用户名: 密码: 验证码:
基于聚甲基丙烯酸酯多孔材料的表面增强拉曼光谱检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种快速灵敏的分析技术,表面增强拉曼散射(surface-enhanced Raman scattering, SERS)在痕量物质检测中得到越来越多的关注。本论文基于聚甲基丙烯酸缩水甘油酯-乙二醇二甲基丙烯酸酯(GMA-EDMA)多孔材料,结合银纳米颗粒发展出不同形式的增强基底,用于痕量物质的超灵敏表面增强拉曼检测。
     以柱状的GMA-EDMA多孔材料为基底,成功建立了超灵敏的SERS检测方法。多孔材料表面形态能够提供变化的空隙和孔洞,有利于银纳米颗粒间产生“热点”,促进增强作用的发生。这种方法的灵敏度极高,可以得到浓度低至10-18mol/L的罗丹明6G(R6G)及10-16mol/L的对巯基苯胺(PATP)的SERS信号。此外,利用该基底成功实现了低含量的生物样品及农药的SERS检测,为今后将多孔材料上的超灵敏表面增强拉曼技术推广到现场检测奠定基础。
     在前面工作的基础上,将柱状多孔材料改为粉末状,并设计了一套装置适合于微量样品快速检测。此方法在保留了以GMA-EDMA多孔材料为基底的超灵敏度的同时大大缩短了检测所需时间,相应的被测样品量也大大减少。利用该方法同样可以检测到10-18mol/L R6G的信号,并且提高了检测精密度。同时也成功实现了四种农药噻菌灵、三环唑、百草枯和敌草快的低浓度快速检测,能检测到的最低浓度分别为0.27mg/L,5×10-3mg/L,0.05mg/L和1×10-3mg/L。这项快速灵敏的检测方法具有推广到实际样品的检测中的意义。
     金属溶胶虽然具有良好增强性能,但容易发生聚集使得纳米颗粒间的间距无法控制,难于给出重复性好的结果。为了进一步合成均匀性更好的增强基底,利用GMA-EDMA材料的结构特点,进行氨基改性后将银纳米颗粒自组装到材料表面,控制纳米颗粒的间距,提高结果重复性,制备出均一性更好的增强基底。发展的粉末状银自组装GMA-EDMA多孔材料基底具有增强性能优良,体积小巧,成本低廉,重复性好的优点。此基底能够避免大部分疏水性农药与溶胶混合的困难,也减少了实验步骤(只需将被测样品直接加在基底上即可采集SERS光谱),非常适合于SERS现场检测。成功检测了低浓度下的乐果和多菌灵,能检测到的最低浓度分别为0.1mg/L和0.625mg/L。与前面方法相比,结果重复性显著提高。所用的增强基底在适当保存条件下能够保存一个月,是一种相对稳定的增强基底,配合便携式拉曼光谱,其优良的性能将在现场低浓度物质检测中发挥巨大的作用。
As a sensitive analytical technique, surface-enhanced Raman scattering (SERS) has attracted more and more concern in trace detection. Based on poly(glycidyl methacrylate-ethylene dimethacrylate (GMA-EDMA) porous material combining with silver nanoparticles, several kinds of enhancement substrates were developed for ultrasensitive SERS detection.
     A novel ultrasensitive SERS detection method was established based on the GMA-EDMA porous material in rod shape. The topography of this porous material could supply gaps and/or pores which were beneficial for the generation of "hot spots" that were essential to enhancement effect. This method was so sensitive that SERS signals of probe molecules of Rhodamine6G (R6G) and p-aminothiophenol (PATP) at concentrations as low as10-18mol/L and10"16mol/L could be detected. Biology samples and pesticides were successfully detected by this method. The ultrasensitive SERS based on porous material method showed promising features in on-site detection.
