust. The volcanic rocks from the Daheshen Formationchemically belong to mid-K and high-K calc-alkaline series, and display an enrichment inLREEs and LILEs and depletion in HFSEs, implying that they could have formed under anactive continental margin setting, i.e., the subduction of the Paleo-Asiatic oceanic platebeneath the northern margin of the NCB happened in Early Permian.
     3. Middle Permian–continent-continent collisional setting
     The Middle Permian igneous rocks consist chiefly of the FNG garnet-bearingmonzogranites. They have high SiO2, Al2O3and alkali conctents, low TFe2O3and MgOcontents, relatively flat rare earth element (REE) patterns and low total REE abundances(REE), as well as negative Eu anomalies. Their εHf(t) values and Hf two-stage model agesrange from–17.1~–14.1and2.37~2.18Ga, respectively, indicating that their primary magmacould be probably derived from partial melting of the ancient lower continental crust of theNCB. The presence of the garnet and their peraluminous geochemical features suggest thatthey are the syn-collision granites. Combined with the presence of the late Middle Permianmolasse in central Jilin Province, we propose that the garnet-bearing monzogranites couldform under an initial collision setting between the northern margin of the NCB and theSongnen-Zhangguangcai Range Massif.
     4. Late Permian–post-collisional extension setting
     The Late Permian igneous rocks are composed mainly of the gabbros and the granitoids.The gabbros are characterized by low SiO2contents, high Mg#values, positive εHf(t) values,enrichment in LILEs, and depletion in HFSEs, implying that their primary magma could bederived from partial melting of a depleted lithospheric mantle modified by subducted slab-derived fluids. The granitoids have high SiO2, low MgO, Cr, and Ni contents, and positiveεHf(t) values, suggesting that their primary magma could be derived from partial melting of ajuvenile lower crust. The Late Permian gabbros and granitoids constitute a bimodal igneousrock association, suggesting that they could formed under a post-collisional extensionalenvironment related to collapse of thickened crust caused by Middle Permian collision between the northern margin of the NCB and the Songnen-Zhangguangcai Range Massif.
     5. Early Triassic–final closure of the Paleo-Asian Ocean
     The Early Triassic magmatism in the study area is dominated by biotite monzogranites.They are characterized by high Al2O3, Na2O, and Sr concentrations, low Y and Ybconcentrations, enrichment in LREEs and LILEs, and depletion in HREEs and HFSEs, beingaffinity of adakitic rocks, suggesting that they formed by partial melting of a thickened maficlower crust. This thickening process of the mafic lower crust implies that a Late Triassiccompressional tectonic setting occurred in the central Jilin Province. Together with theoccurrence of the coeval metamorphism of the Hulan Group in the eastern part of the studyarea and cessation of the marine deposition in the area, we propose that the final amalgamationof the northern margin of the NCB and the Songnen-Zhangguangcai Range Massif took placein the Early Triassic, which led to the final closure of the Paleo-Asian Ocean.
     6. Late Triassic–post-orogenic extensional setting
     Late Triassic intrusive rocks in the study area are mainly composed of harzburgites. Theirlow SiO2, high MgO, Cr, and Ni concentrations, and positive εHf(t) values, suggest that theirprimary basaltic magma could be derived from partial melting of a depleted lithospheric mantle.Late Triassic mafic-ultramafic intrusive rocks and coeval granitoids constitute a typicalbimodal igneous rock association in both the study area and adjacent regions, implying thatthey formed under a post-orogenic extensional environment related to the final amalgamationof the NCB and the XMOB.
引文
1. Amelin Y, Lee D C, Halliday A N, et al. Nature of the Earth’s earliest crust from hafniumisotopes in single detrital zircons[J]. Nature,1999,399:252-255.
    2. Ames L, Tilton G R, Zhou G. Timing of collision of the Sino-Korean and Yangtsecratons: U-Pb zircon dating of coesite-bearing eclogites[J]. Geology,1993,21(4):339-342.
    3. Andersen T. Correction of common lead in U-Pb analyses that do not report204Pb[J].Chemical Geology,2002,192(1-2):59-79.
    4. Atherton M P, Petford N. Generation of sodium-rich magmas from newly underplatedbasaltic crust[J]. Nature,1993,362:144-146.
    5. Baker M B, Hirschmann M M, Ghiorso M S, et al. Compositions of near-solidusperidotite melts from experiments and thermodynamic calculations[J]. Nature,1995,375:308-311.
    6. Barbarin B. A review of the relationships between granitoid types, their origins and theirgeodynamic environments[J]. Lithos,1999,46(3):605-626.
    7. Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series usingmulticationic parameters[J]. Chemical Geology,1985,48(1):43-55.
    8. Bea F. Residence of REE, Y, Th and U in granites and crustal protoliths; implications forthe chemistry of crustal melts[J]. Journal of Petrology,1996,37(3):521-552.
    9. Beard J S. Characteristic mineralogy of arc-related cumulate gabbros: implications forthe tectonic setting of gabbroic plutons and for andesite genesis[J]. Geology,1986,14(10):848-851.
    10. Black L P, Kamo S L, Allen C M, et al. TEMORA1: a new zircon standard forPhanerozoic U-Pb geochronology[J]. Chemical Geology,2003,200:155-170.
    11. Bonin B. Do coeval mafic and felsic magmas in post-collisional to within-plate regimesnecessarily imply two contrasting, mantle and crustal, sources? A review[J]. Lithos,2004,78(1):1-24.
    12. Boynton W V. Geochemistry of the rare earth elements: meteorite studies[M]//Henderson P. Rare Earth Element Geochemistry,1984,63-114.
    13. Brouxel M, Lapierre H, Michard A, et al. The deep layers of a Paleozoic arc:geochemistry of the Copley-Balaklala series, northern California[J]. Earth and PlanetaryScience Letters,1987,85(4):386-400.
    14. Brown M. P-T-t evolution of orogenic belts and the causes of regional metamorphism[J].Journal of the Geological Society,1993,150(2):227-241.
    15. Burns L E. The Border Ranges ultramafic and mafic complex, south-central Alaska:Cumulate fractionates of island-arc volcanics[J]. Canadian Journal of Earth Sciences,1985,22(7):1020-1038.
    16. Cao H H, Xu W L, Pei F P, et al. Permian Tectonic Evolution in Southwestern KhankaMassif: Evidence from Zircon U-Pb Chronology, Hf isotope and Geochemistry ofGabbro and Diorite[J]. Acta Geologica Sinica (English Edition),2011,85(6):1390-1402.
    17. Cao H H, Xu W L, Pei F P, et al. Zircon U-Pb chronology and geochemistry of latePaleozoic-early Mesozoic intrusive rocks in eastern segment of the northern margin ofthe North China Block and its tectonic implications[J]. Lithos,2013,170-171:191-207.
    18. Castillo P R, Janney P E, Solidum R U. Petrology and geochemistry of Camiguin Island,southern Philippines: insights to the source of adakites and other lavas in a complex arcsetting[J]. Contributions to Mineralogy and Petrology,1999,134(1):33-51.
    19. Chappell B W, White A J R. Tow contrasting granite types[J]. Pacific Geology,1974,8:173-174.
    20. Chappell B W, White A J R. I-and S-type granites in the Lachlan Fold Belt[J].Transactions of the Royal Society of Edinburgh: Earth Sciences,1992,83(1-2):1-26.
    21. Chappell B W, White A J R. Two contrasting granite types:25years later[J]. AustralianJournal of Earth Sciences,2001,48(4):489-499.
    22. Chen B, Jahn B M, Tian W. Evolution of the Solonker suture zone: Constraints fromzircon U-Pb ages, Hf isotopic ratios and whole-rock Sr-Nd isotope compositions ofsubduction-and collision-related magmas and forearc sediments[J]. Journal of AsianEarth Sciences,2009,34:245-257.
    23. Christiansen R L. Yellowstone magmatic evolution: its bearing on understandinglarge-volume explosive volcanism[M]//Washington D C. Explowive volcanism:inception, evolution and hazards. New York: National Academies Press,1984,84-95.
    24. Clarke D B. The mineralogy of peraluminous granites; a review[J]. The CanadianMineralogist,1981,19(1):3-17.
    25. Coleman R G. Ophiolites: ancient oceanic lithosphere?[M]. Berlin: Springer-Verlag,1977.
    26. Condie K C. Chemical composition and evolution of the upper continental crust:contrasting results from surface samples and shales[J]. Chemical Geology,1993,104(1):1-37.