     An investigation of rapid SERS detection method was developed by using porous material in powder shape, the shape of porous material was changed from rod to powder. Meanwhile, a set of device was developed by using this powder-shape porous material, which fitted the rapid detection of micro-sample volume. The feature of ultrasensitivity was retained, furthermore, the detection time and the required sample volume were also significantly reduced with this device. By this method, R6G at concentration of10"18mol/L was detected. Meanwhile, the precision of the method was improved. Four pesticides (thiabendazole, tricyclazole, paraquat and diquat) were also detected at the concentrations of0.27mg/L,5×10-3mg/L,0.05mg/L and1×10-3mg/L. This rapid and sensitive detection method was meaningful in practical sample detection.
     Although metal colloid showed good performances in SERS enhancement, the aggragation of this kind of colloid led to uncontrollable distances between nanoparticles which result in poor signal-reproducibility. In order to achieve a uniform substrate, the GMA-EDMA porous material was modified with ammonia. With this modification, the silver nanoparticles could self-assemble onto the porous material surface. With this procedure, a uniform substrate was attained, and correspondingly the signal-reproducibility was improved. The Ag-self-assemble GMA-EDMA porous material in powder shape showed advantages like good enhancement performances, miniaturization, low price and good reproducibility. By this substrate, the mixing of colloid and hydrophobic pesticides could be avoided, which was normally difficult in operation. The procedure of the experiment was simplified (SERS spectrum could be collected after the addition of sample onto the substrate). This made the substrate suitable in on-site SERS detection. Dimethoate and carbendazim at concentrations of0.1mg/L and0.625mg/L were detected using this substrate, and the reproducibility was improved dramatically. With a portable storeage, the substrate showed a long-term stability for one month. Combining with a portable Raman instrument, excellent performances of this substrate have shown attractive potential in on-site detection of low concentration samples.
引文
[1]Raman C V. A Change of Wave-length in Light Scattering[J]. Nature,1928,121:619.
    [2]Spiro T G, Stein P. Resonance Effects in Vibrational Scattering From Complex Molecules[J]. Annu. Rev. Phys. Chem.,1977,28:501-521.
    [3]Fleischmann M, Hendra P J, McQuillan A J. Raman Spectra of Pyridine Adsorbed at a Silver Electrode [J]. Chem. Phys. Lett.,1974,26:163-166.
    [4]Albrecht M G, Creighton J A. Anomalously intense Raman spectra of pyridine at a silver electrode[J]. J. Am. Chem. Soc.,1977,99(15):5215-5217.
    [5]Jeanmaire D L, Van Duyne R P. Surface raman spectroelectrochemistry:Part Ⅰ. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode [J]. J. Electroanal. Chem.,1977,84(1):1-20.
    [6]Brown R J C, Milton M J T. Nanostructures and nanostructured substrates for surface-enhanced Raman scattering (SERS)[J]. J. Raman Spectrosc.,2008,39(10):1313-1326.
    [7]Dieringer J A, McFarland A D, Shah N C, Stuart D A, Whitney A V, Yonzon C R, Young M A, Zhang X, Van Duyne R P. Introductory Lecture Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications[J]. Faraday Discuss.,2006, 132:9-26.
    [8]Natan M J. Concluding RemarksSurface enhanced Raman scattering[J]. Faraday Discuss., 2006,132:321-328.
    [9]Tian Z Q. Surface-enhanced Raman spectroscopy:advancements and applications[J]. J. Raman Spectrosc.,2005,36(6-7):466-470.
    [10]Tian Z Q, Ren B, Wu D Y. Surface-Enhanced Raman Scattering:From Noble to Transition Metals and from Rough Surfaces to Ordered Nanostructures[J]. J. Phys. Chem. B, 2002,106(37):9463-9483.
    [11]Aroca R. Surface-enhanced Vibrational Spectroscopy [M]. Chichester,UK:John Wiley & Sons Ltd.,2006.
    [12]Chang R K, Futak T E. Surface-enhanced Raman Scattering[M]. New York:Plenum Press,1982.
    [13]Otta A, Mrozek I, Grabhorn H, Akemann W. Surface-enhanced Raman Scattering[J]. J. Phys. Condens. Matter,1992,4:1143-1212.
    [14]Campion A, Kambhampati P. Surface-enhanced Raman scattering [J]. Chem. Soc. Rev., 1998.27(4):241-250.
    [15]杨志林.金属纳米粒子的光学性质及过渡金属表面增强拉曼散射的电磁场机理研究[D].厦门:厦门大学,2006.
    [16]Aroca R, Bujalski R. Surface enhanced vibrational spectra of thymine[J]. Vib. Spectrosc., 1999,19(1):11-21.
    [17]Bell S E J, Sirimuthu N M S. Surface-Enhanced Raman Spectroscopy (SERS) for Sub-Micromolar Detection of DNA/RNA Mononucleotides[J]. J. Am. Chem. Soc.,2006, 128(49):15580-15581.
    [18]Robinson I, Galiotis C, Batchelder D, Young R. The study of model polydiacetylene/epoxy composites[J]. J. Mater. Sci.,1991,26(9):2293-2299.
    [19]Cialla D, Marz A, Bohme R, Theil F, Weber K, Schmitt M, Popp J. Surface-enhanced Raman spectroscopy (SERS):progress and trends[J]. Anal. Bioanal. Chem.,2012, 403(1):27-54.
    [20]Futamata M, Maruyama Y. Electromagnetic and chemical interaction between Ag nanoparticles and adsorbed rhodamine molecules in surface-enhanced Raman scattering[J]. Anal. Bioanal. Chem.,2007,388(1):89-102.
    [21]Moskovits M. Surface-enhanced spectroscopy [J]. Rev. Mod. Phys.,1985,57(3):783-826.
    [22]Sawai Y, Takimoto B, Nabika H, Ajito K, Murakoshi K. Observation of a Small Number of Molecules at a Metal Nanogap Arrayed on a Solid Surface Using Surface-Enhanced Raman Scattering[J]. J. Am. Chem. Soc.,2007,129(6):1658-1662.
    [23]Gersten J, Nitzan A. Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces[J]. J Chem. Phys.,1980,73(7):3023-3037.
    [24]Haynes C L, McFarland A D, Duyne R P V. Surface-enhanced Raman spectroscopy[J]. Anal. Chem.,2005,77(17):338 A-346 A.
    [25]谢云飞.基于表面增强拉曼散射光谱技术在多环芳烃检测方面的应用[D].吉林:吉林大学,2011.
    [26]Demuth J, Christmann K, Sanda P. The vibrations and structure of pyridine chemisorbed on Ag (111):the occurrence of a compressional phase transformation[J]. Chem. Phys. Lett., 1980,76(2):201-206.
    [27]Furtak T, Roy D. Nature of the active site in surface-enhanced Raman scattering[J]. Phys. Rev. Lett.,1983,50(17):1301-1304.
    [28]Moskovits M. Surface-enhanced Raman spectroscopy:a brief retrospective[J]. J. Raman Spectrosc.,2005,36(6-7):485-496.
    [29]Otto A. The'chemical'(electronic) contribution to surface-enhanced Raman scattering[J]. J. Raman Spectrosc.,2005,36(6-7):497-509.
    [30]Persson B N J, Zhao K, Zhang Z. Chemical contribution to surface-enhanced Raman scattering[J]. Phys. Rev. Lett.,2006,96(20):207401.
    [31]Lombardi J R, Birke R L, Lu T, Xu J. Charge-transfer theory of surface enhanced Raman spectroscopy:Herzberg-Teller contributions[J]. J. Chem. Phys.,1986,84:4174.
    [32]Centeno S P, Lopez-Tocon I, Arenas J F, Soto J, Otero J C. Selection rules of the charge transfer mechanism of surface-enhanced Raman scattering:The effect of the adsorption on the relative intensities of pyrimidine bonded to silver nanoclusters[J]. J. Phys. Chem. B,2006, 110(30):14916-14922.
    [33]Otto A. Surface-enhanced Raman scattering:"classical" and "chemical" origins[M]. In: Light scattering in solids IV, Springer,1984,289-418.
    [34]Otto A, Mrozek I, Grabhorn H, Akemann W. Surface-enhanced Raman scattering[J]. J. Phys.:Condens. Matter,1992,4(5):1143-1212.