    27. Costa S, Rey P. Lower crustal rejuvenation and growth during post-thickening collapse:Insights from a crustal cross section through a Variscan metamorphic core complex[J].Geology,1995,23(10):905-908.
    28. Coulon C, Maluski H, Bollinger C, et al. Mesozoic and cenozoic volcanic rocks fromcentral and southern Tibet:39 Ar-40 Ar dating, petrologicalcharacteristics and geodynamical significance[J]. Earth and Planetary Science Letters,1986,79(3):281-302.
    29. Davies J H, von Blanckenburg F. Slab breakoff: A model of lithosphere detachment andits test in the magmatism and deformation of collisional orogens[J]. Earth and PlanetaryScience Letters,1995,129(1):85-102.
    30. Defant M J, Drummond M S. Derivation of some modern arc magmas by melting ofyoung subducted lithosphere[J]. Nature,1990,347:662-665.
    31. Defant M J, Drummond M S. Mount St. Helens: potential example of the partial meltingof the subducted lithosphere in a volcanic arc[J]. Geology,1993,21(6):547-550.
    32. Drummond M S, Defant M J. A model for Trondhjemite-tonalite-dacite genesis andcrustal growth via slab melting-Archean to modern comparisons[J]. Journal ofGeophysical Research,1990,95:21503-21521.
    33. Duncan A R, Erlank A J, Marsh J. Regional geochemistry of the Karoo igneousprovince[J]. Special Publication Geological Society of Africa,1984,13:355-388.
    34. England P, Houseman G. Extension During Continental Convergence, with Applicationto the Tibetan Plateau[J]. Journal of Geophysical Research,1989,94(B12):17561-17579.
    35. Frey F A, Prinz M. Ultramafic inclusions from San Carlos, Arizona: petrologic andgeochemical data bearing on their petrogenesis[J]. Earth and Planetary Science Letters,1978,38(1):129-176.
    36. Frey F A, Gerlach D C, Hickey R L, et al. Villavicencio, F. M. Petrogenesis of theLaguna el Maule volcanic complex, Chile (36°S)[J]. Contributions to Mineralogy andPetrology,1984,88:133-149.
    37. Frost B R, Barnes C G, Collins W J, et al. A geochemical classification for graniticrocks[J]. Journal of Petrology,2001,42(11):2033-2048.
    38. Frost C D, Frost B R, Chamberlain KR, et al. Petrogenesis of the1.43Ga Shermanbatholith, SE Wyoming, USA: a reduced, rapakivi-type anorogenic granite[J]. Journal ofPetrology,1999,40:1771-1802.
    39. Gao S, Rudnick R L, Yuan H L, et al. Recycling lower continental crust in the NorthChina craton[J]. Nature,2004,432:892-897.
    40. Gao S, Zhang J F, Xu W L, et al. Delamination and destruction of the North ChinaCraton[J]. Chinese Science Bulletin,2009,54(19):3367-3378.
    41. Garland F, Hawkesworth C J, Mantovanim S M. Description and petrogenesis of theParana rhyolites, southern Brazil[J]. Journal of Petrology,1995,36:1193-1227.
    42. Geist D, Howard K A, Larson P. The generation of oceanic rhyolites by crystalfractionation: the basalt-rhyolite association at Volcano Alcedo, GalapagosArchipelago[J]. Journal of Petrology,1995,36:965-982.
    43. Gill J B. Early Geochemical Evolution of an Oceanic Island Arc and Backarc: Fiji andthe South Fiji Basin[J]. Journal of Geology,1987,95:589-615.
    44. Hacker B R, Ratschbacher L, Webb L, et al. U/Pb zircon ages constrain the architectureof the ultrahigh-pressure Qinling-Dabie Orogen, China[J]. Earth and Planetary ScienceLetters,1998,161(1):215-230.
    45. Harris N B W, Pearce J A, Tindle A G. Geochemical characteristics of collision-zonemagmatism[M]//Coward M P, Ries A C. Collision Tectonics. Geological Society. London:Special Publication,1986,19:67-81.
    46. Henderson P. Inorganic geochemistry[M]. Oxford: Pergamon Press,1982.
    47. Hildreth W E S, Halliday A N, Christiansen R L. Isotopic and chemical evidenceconcerning the genesis and contamination of basaltic and rhyolitic magma beneath theYellowstone Plateau volcanic field[J]. Journal of Petrology,1991,32(1):63-138.
    48. Hochstaedter A G, Gill J B, Kusakabe M, et al. Volcanism in the Sumisu Rift I: element,volatile and stable geochemistry[J]. Earth Planetary Science Letters,1990,100:179-194.
    49. Hofmann A W, Jochum K P, Seufert M, et al. Nb and Pb in oceanic basalts: newconstraints on mantle evolution[J]. Earth and Planetary Science Letters,1986,79(1):33-45.
    50. Hofmann A W. Chemical differentiation of the Earth: the relationship between mantle,continental crust, and oceanic crust[J]. Earth and Planetary Science Letters,1988,90:297-314.
    51. Huang J Q. On Major Tectonic Forms of China[M]. National Geological Survey ofChina under the Ministry of Economic Affairs,1945.
    52. Huang X L, Xu Y G, Lan J B, et al. Neoproterozoic adakitic rocks from Mopanshan inthe western Yangtze Craton: Partial melts of a thickened lower crust[J]. Lithos,2009,112(3):367-381.
    53. Ikeda Y, Yuasa M. Volcanism in nascent backarc basins behind the Schichito Ridge andadjacent areas in the Izu-Ogasawara arc, NW Pacific; evidence for mixing betweenE-type MORB and island arc magmas at the initiation of back-arc rifing[J]. Contributionsto Mineralogy and Petrology,1989,101:377-393.
    54. Irvine T N, Baragar W R A. A guide to the chemical classification of the commonvolcanic rocks[J]. Canadian Journal of Earth Sciences,1971,8(5):523-548.
    55. Jahn B, Zhang Z Q. Archean granulite gneisses from eastern Hebei Province, China: rareearth geochemistry and tectonic implications[J]. Contributions to Mineralogy andPetrology,1984,85(3):224-243.
    56. Jahn B M, Wu F Y, Chen B. Massive granitoid generation in central Asia: Nd isotopicevidence and implication for continental growth in the Phanerozoic[J]. Episodes,2000,23:82-92.
    57. Jia D C, Hu R Z, Lu Y, et al. Collision belt between the Khanka block and the NorthChina block in the Yanbian Region, Northeast China[J]. Journal of Asian Earth Sciences,2004,23:211-219.
    58. Jiang S H, Nie F J, Su Y J, et al. Geochronology and Origin of the Erdenet SuperlargeCu-Mo Deposit in Mongolia[J]. Diqiu Xuebao (Acta Geoscientica Sinica),2010,31(3):289-306.
    59. Karsli O, Ketenci M, Uysal I, et al. Adakite-like granitoid porphyries in the EasternPontides, NE Turkey: Potential parental melts and geodynamic implications[J]. Lithos,2011,127(1):354-372.
    60. Kay R W, Kay S M. Delamination and delamination magmatism[J]. Tectonophysics,1993,219(1):177-189.
    61. Keay S, Steele D, Compston W. Identifing granite sources by SHRIMP U-Pb zircongeochronology: An application to the Lachlan foldbelt[J]. Contributions to Mineralogyand Petrology,1999,137(4):323-341.
    62. Kelemen P B, Hangh J K, Greene A R. One view of the geochemistry ofsubduction-related magmatic arcs, with an emphasis on primitive andesite and lowercrust[M]//Rudnick R L(ed.), Treatise On Geochemistry,2003,3:593-659.
    63. Koschek G. Origin and significance of the SEM cathodoluminescence from zircon[J].Journal of Microscopy,1993,171(3):223-232.
    64. Le Roex A P. Geochemical correlation between southern African kimberlites and SouthAtlantic hotspots[J]. Nature,1986,324:243-245.
    65. Leake B E. Granite magmas: their sources, initiation and consequences ofemplacement[J]. Journal of the Geological Society,1990,147(4):579-589.
    66. Li J Y. Permian geodynamic setting of Northeast China and adjacent regions: closure ofthe Paleo-Asian ocean and subduction of the Paleo-Pacific plate[J]. Journal of AsianEarth Sciences,2006,26(3-4):207-224.