    [35]Creighton J A, Blatchford C G, Albrecht M G. Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wave length [J]. J. Chem. Soc, Faraday Trans.2,1979,75:790-798.
    [36]Fromm D P, Sundaramurthy A, Kinkhabwala A, Schuck P J, Kino G S, Moerner W. Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas[J]. J. Chem. Phys.,2006,124(6):61101-64100.
    [37]Ozin G A, Arsenault A C. Nanochemistry:A Chemical Approach to Nanomaterials[M]. Cambridge, UK:The Royal Society of Chemistry,2005.
    [38]高书燕,张树霞,杨恕霞,张洪杰.表面增强拉曼散射活性基底[J].化学通报,2007:908-914.
    [39]Banholzer M J, Millstone J E, Qin L, Mirkin C A. Rationally designed nanostructures for surface-enhanced Raman spectroscopy[J]. Chem. Soc. Rev.,2008,37(5):885-897.
    [40]Ren B, Liu G K, Lian X B, Yang Z L, Tian Z Q. Raman spectroscopy on transition metals[J]. Anal. Bioanal. Chem.,2007,388(1):29-45.
    [41]Lee P C, Meisel D. Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols[J]. J. Phys. Chem.,1982,86:3391-3395.
    [42]Pileni M P. Control of the Size and Shape of Inorganic Nanocrystals at Various Scales from Nano to Macrodomains[J]. J. Phys. Chem. C,2007, 111(26):9019-9038.
    [43]Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R, Feld M S. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS)[J]. Phys. Rev. Lett., 1997,78(9):1667-1670.
    [44]Nie S, Emory S R. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering [J]. Science,1997,275(5303):1102-1106.
    [45]Kneipp K, Kneipp H, Kartha V B, Manoharan R, Deinum G, Itzkan I, Dasari R R, Feld M S. Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS)[J]. Phys. Rev. E,1998,57(6):R6281-R6284.
    [46]Kneipp K, Kneipp H, Manoharan R. Hanlon E B, Itzkan I, Dasari R R, Feld M S. Extremely large enhancement factors in surface-enhanced Raman scattering for molecules on colloidal gold clusters[J]. Appl. Spectrosc.,1998,52(12):1493-1497.
    [47]Sau T K, Murphy C J. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution[J]. J. Am. Chem. Soc.,2004,126(28):8648-8649.
    [48]Weaver M J, Zou S, Chan H Y H. Peer Reviewed:The New Interfacial Ubiquity of Surface-Enhanced Raman Spectroscopy[J]. Anal. Chem.,2000,72(1):38 A-47 A.
    [49]Fleischmann M, Tian Z, Li L. Raman spectroscopy of adsorbates on thin film electrodes deposited on silver substrates[J]. J. Electroanal. Chem. Interfacial Electrochem.,1987, 217(2):397-410.
    [50]Leung L W H, Weaver M J. Extending surface-enhanced Raman spectroscopy to transition-metal surfaces:carbon monoxide adsorption and electrooxidation on platinum-and palladium-coated gold electrodes[J]. J. Am. Chem. Soc.,1987,109(17):5113-5119.
    [51]Li J F, Huang Y F, Ding Y, Yang Z L, Li S B, Zhou X S, Fan F R, Zhang W, Zhou Z Y, Wu D Y, Ren B, Wang Z L, Tian Z Q. Shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Nature,2010,464(7287):392-395.
    [52]Mulvaney S P, Musick M D, Keating C D, Natan M J. Glass-coated, analyte-tagged nanoparticles:a new tagging system based on detection with surface-enhanced Raman scattering[J]. Langmuir,2003,19(11):4784-4790.
    [53]Qian X M, Nie S M. Single-molecule and single-nanoparticle SERS:from fundamental mechanisms to biomedical applications[J]. Chem. Soc. Rev.,2008,37(5):912-920.
    [54]McCabe A F, Eliasson C, Prasath R A, Hernandez-Santana A, Stevenson L, Apple I, Cormack P A, Graham D, Smith W E, Corish P. SERRS labelled beads for multiplex detection[J]. Faraday Discuss.,2006,132:303-308.
    [55]Kim K, Lee H B, Shin K S. Silanization of Polyelectrolyte-Coated Particles:An Effective Route to Stabilize Raman Tagging Molecules Adsorbed on Micrometer-Sized Silver Particles[J]. Langmuir,2008,24(11):5893-5898.
    [56]Lin X M, Cui Y, Xu Y H, Ren B, Tian Z Q. Surface-enhanced Raman spectroscopy: substrate-related issues[J]. Anal. Bioanal. Chem.,2009,394(7):1729-1745.
    [57]Freeman R G, Grabar K C, Allison K J, Bright R M, Davis J A, Guthrie A P, Hommer M B, Jackson M A, Smith P C, Walter D G. Self-assembled metal colloid monolayers:an approach to SERS substrates[J]. Science,1995,267(5204):1629-1632.
    [58]Baia M, Baia L, Astilean S. Gold nanostructured films deposited on polystyrene colloidal crystal templates for surface-enhanced Raman spectroscopy [J]. Chem. Phys. Lett.,2005, 404(1):3-8.
    [59]Maxwell D J, Emory S R, Nie S. Nanostructured Thin-Film Materials with Surface-Enhanced Optical Properties[J]. Chem. Mater.,2001,13(3):1082-1088.
    [60]Wang H. Levin C S, Halas N J. Nanosphere Arrays with Controlled Sub-10-nm Gaps as Surface-Enhanced Raman Spectroscopy Substrates[J]. J. Am. Chem. Soc.,2005, 127(43):14992-14993.
    [61]Fan M, Andrade G F, Brolo A G. A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry [J]. Anal. Chim. Acta,2011,693(1-2):7-25.
    [62]Willets K A, Van Duyne R P. Localized surface plasmon resonance spectroscopy and sensing[J]. Annu. Rev. Phys. Chem.,2007,58:267-297.
    [63]Mahajan S, Abdelsalam M, Suguwara Y, Cintra S, Russell A, Baumberg J, Bartlett P. Tuning plasmons on nano-structured substrates for NIR-SERS[J]. Phys. Chem. Chem. Phys., 2007,9(1):104-109.
    [64]Vo-Dinh T. Surface-enhanced Raman spectroscopy using metallic nanostructures[J]. TrAC, Trends Anal. Chem.,1998,17(8):557-582.
    [65]Eickmans J, Otto A, Goldmann A. On the annealing of "sers active" silver films:UPS and TDS of adsorbed xenon[J]. Surf. Sci.,1986,171(2):415-441.
    [66]Taylor C E, Pemberton J E, Goodman G G, Schoenfisch M H. Surface enhancement factors for Ag and Au surfaces relative to Pt surfaces for monolayers of thiophenol[J]. Appl. Spectrosc.,1999,53(10):1212-1221.
    [67]Camden J P, Dieringer J A, Zhao J, Van Duyne R P. Controlled plasmonic nano structures for surface-enhanced spectroscopy and sensing[J]. Ace. Chem. Res.,2008,41 (12):1653-1661.
    [68]刘培生.多孔材料引论[M].北京:清华大学出版社,2004.
    [69]Hjerten S, Yi-Ming Li Y, Liao J L, Mohammad J, Nakazato K, Pettersson G. Continuous beds:high-resolving, cost-effective chromatographic matrices[J]. Nature,1992,356:810-811.
    [70]Hjerten S, Liao J L, Zhang R. High-performance liquid chromatography on continuous polymer beds[J]. J. Chromatogr.,1989,473(1):273-275.
    [71]Svec F, Frechet J M J. Continuous rods of macroporous polymer as high-performance liquid chromatography separation media[J]. Anal. Chem.,1992,64(7):820-822.
    [72]Regnier F E. Micro fabricated Monolith Columns for Liquid Chromatography. Sculpting Supports for Liquid Chromatography[J]. J. High. Resolut. Chromatogr.,2000,23(1):19-26.