    67. Li S, Xiao Y, Liou D, et al. Collision of the North China and Yangtse Blocks andformation of coesite-bearing eclogites: timing and processes[J]. Chemical Geology,1993,109(1):89-111.
    68. Li S, Jagoutz E, Chen Y, et al. Sm-Nd and Rb-Sr isotopic chronology and cooling historyof ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in theDabie Mountains, Central China[J]. Geochimica et Cosmochimica Acta,2000,64(6):1077-1093.
    69. Li X H, Liu Y, Li Q L, et al. Precise determination of Phanerozoic zircon Pb/Pb age bymulticollector SIMS without external standardization[J]. Geochemistry, Geophysics,Geosystems,2009,10(4).
    70. Liegeois J P. Some words on the post-collisional magmatism. Preface to Special Editionon Post-Collisional Magmatism[J]. Lithos,1998,45: XV-XVII.
    71. Lin W, Faure M, Nomade S, et al. Permian-Triassic amalgamation of Asia: insights fromNortheast China sutures and their place in the final collision of North China andSiberia[J]. Comptes Rendus Geoscience,2008,340(2):190-201.
    72. Liu S, Hu R Z, Gao S, et al. Zircon U-Pb age and Sr-Nd-Hf isotope geochemistry ofPermian granodiorite and associated gabbro in the Songliao Block, NE China andimplications for growth of juvenile crust[J]. Lithos,2010a,114(3):423-436.
    73. Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-inducedmelt-peridotite interactions in the trans-north China Orogen: U-Pb dating, Hf isotopesand trace elements in Zircons from Mantle Xenoliths[J]. Journal of Petrology,2010b,51(1-2):537-571.
    74. Ludwig K R. Using Isoplot/EX, version2.49. A Geochronological Toolkit for MicrosoftExcel[P/OL]. Berkeley: Berkeley Geochronological Center, Special Publiction,2001,1-55.
    75. Ma X, Chen B, Chen J F, et al. Zircon SHRIMP U-Pb age, geochemical, Sr-Nd isotopic,and in-situ Hf isotopic data of the Late Carboniferous-Early Permian plutons in thenorthern margin of the North China Craton[J]. Science China Earth Sciences,2013,56(1):126-144.
    76. Macpherson C G, Dreher S T, Thirlwall M F. Adakites without slab melting: highpressure differentiation of island arc magma, Mindanao, the Philippines[J]. Earth andPlanetary Science Letters,2006,243(3):581-593.
    77. Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological society ofAmerica bulletin,1989,101(5):635-643.
    78. Martin H. Adakitic magmas: modern analogues of Archaean granitoids[J]. Lithos,1999,46(3):411-429.
    79. Martin H, Smithies R H, Rapp R, et al. An overview of adakite,tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and someimplications for crustal evolution[J]. Lithos,2005,79(1):1-24.
    80. Meng E, Xu W L, Pei F P, et al. Chronology of Late Paleozoic volcanism in eastern andsoutheastern margin of Jiamusi Massif and its tectonic implications[J]. Chinese SciencesBulletin,2008,53:1231-1245.
    81. Meng E, Xu W L, Pei F P, et al. Zircon U-Pb chronology and geochemistry of Permianvolcanic rocks in eastern Heilongjiang Province, NE China and its tectonicimplications[J]. Geochimica et Cosmochimica Acta,2010,74(12):698.
    82. Meng E, Xu W L, Pei F P, et al. Permian bimodal volcanism in the Zhangguangcai Rangeof eastern Heilongjiang Province, NE China: zircon U-Pb-Hf isotopes and geochemicalevidence[J]. Journal of Asian Earth Sciences,2011,41(2):119-132.
    83. Miller C F, McDowell S M, Mapes R W. Hot and cold granites? Implications of zirconsaturation temperatures and preservation of inheritance[J]. Geology,2003,31(6):529-532.
    84. Munker C. Nb/Ta fractionation in a Cambrian arc/back arc system, New Zealand: sourceconstraints and application of refined ICPMS techniques[J]. Chemical Geology,1998,144(1-2):23-45.
    85. Nabelek P I, Liu M, Sirbescu M L. Thermo-rheological, shear heating model forleucogranite generation, metamorphism, and deformation during the ProterozoicTrans-Hudson orogeny, Black Hills, South Dakota[J]. Tectonophysics,2001,342(3):371-388.
    86. Orolmaa D, Erdenesaihan G, Borisenko A S, et al. Permian-Triassic granitoidmagmatism and metallogeny of the Hangayn (central Mongolia)[J]. Russian Geology andGeophysics,2008,49(7):534-544.
    87. Patino Douce A E, Beard J S. Dehydration-melting of biotite gneiss and quartzamphibolite from3to15kbar[J]. Journal of Petrology,1995,36:707-738.
    88. Patino Douce A E. Generation of metaluminous A-type granites by low-pressure meltingof calc-alkaline granitoids[J]. Geology,1997,25:743-746.
    89. Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for thetectonic interpretation of granitic rocks[J]. Journal of petrology,1984,25(4):956-983.
    90. Pearce J A, Bender J F, De Long S E, et al. Genesis of collision volcanism in EasternAnatolia, Turkey[J]. Journal of Volcanology and Geothermal Research,1990,44(1):189-229.
    91. Pearce J A, Ernewein M, Bloomer S H. Geochemistry of Lau Basin volcanicrocks[M]//Smellie J. Volcanism Associated with Extension at Consuming Plate Margins.London: Geological Society of Special Publication,1995,53-75.
    92. Pearce J A. Kempton P D, Nowell G M, et al. Hf-Nd element an isotope perspective onthe nature and provenance of mantle and subduction components in Western Pacificarc-basin systems[J]. Journal of Petrology,1999,(40):1579-1611.
    93. Peccerillo A, Taylor A R. Geochemistry of Eocene calc-alkaline volcanic rocks from theKastamonu area, Northern Turkey[J]. Contribution to Mineralogy and Petrology,1976,58:63-81.
    94. Pei F P, Xu W L, Yang D B, et al. Geochronology and geochemistry of Mesozoicmafic-ultramafic complexes in the southern Liaoning and southern Jilin provinces, NEChina: Constraints on the spatial extent of destruction of the North China Craton[J].Journal of Asian Earth Sciences,2011,40(2):636-650.
    95. Petford N, Atherton M. Na-rich partial melts from newly underplated basaltic crust: theCordillera Blanca Batholith, Peru[J]. Journal of Petrology,1996,37(6):1491-1521.
    96. Pin C, Marini F. Early Ordovician continental break-up on Variscan Europe: Nd-Srisotope and trace element evidence for bimodal igneous associations of the southernMassif Central, France[J]. Lithos,1993,29:177-196.
    97. Pin C, Paquette J L. A mantle-derived bimodal suite in the Hercynian belt: Nd isotopeand trace element evidence for a subduction-related rift origin of the late DevonianBrevenne metavolcanics, Massif Central (France)[J]. Contributions to Mineralogy andPetrology,1997,129:222-238.
    98. Pitcher W S. The nature and origin of granite[M]. London: Blackie Academic andProfessional,1993,321.
    99. Pupin J P. Zircon and granite petrology[J]. Contributions to Mineralogy and Petrology,1980,73(3):207-220.
    100.Rapp R P, Xiao L, Shimizu N. Experimental constraints on the origin of potassium-richadakites in eastern China[J]. Acta Petrologica Sinica,2002,18(3):293-302.
    101.Revillon S, Arndt N T, Hallot E, et al. Petrogenesis of picrites from the CaribbeanPlateau and the North Atlantic magmatic province[J]. Lithos,1999,49(1):1-21.
    102.Rey P, Vanderhaeghe O, Teyssier C. Gravitational collapse of the continental crust:definition, regimes and modes[J]. Tectonophysics,2001,342(3):435-449.
    103.Roberts M P, Pin C, Clemens J D, et al. Petrogenesis of mafic to felsic plutonic rockassociations: the calc-alkaline Quérigut complex, French Pyrenees[J]. Journal ofPetrology,2000,41(6):809-844.
    104.Roeder P L, Emslie R F. Olivine-liquid equilibrium[J]. Contributions to mineralogy andpetrology,1970,29(4):275-289.
    105.Rudnick R L, Gao S. Composition of the continental crust[M]//Rudnick R L. Treatise OnGeochemistry,2003,3:1-64.
    106.Schneider D A, Edwards M A, Kidd W S F, et al. Early Miocene anatexis identified in thewestern syntaxis, Pakistan Himalaya[J]. Earth and Planetary Science Letters,1999,167(3):121-129.
    107.Schott B, Schmeling H. Delamination and detachment of a lithospheric root[J].Tectonophysics,1998,296(3):225-247.
    108.Seng r A M C, Natal’in B A, Burtman V S. Evolution of the Altaid tectonic collage andPalaeozoic crustal growth in Eurasia[J]. Nature,1993,364:299-307.
    109.Seng r A M C, Natal’in B A. Paleotectonics of Asia: fragments of a synthesis[M]//Yin A,Harrison T M. The Tectonic Evolution of Asia. Cambridge: Cambrige University Press,1996,486-641.
    110.Shen S Z, Zhang H, Shang Q H, et al. Permian stratigraphy and correlation of NortheastChina: A review[J]. Journal of Asian Earth Sciences,2006,26(3):304-326.
    111.Shi G R, Archbold N W, Zhan L P. Distribution and characteristics of mixed (transitional)mid-Permian (Late Artinskian-Ufimian) marine faunas in Asia and theirpalaeogeographical implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,1995,114(2):241-271.
    112.Shi G R, Zwan L P. A mixed mid-Permian marine fauna from the Yanji area, northeasternChina: A paleobiogeographical reinterpretation[J]. Island Arc,1996,5(4):386-395.
    113.Shi G R, Grunt T A. Permian Gondwana-Boreal antitropicality with special reference tobrachiopod faunas[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2000,155(3):239-263.
    114.Shi G R. The marine Permian of East and Northeast Asia: an overview of biostratigraphy,palaeobiogeography and palaeogeographical implications[J]. Journal of Asian EarthSciences,2006,26(3):175-206.
    115.Smithies R H. The Archaean tonalite-trondhjemite-granodiorite (TTG) series is not ananalogue of Cenozoic adakite[J]. Earth and Planetary Science Letters,2000,182(1):115-125.
    116.Stern R J. Subduction zones[J]. Review of Geophysics,2002,40:1012.
    117.Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[M]//Saundern A D, Norry M J.Magmatism in the ocean basins. London: Geological Society Special Publication,1989,42(1):313-345.
    118.Sylvester P J. Post-collisional strongly peraluminous granites[J]. Lithos,1998,45(1):29-44.
    119.Tang K D. Tectonic development of Paleozoic foldbelts at the north margin of theSino-Korean craton[J]. Tectonics,1990,9(2):249-260.
    120.Taylor S R, McLennan S M. The continental crust: its composition and evolution[J].1985.
    121.Taylor S R, Mclennan S M. The geochemical composition of the continental crust[J].Reviews of Geophysics,1995,33:241-265.
    122.Tomurtogoo O, Windley B F, Kr ner A, et al. Zircon age and occurrence of the Adaatsagophiolite and Muron shear zone, central Mongolia: constraints on the evolution of theMongol-Okhotsk ocean, suture and orogen[J]. Journal of the Geological Society,2005,162(1):125-134.
    123.Turner S, Sandiford M, Foden J. Some geodynamic and compositional constraints on“postorogenic” magmatism[J]. Geology,1992,20(10):931-934.
    124.Turner S, Arnaud N, Liu J, et al. Post-collision, shoshonitic volcanism on the TibetanPlateau: implications for convective thinning of the lithosphere and the source of oceanisland basalts[J]. Journal of petrology,1996,37(1):45-71.
    125.Vanderhaeghe O, Teyssier C. Crustal-scale rheological transitions during late-orogeniccollapse[J]. Tectonophysics,2001,335(1):211-228.
    126.von Blanckenburg F, Davies J H. Slab breakoff: a model for syncollisional magmatismand tectonics in the Alps[J]. Tectonics,1995,14(1):120-131.
    127.Wang F, Xu W L, Meng E, et al. Early Paleozoic amalgamation of theSongnen-Zhangguangcai Range and Jiamusi massifs in the eastern segment of theCentral Asian Orogenic Belt: Geochronological and geochemical evidence fromgranitoids and rhyolites[J]. Journal of Asian Earth Sciences,2012a,49(30):234-248.
    128.Wang F, Xu W L, Gao F H, et al. Tectonic history of the Zhangguangcailing Group ineastern Heilongjiang Province, NE China: Constraints from U-Pb geochronology ofdetrital and magmatic zircons[J]. Tectonophysics,2012b,566-567(16):105-122.
    129.Wang K L, Chung S L, O'reilly S Y, et al. Geochemical constraints for the genesis ofpost-collisional magmatism and the geodynamic evolution of the northern Taiwanregion[J]. Journal of Petrology,2004,45(5):975-1011.
    130.Wang Q, Liu X Y. Paleoplate tectonics between Cathasia and Angaraland in InnerMongolia of China[J]. Tectonics,1986,5(7):1073-1088
    131.Wang Q, Xu J F, Jian P, et al. Petrogenesis of adakitic porphyries in an extensionaltectonic setting, Dexing, South China: implications for the genesis of porphyry coppermineralization[J]. Journal of Petrology,2006,47(1):119-144.
    132.Watson E B, Wark D A, Thomas J B. Crystallization thermometers for zircon andrutile[J]. Contributions to Mineralogy and Petrology,2006,151(4):413-433.
    133.Whalen J B, Currie K L, Chappell B W. A-type granites: geochemical characteristics,discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology,1987,95:407-419.
    134.Wilde S A, Zhang X, Wu F. Extension of a newly identified500Ma metamorphic terranein North East China: further U-Pb SHRIMP dating of the Mashan Complex, HeilongjiangProvince, China[J]. Tectonophysics,2000,328(1):115-130.
    135.Wilde S A, Wu F, Zhang X. Late Pan-African magmatism in northeastern China:SHRIMP U-Pb zircon evidence from granitoids in the Jiamusi Massif[J]. PrecambrianResearch,2003,122(1):311-327.
    136.Williamson B J, Shaw A, Downes H, et al. Geochemical constraints on the genesis ofHercynian two-mica leucogranites from the Massif Central, France[J]. ChemicalGeology,1996,127(1):25-42.
    137.Wilson B M. Igneous petrogenesis-a global tectonic approach[M]//Unwin Hyman.London: United Kingdom (GBR),1989.
    138.Wright J B. A simple alkalinity ratio and its application to questions of non-orogenicgranite genesis[J]. Geological Magazine,1969,106(4):370-384.
    139.Wu F Y, Jahn B M, Wilde S A, et al. Phanerozoic crustal growth: U-Pb and Sr-Ndisotopic evidence from the granites in northeastern China[J]. Tectonophysics,2000,328:89-113.
    140.Wu F Y, Sun S Y, Li H M, et al. A-type granites in northeastern China: age andgeochemical constraints on their petrogenesis[J]. Chemical Geology,2002,187:143-173.
    141.Wu F Y, Wilde S A, Zhang G L, et al. Geochronology and petrogenesis of thepost-orogenic Cu-Ni sulfide-bearing mafic-ultramafic complexes in Jilin Province, NEChina[J]. Journal of Asian Earth Sciences,2004,23:781-797.
    142.Wu F Y, Zhao G C, Sun D Y, et al. The Hulan Group: its role in the evolution of theCentral Asian Orogenic Belt of NE China[J]. Journal of Asian Earth Sciences,2007,30:542-556.
    143.Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic granitoids innortheastern China[J]. Journal of Asian Earth Sciences,2011,41(1):1-30.
    144.Xiao W J, Zhang L C, Qin K Z, et al. Paleozoic accretionary and collisional tectonics ofthe eastern Tienshan (China): implications for the continental growth of Central Asia[J].American Journal of Science,2004,304:370-395.
    145.Xiong X L, Li X H, Xu J F, et al. Extremely high-Na adakite-like magmas derived fromalkali-rich basaltic underplate: The Late Cretaceous Zhantang andesites in the HuichangBasin, SE China[J]. Geochemical Journal,2003,37(2):233-252.
    146.Xu J F, Shinjo R, Defant M J, et al. Origin of Mesozoic adakitic intrusive rocks in theNingzhen area of east China: Partial melting of delaminated lower continental crust?[J].Geology,2002,30(12):1111-1114.
    147.Xu P, Wu F Y, Xie L W, et al. Hf isotopic compositions of the standard zircons for U-Pbdating[J]. Chinese Science Bulletin,2004,49(15):1642-1648.
    148.Xu W L, Wang Q H, Wang D Y, et al. Mesozoic adakitic rocks from the Xuzhou-Suzhouarea, eastern China: Evidence for partial melting of delaminated lower continentalcrust[J]. Journal of Asian Earth Sciences,2006,27(4):454-464.