    [73]Steven M. Silica xerogel as a continuous column support for high-performance liquid chromatography[J]. Anal. Chem.,1996,68(15):2709-2712.
    [74]平贵臣,袁湘林,张维冰,张玉奎.整体柱的制备方法及其应用[J].分析化学,2001,29(12):1464-1469.
    [75]Svec F, Peters E C, Sykora D, Yu C, Frechet J M. Monolithic stationary phases for capillary electrochromatography based on synthetic polymers:designs and applications[J]. J. High. Resolut. Chromatogr.,2000,23(1):3-18.
    [76]Wang Q C, Svec F, Frechet J M. Macroporous polymeric stationary-phase rod as continuous separation medium for reversed-phase chromatography[J]. Anal. Chem.,1993, 65(17):2243-2248.
    [77]Petro M, Svec F, Gitsov I, Frechet J M. Molded Monolithic Rod of Macroporous Poly (styrene-co-divinylbenzene) as a Separation Medium for HPLC of Synthetic Polymers:"On-Column" Precipitation-Redissolution Chromatography as an Alternative to Size Exclusion Chromatography of Styrene Oligomers and Polymers[J]. Anal. Chem.,1996, 68(2):315-321.
    [78]Wang Q C, Svec F, Frechet J M. Hydrophilization of porous polystyrene-based continuous rod column[J]. Anal. Chem.,1995,67(3):670-674.
    [79]Svec F, Frechet J M. Modified poly (glycidyl metharylate-co-ethylene dimethacrylate) continuous rod columns for preparative-scale ion-exchange chromatography of proteins [J]. J. Chromatogr. A,1995,702(1):89-95.
    [80]Viklund C, Svec F, Frechet J M, Irgum K. Fast Ion-Exchange HPLC of Proteins Using Porous Poly (glycidyl methacrylate-co-ethylene dimethacrylate) Monoliths Grafted with Poly (2-acrylamido-2-methyl-l-propanesulfonic acid)[J]. Biotechnol. Progr.,2008,13(5):597-600.
    [81]Peters E C, Svec F, Frechet J M. Thermally responsive rigid polymer monoliths[J]. Adv. Mater.,2004,9(8):630-633.
    [82]Mihelic I, Koloini T, Podgornik A. Temperature distribution effects during polymerization of methacrylate-based monoliths[J]. J. Appl. Polym. Sci.,2003, 87(14):2326-2334.
    [83]Liao J L, Zeng C M, Palm A, Hjerten S. Continuous beds for microchromatography: Detection of proteins by a blotting membrane technique[J]. Anal. Biochem.,1996, 241(2):195-198.
    [84]Seubert A, Klingenberg A. Sulfoacylated macroporous polystyrene-divinylbenzene:a new type of cation exchanger for the analysis of multivalent metal cations[J]. J. Chromatogr. A,1997,782(2):149-157.
    [85]Moore R E, Licklider L, Schumann D, Lee T D. A microscale electrospray interface incorporating a monolithic, poly (styrene-divinylbenzene) support for on-line liquid chromatography/tandem mass spectrometry analysis of peptides and proteins[J]. Anal. Chem., 1998,70(23):4879-4884.
    [86]Petro M, Svec F, Frechet J M. Molded continuous poly (styrene- co-divinylbenzene) rod as a separation medium for the very fast separation of polymers Comparison of the chromatographic properties of the monolithic rod with columns packed with porous and non-porous beads in high-performance liquid chromatography of polystyrenes[J]. J. Chromatogr. A.1996,752(1):59-66.
    [87]Gusev I. Huang X. Horvath C. Capillary columns with in situ formed porous monolithic packing for micro high-performance liquid chromatography and capillary electrochromatography[J]. J. Chromatogr. A,1999,855(1):273-290.
    [88]Peters E C, Petro M, Svec F, Frechet J M. Molded rigid polymer monoliths as separation media for capillary electrochromatography.2. Effect of chromatographic conditions on the separation[J]. Anal. Chem.,1998,70(11):2296-2302.