    149.Xu W L, Ji W Q, Pei F P, et al. Triassic volcanism in eastern Heilongjiang and JilinProvinces, NE China: Chronology, geochemistry, and tectonic implications[J]. Journal ofAsian Earth Sciences,2009,34:392-402.
    150.Xu W L, Pei F P, Wang F, et al. Spatial–temporal relationships of Mesozoic volcanicrocks in NE China: constraints on tectonic overprinting and transformations betweenmultiple tectonic regimes[J]. Journal of Asian Earth Sciences,2013, in Press.
    151.Yan J, Chen J F, Xu X S. Geochemistry of Cretaceous mafic rocks from the LowerYangtze region, eastern China: Characteristics and evolution of the lithospheric mantle[J].Journal of Asian Earth Sciences,2008,33(3):177-193.
    152.Yang J H, Wu F Y, Shao J, et al. Constraints on the timing of uplift of the Yanshan Foldand Thrust Belt, North China[J]. Earth and Planetary Science Letters,2006,246:336-245.
    153.Yang J H, Sun J F, Zhang J H, et al. Petrogenesis of Late Triassic intrusive rocks in thenorthern Liaodong Peninsula related to decratonization of the North China Craton:Zircon U-Pb age and Hf-O isotope evidence[J]. Lithos,2012,153(15):108-128.
    154.Yu J J, Wang F, Xu W L, et al. Early Jurassic mafic magmatism in the LesserXing'an-Zhangguangcai Range, NE China, and its tectonic implications: Constraintsfrom zircon U-Pb chronology and geochemistry[J]. Lithos,2012,142:256-266.
    155.Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations ofzircon by laser ablation inductively coupled plasma mass spectrometry[J]. GeostandardNewsletter,2004,28(3):353-370.
    156.Zen E. Aluminum enrichment in silicate melts by fractional crystallization: somemineralogic and petrographic constraints[J]. Journal of Petrology,1986,27(5):1095-1117.
    157.Zhang S H, Zhao Y, Song B, et al. Zircon SHRIMP U-Pb and in-situ Lu–Hf isotopeanalyses of a tuff from Western Beijing: evidence for missing Late Paleozoic arc volcanoeruptions at the northern margin of the North China block[J]. Gondwana Research,2007a,12(1):157-165.
    158.Zhang S H, Zhao Y U E, Song B, et al. Carboniferous granitic plutons from the northernmargin of the North China block: implications for a late Palaeozoic active continentalmargin[J]. Journal of the Geological Society,2007b,164(2):451-463.
    159.Zhang S H, Zhao Y, Song B, et al. Contrasting Late Carboniferous and LatePermian-Middle Triassic intrusive suites from the northern margin of the North Chinacraton: Geochronology, petrogenesis, and tectonic implications[J]. Geological Society ofAmerica Bulletin,2009a,121(1-2):181-200.
    160.Zhang S H, Zhao Y, Kr ner A, et al. Early Permian plutons from the northern NorthChina Block: constraints on continental arc evolution and convergent margin magmatismrelated to the Central Asian Orogenic Belt[J]. International Journal of Earth Sciences,2009b,98(6):1441-1467.
    161.Zhang X H, Zhang H F, Tang Y J, et al. Geochemistry of Permian bimodal volcanicrocks from central Inner Mongolia, North China: Implication for tectonic setting andPhanerozoic continental growth in Central Asian Orogenic Belt[J]. Chemical Geology,2008,249(3):262-281.
    162.Zhang X H, Zhang H F, Wilde S A, et al. Late Permian to Early Triassic mafic to felsicintrusive rocks from North Liaoning, North China: Petrogenesis and implications forPhanerozoic continental crustal growth[J]. Lithos,2010,117(1):283-306.
    163.Zhang X H, Mao Q, Zhang H F, et al. Mafic and felsic magma interaction during theconstruction of high-K calc-alkaline plutons within a metacratonic passive margin: TheEarly Permian Guyang batholith from the northern North China Craton[J]. Lithos,2011,125(1):569-591.
    164.Zhang Y B, Wu F Y, Wilde S A, et al. Zircon U-Pb ages and tectonic implications of“Early Paleozoic” granitoids at Yanbian, Jilin Province, northeast China[J]. The IslandArc,2004,13:484-505.
    165.Zhao G C, Wilde S A, Cawood P A, et al. Archean blocks and their boundaries in theNorth China Craton: Lithological, geochemical, structural and P-T path constraints andtectonic evolution[J]. Precambrian Research,2001,107(1-2):45-73.
    166.Zheng Y F, Fu B, Gong B, et al. Stable isotope geochemistry of ultrahigh pressuremetamorphic rocks from the Dabie-Sulu orogen in China: implications for geodynamicsand fluid regime[J]. Earth Science Reviews,2003,62(1):105-161.
    167.Zhu D C, Zhao Z D, Pan G T, et al. Early cretaceous subduction-related adakite-likerocks of the Gangdese Belt, southern Tibet: Products of slab melting and subsequentmelt-peridotite interaction?[J]. Journal of Asian Earth Sciences,2009,34(3):298-309.
    168.曹花花,许文良,裴福萍,等.华北板块北缘东段二叠纪的构造属性:来自火山岩锆石U-Pb年代学与地球化学的制约[J].岩石学报,2012,28(9):2733-2750.
    169.程裕淇.中国区域地质概论[M].北京:地震出版社.1994.
    170.方文昌.吉林省花岗岩类及成矿作用[M].长春:吉林科学技术出版社,1992.
    171.冯光英,刘燊,钟宏,等.吉林晚古生代榆木川基性岩的地球化学特征及其岩石成因[J].地球化学,2010,39(5):427-438.
    172.付长亮.珲春小西南岔地区花岗岩类的时代—地球化学特征与成因[D].长春:吉林大学,2009.
    173.付晓辉.内蒙古四子王旗北部二叠系寿山沟组复理石研究[D].北京:中国地质大学(北京),2007.
    174.葛文春,李献华,李正祥,等.桂北新元古代两类过铝花岗岩的地球化学研究[J].地球化学,2001,30(1):24-34.
    175.葛文春,吴福元,周长勇,等.大兴安岭中部乌兰浩特地区中生代花岗岩的锆石U-Pb年龄及地质意义[J].岩石学报,2005,21(3):749-762.
    176.郭锋,范蔚茗,李超文,等.延吉地区古新世埃达克岩捕获锆石U-Pb年龄, Hf同位素和微量元素地球化学对区域中酸性岩浆演化的指示[J].岩石学报,2007,23(2):413-422.
    177.郭胜哲.中朝板块与西伯利亚板块拼合时限的确定及其生物地层学依据[J].中国地质科学院沈阳地质矿产研究所所刊,1986,14:127-136.
    178.郭素淑,李曙光.淡色花岗岩的岩石学和地球化学特征及其成因[J].地学前缘,2007,14(6):290-298.
    179.郭素淑,李曙光.淡色花岗岩岩石化学特征及蚌埠淡色花岗岩[J].科学通报,2009,8:1111-1116.
    180.韩宝福,加加美宽雄,李惠民.河北平泉光头山碱性花岗岩的时代, Nd-Sr同位素特征及其对华北早中生代壳幔相互作用的意义[J].岩石学报,2004,20(6):1375-1388.
    181.韩国卿,刘永江,温泉波,等.西拉木伦河缝合带北侧二叠纪砂岩碎屑锆石LA-ICP-MS U-Pb年代学及其构造意义[J].地球科学(中国地质大学学报),2011,36(4):687-702.
    182.何国琦,邵济安.内蒙古东南部(昭盟)西拉木伦河一带早古生代蛇绿岩建造的确定及其大地构造意义[J].中国北方板块构造文集,1983,1:243-250.
    183.和政军,刘淑文,任纪舜,等.内蒙古林西地区晚二叠世—早三叠世沉积演化及构造背景[J].中国区域地质,1997,16(4):403-409.
    184.黑龙江省地质矿产局.黑龙江省区域地质志[M].北京:地质出版社,1993.
    185.洪大卫,王式洸,谢锡林,等.兴蒙造山带正εNd(t)值花岗岩的成因和大陆地壳生长[J].地学前缘,2000,7(2):441-456.
    186.侯可军,李延河,邹天人,等. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J].岩石学报,2007,23(10):2595-2604.