    [89]Peters E C, Lewandowski K, Petro M, Svec F, Frechet J M. Chiral electrochromatography with a'moulded'rigid monolithic capillary column[J]. Anal. Commun.,1998,35(3):83-86.
    [90]Sykora D, Svec F, Frechet J M. Separation of oligonucleotides on novel monolithic columns with ion-exchange functional surfaces[J]. J. Chromatogr. A,1999,852(1):297-304.
    [91]Podgornik A, Barut M, Jancar J, Strancar A. Isocratic separations on thin glycidyl methacrylate-ethylenedimethacrylate monoliths[J]. J. Chromatogr. A,1999,848(1):51-60.
    [92]Yu C, Svec F, Frechet J M. Towards stationary phases for chromatography on a microchip: molded porous polymer monoliths prepared in capillaries by photoinitiated in situ polymerization as separation media for electrochromatography[J]. Electrophoresis,2000, 21(1):120-127.
    [93]Peters E C, Petro M, Svec F, Frechet J M. Molded rigid polymer monoliths as separation media for capillary electrochromatography.1. Fine control of porous properties and surface chemistry[J]. Anal. Chem.,1998,70(11):2288-2295.
    [94]Peters E C, Petro M, Svec F, Frechet J M. Molded rigid polymer monoliths as separation media for capillary electrochromatography[J]. Anal. Chem.,1997,69(17):3646-3649.
    [95]Ericson C, Liao J L, Nakazato K i, Hjerten S. Preparation of continuous beds for electrochromatography and reversed-phase liquid chromatography of low-molecular-mass compounds[J]. J. Chromatogr. A,1997,767(1):33-41.
    [96]Fujimoto C, Fujise Y, Matsuzawa E. Fritless packed columns for capillary electrochromatography:separation of uncharged compounds on hydrophobic hydrogels[J]. Anal. Chem.,1996,68(17):2753-2757.
    [97]Liao J L, Chen N, Ericson C, Hjerten S. Preparation of continuous beds derivatized with one-step alkyl and sulfonate groups for capillary electrochromatography[J]. Anal. Chem., 1996,68(19):3468-3472.
    [98]Xie S, Svec F, Frechet J M. Rigid porous polyacrylamide-based monolithic columns containing butyl methacrylate as a separation medium for the rapid hydrophobic interaction chromatography of proteins[J]. J. Chromatogr. A,1997,775(1):65-72.
    [99]Fujimoto C, Kino J, Sawada H. Capillary electrochromatography of small molecules in polyacrylamide gels with electroosmotic flow[J]. J. Chromatogr. A,1995,716(1):107-113.
    [100]Koide T, Ueno K. Enantiomeric Separations of Acidic and Neutral Compounds by Capillary Electrochromatography with β-Cyclodextrin-Bonded Positively Charged Polyacrylamide Gels[J]. J. High. Resolut. Chromatogr.,2000,23(1):59-66.
    [101]Fujimoto C. Charged polyacrylamide gels for capillary electrochromatographic separations of uncharged, low molecular weight compounds[J]. Anal. Chem.,1995, 67(13):2050-2053.
    [102]Palm A, Novotny M V. Macroporous polyacrylamide/poly (ethylene glycol) matrixes as stationary phases in capillary electrochromatography[J]. Anal. Chem.,1997, 69(22):4499-4507.
    [103]Ericson C, Hjerten S. Reversed-phase electrochromatography of proteins on modified continuous beds using normal-flow and counterflow gradients. Theoretical and practical considerations[J]. Anal. Chem.,1999,71(8):1621-1627.
    [104]Minakuchi H, Nakanishi K, Soga N, Ishizuka N, Tanaka N. Octadecylsilylated porous silica rods as separation media for reversed-phase liquid chromatography[J]. Anal. Chem.,1996,68(19):3498-3501.
    [105]Minakuchi H, Nakanishi K, Soga N, Ishizuka N, Tanaka N. Effect of domain size on the performance of octadecylsilylated continuous porous silica columns in reversed-phase liquid chromatography[J]. J. Chromatogr. A,1998,797(1):121-131.