    187.黄本宏.东北北部石炭二叠纪陆相地层及古地理概况[J].地质论评,1982,28(5):395-401.
    188.黄本宏.天山—兴安岭褶皱区东部古生代末植物地理区系及其地质意义[J].中国北方板块构造文集,1983,1:138-155
    189.黄本宏.内蒙古镶黄旗地区早二叠世植物化石[J].中国北方板块构造论文集,1986,1:115-135.
    190.黄汲清.中国地质构造基本特征的初步总结[J].地质学报,1960,40(1):1-37.
    191.黄汲清,姜春发.从多旋回构造运动观点初步探讨地壳发展规律[J].地质学报,1962,42(2):105-152.
    192.黄汲清,任纪舜,姜春发,等.中国大地构造基本轮廓[J].地质学报,1977,51(2):117-135.
    193.黄汲清,任纪舜.中国大地构造及其演化[M].北京:科学出版社,1980.
    194.吉林省地质矿产局.中华人民共和国1:20万区域地质调查报告(辽源市幅K-51-XII)[R].1978.
    195.吉林省地质矿产局.中华人民共和国1:20万区域地质调查报告(怀德县幅K-51-V)[R].1984.
    196.吉林省地质矿产局.吉林省区域地质志[M].北京:地质出版社,1988.
    197.吉林省地质矿产局.中华人民共和国1:20万区域地质调查报告(吉林市幅K-51-1)[R].1989.
    198.吉林省地质矿产局.中华人民共和国1:25万区域地质调查报告(长春市幅K51-C-001004)[R].2000.
    199.吉林省地质矿产局.中华人民共和国1:25万区域地质调查报告(辽源市幅K51-C-002004)[R].2004.
    200.吉林省地质矿产局.中华人民共和国1:25万区域地质调查报告(吉林市幅K52-C-001001)[R].2007.
    201.李承东,张福勤,苗来成,等.吉林色洛河晚二叠世高镁安山岩SHRIMP锆石年代学及其地球化学特征[J].岩石学报,23(4):767-776.
    202.李春昱,王荃,张之孟,等.中国板块构造的轮廓[J].中国地质科学院院报,1980,2(1):11-19
    203.李春昱,王荃,刘雪亚,等.亚洲大地构造图(1:800万)及说明书[M].北京:地图出版社,1982.
    204.李春昱,王荃.我国北部边陲及邻区的古板块构造与欧亚大陆的形成[J].中国北方板块构造文集,1983,1:3-17
    205.李春昱,王荃,刘雪亚,等.亚洲大地构造的演化[J].地球学报,1984,10(3):3-9.
    206.李东津.全国地层多重划分对比研究:吉林省岩石地层[M].武汉:中国地质大学出版社,1997.
    207.李锦轶.内蒙古东部中朝板块与西伯利亚板块之间古缝合带的初步研究[J].科学通报,1986,31(14):1093-1096.
    208.李锦轶.布列亚—佳木斯古板块的构成及演化[J].地学研究,1995a,28:96-98
    209.李锦轶.陆间残余海盆与板块碰撞造山作用[J].地学研究,1995b,28:6-14.
    210.李锦轶.中国东北及邻区若干地质构造问题的新认识[J].地质论评,1998,44(4):339-347.
    211.李锦轶,牛宝贵,宋彪,等.长白山北段地壳的形成与演化[M].北京:地质出版社,
    1999.
    212.李锦轶.中国大陆地壳“镶嵌与叠覆”的结构特征及其演化[J].地质通报,2004,23(9):986-1004.
    213.李锦轶,张进,杨天南,等.北亚造山区南部及其毗邻地区地壳构造分区与构造演化[J].吉林大学学报(地球科学版),2009,39(4):584-605.
    214.李双林,欧阳自远.兴蒙造山带及邻区的构造格局与构造演化[J].海洋地质与第四纪地质,1998,18(3):45-54.
    215.李献华,梁细荣,韦刚健,等.锆石Hf同位素组成的LAM-MC-ICPMS精确测定[J].地球化学,2003,32(1):86-90.
    216.李之彤,赵春荆.吉黑东部晚三叠世岩浆活动及其与板块构造的关系[J].中国地质科学院院报,1988.
    217.辽宁省地质矿产局.中华人民共和国1:20万区域地质调查报告(四平幅K-51-XI)[R].1971
    218.辽宁省地质矿产局.中华人民共和国1:20万区域地质调查报告(开原市幅K-51-17)[R].1976.
    219.辽宁省地质矿产局.辽宁省区域地质志[M].北京:地质出版社,1989.
    220.廖忠礼,莫宣学,潘桂棠,等.过铝花岗岩的研究动向和进展—兼论西藏过铝花岗岩[J].沉积与特提斯地质,2004,24(2):22-29.
    221.林广春,马昌前.过铝花岗岩的成因类型与构造环境研究综述[J].华南地质与矿产,2003,1:65-70.
    222.刘宝山,马永强,吕军,等.伊春地区上游新村晚三叠世二长花岗岩体成因及就位机制[J].地质与资源,2005,14(3):170-175.
    223.刘红涛,翟明国,刘建明,等.华北克拉通北缘中生代花岗岩:从碰撞后到非造山[J].岩石学报,2002,18(4):433-448.
    224.刘家义.内蒙古贺根山地区蛇绿岩套研究及构造意义[J].中国北方板块构造文集,1983,1:117-137.
    225.刘建峰.内蒙古林西—东乌旗地区晚古生代岩浆作用及其对区域构造演化的制约[D].长春:吉林大学,2009.
    226.刘燊,胡瑞忠,赵军红,等.胶北晚中生代煌斑岩的岩石地球化学特征及其成因研究[J].岩石学报,21(3):947-958.
    227.刘永江,张兴洲,金巍,等.东北地区晚古生代区域构造演化[J].中国地质,2010,37(4):943-951.
    228.柳长峰.内蒙古四子王旗地区古生代—早中生代岩浆岩带及其构造意义[D].北京:中国地质大学(北京),2010.
    229.柳长峰,张浩然,於炀森,等.内蒙古中部四子王旗地区北极各岩体锆石定年及其岩石化学特征.现代地质,2010,24(1):112-119.
    230.柳小明.华北克拉通中生代壳幔交换作用的地球化学研究[D].西安:西北大学,2004.
    231.路孝平,吴福元,赵成弼,等.通化地区印支期花岗岩锆石U-Pb年龄及其与大别-苏鲁超高压带碰撞造山作用之间的关系[J].科学通报,2003,48(8):843-849.
    232.罗镇宽,关康,苗来成.吉林夹皮沟金矿带岩脉和蚀变绢云母定年及金矿成矿时代[J].现代地质,2002,16(1):19-25.
    233.罗镇宽,苗来成,关康,等.冀东都山花岗岩基及相关花岗斑岩脉SHRIMP锆石U-Pb法定年及其意义[J].地球化学,2003,32(2):173-180.
    234.罗镇宽,李俊建,关康,等.辽宁凌源柏杖子金矿区花岗岩SHRIMP锆石U-Pb年龄[J].地质调查与研究,2004,27(2):82-85.
    235.马寅生,曾庆利,宋彪,等.燕山中段盘山花岗岩体锆石SHRIMP U-Pb年龄测定及其构造意义[J].岩石学报,2007,23(3):547-556.
    236.米家榕,刘茂强.吉林桦甸早二叠世大河深组的心脉羊齿(Cardioneura)[J].古生物学报,1985,24(6):618-625.
    237.内蒙古自治区地质矿产局.内蒙古自治区区域地质志[M].北京:地质出版社,1991.
    238.裴福萍,许文良,靳克.延边地区晚三叠世火山岩的岩石地球化学特征及其构造意义[J].世界地质,2004,23(1):6-13.
    239.裴福萍.辽南—吉南中生代侵入岩锆石U-Pb年代学和地球化学:对华北克拉通破坏时空范围的制约[D].长春:吉林大学,2008.
    240.裴福萍,许文良,于洋,等.吉林南部晚三叠世蚂蚁河岩体的成因:锆石U-Pb年代学和地球化学证据[J].吉林大学学报(地球科学版),2008,38(3):351-362.
    241.彭向东,张梅生,米家榕.中国东北地区二叠纪生物混生机制讨论[J].辽宁地质,1998a,1:40-44.
    242.彭向东,张梅生,张松梅,等.吉黑造山带二叠纪生物古地理区划及特征[J].长春科技大学学报,1998b,28(4):361-365.
    243.彭向东,张梅生,李晓敏.吉黑造山带古生代构造古地理演化[J].世界地质,1999,18(3):24-28.
    244.彭玉鲸.吉林省石头口门硅岩之成因及构造环境[J].吉林地质,2000,19(4):1-10.
    245.彭玉鲸,赵成弼.古吉黑造山带的演化与陆壳的增生[J].吉林地质,2001,20(2):1-9.
    246.彭玉鲸,纪春华,辛玉莲.中俄朝毗邻地区古吉黑造山带岩石及年代纪录[J].地质与资源,2002,11(2):65-75.
    247.彭玉鲸,陈跃军.吉黑造山带与华北地台开原-山城镇段构造边界位置[J].世界地质,2007,26(1):1-6.
    248.彭玉鲸,齐成栋,周晓东,等.吉黑复合造山带古亚洲洋向滨太平洋构造域转换:时间标志与全球构造的联系[J].地质与资源,2012,21(3):261-265.
    249.秦克章,田中亮吏,李伟实,等.满洲里地区印支期花岗岩Rb—Sr等时线年代学证据[J].岩石矿物学杂志,1998,17(3):235-240.
    250.任纪舜,黃汲清.中国大地构造及其演化:1:400万中国大地构造图简要说明[M].北京:科学出版社,1980.
    251.任纪舜,陈廷愚,刘志刚.中国东部构造单元划分的几个问题[J].地质论评,1984,30(4):382-385.
    252.任纪舜.论中国大陆岩石圈构造的基本特征[J].中国区域地质,1991,4:289-293.
    253.任纪舜,王作勋,陈炳蔚,等.从全球看中国大地构造—中国及邻区大地构造图简要说明[M].北京:地质出版社,1999.
    254.任康绪,阎国翰,牟保磊,等.辽西凌源河坎子碱性杂岩体地球化学特征及地质意义[J].岩石矿物学杂志,2004,23(3):193-202.
    255.任荣,牟保磊,韩宝福,等.河北矾山钾质碱性超镁铁岩-正长岩杂岩体的锆石SHRIMP U-Pb年龄[J].岩石学报,2009,25(3):588-594.
    256.尚庆华.北方造山带内蒙古中、东部地区二叠纪放射虫的发现及其意义[J].科学通报.2004,49(24):2574-2579.
    257.邵济安.内蒙古中部早古生代蛇绿岩及其在恢复地壳演化历史中的意义[J].中国北方板块构造文集,1986,1:158-172.
    258.邵济安.中朝板块北缘中段地壳演化[M].北京:北京大学出版社,1991.
    259.邵济安,唐克东,王成源,等.那丹哈达地体的构造特征及演化[J].中国科学B辑,1991,21(7):744-751.
    260.邵济安,唐克东.中国东北地体与东北亚大陆边缘演化[M].北京:地震出版社,1995a,171-179.
    261.邵济安,唐克东.吉林省延边开山屯地区蛇绿混杂岩[J].岩石学报,1995b,11:212-220.
    262.邵济安,唐克东.1996.蛇绿岩与古蒙古洋的演化[J].蛇绿岩与地球动力学研讨会论文集,1996,117-120.
    263.邵济安,牟保磊,何国琦,等.华北北部在古亚洲域与太平洋域构造叠加过程中的地质作用[J].中国科学(D辑),1997,27(5):390-394.
    264.邵济安,张履桥,牟保磊.大兴安岭中生代伸展造山过程中的岩浆作用[J].地学前缘,1999,6(4):339-346.
    265.沈其韩,耿元生,宋彪,等.华北和扬子陆块及秦岭—大别造山带地表和深部太古宙基底的新信息[J].地质学报,2005,79(5):616-627.
    266.苏养正.中国东北区二叠纪和早三叠世地层[J].吉林地质,1996,15(3):55-65.
    267.苏养正.东北地区古生代地层间断[J].地质与资源,2012,21(1):74-76.
    268.隋振民,陈跃军.大兴安岭东部花岗岩类锆石饱和温度及其地质意义[J].世界地质,2011,30(2):162-172.
    269.孙德有,吴福元,林强,等.张广才岭燕山早期白石山岩体成因与壳幔相互作用[J].岩石学报,2001,17(2):227-235.
    270.孙德有,吴福元,张艳斌,等.西拉木伦河—长春—延吉板块缝合带的最后闭合时间—来自吉林大玉山花岗岩体的证据[J].吉林大学学报(地球科学版),2004a,34(2):175-183.
    271.孙德有,吴福元,高山.小兴安岭东部清水岩体的锆石激光探针U-Pb年龄测定[J].地球学报,2004b,25(2):213-218.
    272.孙德有,吴福元,高山,等.吉林中部晚三叠世和早侏罗世两期铝质A型花岗岩的厘定及对吉黑东部构造格局的制约[J].地学前缘,2005,12(2):263-275.
    273.谭运金.花岗岩类的石榴石成分特征[J].地球与环境,1984,6:18-24
    274.唐克东.中朝陆台北侧褶皱代构造发展的几个问题[J].现代地质,1989,3(2):195-204.
    275.唐克东,张允平.内蒙古缝合带的构造演化[M]//肖序常,汤耀庆.古中亚复合巨型缝合带南缘构造演化.北京:科学技术出版社,1991,30-54.
    276.唐克东.中朝板块北侧褶皱带构造演化及成矿规律[M].北京:北京大学出版社,1992,112-243.
    277.唐克东,颜竹筠,张允平,等.内蒙古缝合带的地质特征与构造演化[J].中国地质科学院沈阳地质矿产所集刊,1997,5(6):119-166.
    278.唐克东,邵济安,李永飞.松嫩地块及其研究意义[J].地学前缘,2011,18(3):57-65.
    279.陶继雄,白立兵,郑武军,等.内蒙古满都拉地区二叠纪俯冲造山过程的岩石记录[J].地质调查与研究,2004,26(4):241-249.
    280.田伟,陈斌,刘超群,等.冀北小张家口超基性岩体的锆石U-Pb年龄和Hf同位素组成[J].岩石学报,2007,23(3):583-590.
    281.汪新文,刘友元.东北地区前中生代构造演化及其与晚中生代盆地发育的关系[J].现代地质,1997,11(4):434-443.
    282.王成文,金巍,张兴洲,等.东北及邻区晚古生代大地构造属性新认识[J].地层学杂志,2008,32(2):119-136.
    283.王成文,孙跃武,李宁,等.东北地区晚古生代地层分布规律[J].地层学杂志,2009,33(1):56-61.
    284.王鸿祯.中国地壳构造发展主要阶段[J].地球科学,1982,7(3):155-177.
    285.王惠,高荣宽.内蒙古达茂旗满都拉地区早二叠世生物地层划分对比再研究[J].内蒙古地质,1999,2:18-27.
    286.王惠,王玉净,陈志勇,等.内蒙古巴彦敖包二叠纪放射虫化石的发现[J].地层学杂志,2005,29(4):368-371.
    287.王惠初,赵凤清,李惠民.华北陆台北缘晚古生代岩浆作用对中亚造山带造山过程的制约[J].“十五”重要地质科技成果暨重大找矿成果交流会材料四—“十五”地质行业重要地质科技成果资料汇编,2006.
    288.王荃,刘雪亚,李锦轶.中国内蒙古中部的古板块构造[J].中国地质科学院院报,1991,22(1):1-19.
    289.王晓蕊.辽西早白垩世四合屯组火山岩地球化学研究[D].西安:西北大学,2005.
    290.王鑫琳,张臣,刘树文,等.河北康保地区花岗岩独居石电子探针定年[J].岩石学报,2007,23(4):817-822.
    291.王焰,钱青,刘良等.不同构造环境中双峰式火山岩的主要特征[J].岩石学报,2000,16(2):169-173.
    292.王友勤,苏养正.东北区区域地层发育与地壳演化[J].吉林地质,1996,15(3):118-145.
    293.王有勤,苏养正,刘尔义.东北区区域地层[M].武汉:中国地质大学出版社,1997.
    294.王玉净,樊志勇.内蒙古西拉木伦河北部蛇绿岩带中二叠纪放射虫的发现及其地质意义[J].古生物学报,1997,36(1):58-69.
    295.文琼英,张川波,汪筱林,等.吉林省晚古生代造山带二叠纪移置地体及古地理原型[J].长春地质学院学报,1996,26(3):265-272.
    296.吴福元,曹林.东北亚地区的若干重要基础地质问题[J].世界地质,1999,18(2):1-13.
    297.吴福元,孙德有,林强.东北地区显生宙花岗岩的成因与地壳增生[J].岩石学报,1999,15(2):181-189.
    298.吴福元, Wilde S A,孙德有.佳木斯地块片麻状花岗岩的锆石离子探针U-Pb年龄[J].岩石学报,2001,17(3):443-452.
    299.吴福元,张兴洲,马志红,等.吉林省中部红帘石硅质岩的特征及意义[J].地质通报,2003,22(6):391-396.
    300.吴福元,杨进辉,柳小明.辽东半岛中生代花岗质岩浆作用的年代学格架[J].高校地质学报,2005,11(3):305-317.
    301.吴福元,杨进辉,张艳斌,等.辽西东南部中生代花岗岩时代[J].岩石学报,2006,22(2):315-325.
    302.吴福元,李献华,郑永飞,等. Lu—Hf同位素体系及其岩石学应用[J].岩石学报,2007a,23(2):185-220.
    303.吴福元,李献华,杨进辉,等.花岗岩成因研究的若干问题[J].岩石学报,2007b,23(6):1217-1238.
    304.肖庆辉,王涛,邓晋福,等.中国典型造山带花岗岩与大陆地壳生长研究[M].北京:地质出版社,2009.
    305.谢鸣谦.拼贴板块构造及其驱动机理:中国东北及邻区的大地构造演化[M].北京:科学出版社,2000.
    306.徐公愉.东北亚地区古亚洲洋的构造演化特点[J].吉林地质,1993,12(3):1-8.
    307.杨宝忠,夏文臣,杨坤光.吉林中部地区二叠纪岩相古地理及沉积构造背景[J].现代地质,2006,20(1):61-68.
    308.杨德彬.蚌埠隆起区花岗岩的年代学和地球化学:对华北克拉通东部构造演化的制约[D].长春:吉林大学,2009.
    309.杨学明,杨晓勇,陈双喜.岩石地球化学[M].合肥:中国科学技术大学出版社,2000.
    310.余和中,李玉文,韩守华,等.松辽盆地古生代构造演化[J].大地构造与成矿学,2001,25(4):389-396.
    311.于介江,门兰静,陈雷,等.延边地区五道沟群变质英安岩的锆石SHRIMP U-Pb年龄及其地质意义[J].吉林大学学报(地球科学版),2008,38(3):363-367.
    312.袁桂邦,王惠初.内蒙古武川西北部早二叠世岩浆活动及其构造意义[J].地质调查与研究,2007,29(4):303-310.
    313.袁洪林,吴福元,高山,等.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J].科学通报,2003,48(14):1511-1520.
    314.曾俊杰,郑有业,齐建宏,等.内蒙古固阳地区埃达克质花岗岩的发现及其地质意义[J].地球科学(中国地质大学学报),2008,33(6):755-763.
    315.张春艳,张兴洲,邱殿明.延边地区青龙村群斜长角闪岩中锆石U-Pb同位素年龄及地质意义[J].吉林大学学报(地球科学版),2007,37(4):672-677.
    316.张海驲,刘荣芝,张书范,等.黑龙江省完达山早中生代深海沉积地层[J].黑龙江地质,1991,2(2):30-40.
    317.张炯飞.延边地区渤海地块与兴凯地块之间古缝合带的初步研究[J].吉林地质,1997,16(2):30-37.
    318.张炯飞,祝洪臣.延边地区花岗岩的成因类型及其形成的大地构造环境[J].辽宁地质,2000,17(1):25-33.
    319.张梅生,彭向东,孙晓猛.中国东北区古生代构造古地理格局[J].辽宁地质,1998,2:91-96.
    320.张旗,王焰,刘伟,等.埃达克岩的特征及其意义[J].地质通报,2002,21(7):431-435.
    321.张拴宏,赵越,刘建民,等.华北地块北缘晚古生代—早中生代岩浆活动期次,特征及构造背景[J].岩石矿物学杂志,2010,29(6):824-842.
    322.张兴洲,张元厚.蓝片岩与绿片岩共存:黑龙江岩系构造演化新证据[J].长春地质学院学报,1991,21(3):277-282.
    323.张兴洲.佳木斯地体的早期碰撞史—黑龙江岩系的构造—岩石学证据[D].长春:吉林大学,1992.
    324.张兴洲, Sklyarov E V.中国东北及邻区蓝片岩带的构造意义[J].长春地质学院地质研究所论文集,1992,99-106.
    325.张兴洲,穆石敏,杨宝俊,等.拼合的大陆板块[M]//张贻侠,孙运生,张兴洲,等.中国满洲里—绥芬河地学断面1:100万说明书.北京:地质出版社,1998a,6-19.
    326.张兴洲,穆石敏,陈琦,等.黑龙江板块群的地球动力学[M]//张贻侠,孙运生,张兴洲,杨宝俊主编.中国满洲里一绥芬河地学断面1:100万说明书.北京:地质出版社,1998b,20-23.
    327.张兴洲,杨宝俊,吴福元,等.中国兴蒙—吉黑地区岩石圈结构基本特征[J].中国地质,2006,33(4):816-823.
    328.张兴洲,周建波,迟效国,等.东北地区晚古生代构造-沉积特征与油气资源[J].吉林大学学报(地球科学版),2008,38(5):719-725.
    329.张兴洲,马玉霞,迟效国,等.东北及内蒙古东部地区显生宙构造演化的有关问题[J].吉林大学学报(地球科学版),2012,42(5):1269-1285.
    330.张晓晖,翟明国.华北北部古生代大陆地壳增生过程中的岩浆作用与成矿效应[J].岩石学报,2010,26(5):1329-1341.
    331.张艳斌.延边地区花岗质岩浆活动的同位素地质年代学格架[D].长春:吉林大学,
    2002.
    332.张贻侠,孙运生,张兴洲,等.中国满洲里—绥芬河地学断面1:100万说明书[M].北京:地质出版社,1998,1-53.
    333.章永梅,张华锋,刘文灿,等.内蒙古中部四子王旗大庙岩体时代及成因[J].2009,25(12):3165-3181.
    334.赵春荆,彭玉鲸,党增欣,等.吉黑东部构造格架及地壳演化[M].沈阳:辽宁大学出版社,1996,1-186.
    335.赵寒冬.东北地区小兴安岭南段-张广才岭北段古生代火成岩组合与构造演化[D].北京:中国地质大学,2009.
    336.赵娟,彭玉鲸,丁明广,等.吉辽边界梅河口-开原地段晚海西—早印支期岩浆旋回及构造意义[J].地质与资源,2012,21(4):371-375.
    337.赵磊.华北板块北缘中段晚古生代镁铁-超镁铁岩的岩石地球化学特征及其构造意义[J].北京:北京大学,2008.
    338.赵磊,吴泰然,罗红玲,等.内蒙古白云鄂博地区呼和恩格尔杂岩体的地球化学特征及其构造意义[J].高校地质学报,2008,14(1):29-38.
    339.赵磊,吴泰然,罗红玲.内蒙古乌拉特中旗北七哥陶辉长岩SHRIMP锆石U-Pb年龄,地球化学特征及其地质意义[J].岩石学报,2011,27(10):3071-3082.
    340.赵庆英,刘正宏,吴新伟,等.内蒙古大青山地区哈拉合少岩体特征及成因[J].矿物岩石,2007,27(1):46-51.
    341.赵庆英,李春锋,李殿超,等.延边地区五道沟群辉长岩岩脉的锆石年龄及其地质意义[J].世界地质,2008,27(2):150-155.
    342.赵全国,许文良,靳克,等.延边地区中生代火山岩的岩浆源区来自: Sr-Nd同位素和深源捕虏体(晶)的证据[J].吉林大学学报(地球科学版),2005,35(4):416-422.
    343.赵越,陈斌,张拴宏,等.华北克拉通北缘及邻区前燕山期主要地质事件[J].中国地质,2010,37(4):900-915.
    344.郑春子,王光奇,杨树源,等.吉林晚石炭世威宁期石头口门裂陷槽的发现及地质意义[J].地质论评,1999,45(6):632-639.
    345.周长勇.大兴安岭北部塔河堆晶辉长岩的形成时代,成因及大地构造意义[D].长春:吉林大学,2005.
    346.周晓东.吉林省中东部地区下石炭统—下三叠统地层序列及构造演化[D].长春:吉林大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700