    [106]Nakanishi K, Shikata H, Ishizuka N, Koheiya N, Soga N. Tailoring mesopores in monolithic macroporous silica for HPLC[J]. J. High. Resolut. Chromatogr.,2000, 23(1):106-110.
    [107]Ishizuka N, Minakuchi H, Nakanishi K, Soga N, Nagayama H, Hosoya K, Tanaka N. Performance of a monolithic silica column in a capillary under pressure-driven and electrodriven conditions[J]. Anal. Chem.,2000,72(6):1275-1280.
    [108]Tanaka N, Nagayama H, Kobayashi H, Ikegami T, Hosoya K, Ishizuka N, Minakuchi H, Nakanishi K, Cabrera K, Lubda D. Monolithic silica columns for HPLC, micro-HPLC, and CEC[J]. J. High. Resolut. Chromatogr.,2000,23(1):111-116.
    [109]Fujimoto C. Preparation of fritless packed silica columns for capillary eIectrochromatography[J]. J. High. Resolut. Chromatogr.,2000,23(1):89-92.
    [110]Dulay M T, Kulkarni R P, Zare R N. Preparation and characterization of monolithic porous capillary columns loaded with chromatographic particles[J]. Anal. Chem.,1998, 70(23):5103-5107.
    [111]Tang Q, Lee M L. Capillary electrochromatography using continuous-bed columns of sol-gel bonded silica particles with mixed-mode octadecyl and propylsulfonic acid functional groups[J]. J. Chromatogr. A,2000,887(1):265-275.
    [112]Chirica G S, Remcho V T. Fritless capillary columns for HPLC and CEC prepared by immobilizing the stationary phase in an organic polymer matrix[J]. Anal. Chem.,2000, 72(15):3605-3610.
    [113]Asiaie R, Huang X, Farnan D, Horvath C. Sintered octadecylsilica as monolithic column packing in capillary electrochromatography and micro high-performance liquid chromatography[J]. J. Chromatogr. A,1998,806(2):251-263.
    [114]Ratnayake C K, Oh C S, Henry M P. Particle Loaded Monolithic Sol-Gel Columns for Capillary Electrochromatography:A New Dimension for High Performance Liquid Chromatography[J]. J. High. Resolut. Chromatogr.,2000,23(1):81-88.
    [115]Cabrera K, Lubda D, Eggenweiler H M, Minakuchi H, Nakanishi K. A new monolithic-type HPLC column for fast separations[J]. J. High. Resolut. Chromatogr.,2000, 23(1):93-99.
    [116]Nair L M, Saari-Nordhaus R. Recent developments in surfactant analysis by ion chromatography[J]. J. Chromatogr. A,1998,804(1):233-239.
    [117]Svec F, Frechet J M J. New designs of macroporous polymers and supports:from separation to biocatalysis[J]. Science,1996,273(5272):205-211.
    [118]Viklund C, Svec F, Frechet J M, Irgum K. Monolithic,"molded", porous materials with high flow characteristics for separations, catalysis, or solid-phase chemistry:control of porous properties during polymerization[J]. Chem. Mater.,1996,8(3):744-750.
    [119]Peters E C, Svec F, Frechet J. Rigid macroporous polymer monoliths[J]. Adv. Mater., 1999,11(14):1169-1181.
    [120]Meyer U, Svec F, Frechet J M, Hawker C J, Irgum K. Use of stable free radicals for the sequential preparation and surface grafting of functionalized macroporous monoliths[J]. Macromolecules,2000,33(21):7769-7775.
    [121]Gritti F, Piatkowski W, Guiochon G. Study of the mass transfer kinetics in a monolithic column[J]. J. Chromatogr. A,2003,983(1):51-71.
    [122]魏远隆.新型离子交换色谱固定相的制备及应用[D].南京理工大学,2004.
    [123]Liu F X, Xiao Y, Li Y S. Silica-supported silver nano-particles for surface-enhanced Raman spectroscopy[J]. J. Raman Spectrosc.,2001,32(2):73-77.
    [124]Grabar K C, Smith P C, Musick M D, Davis J A, Walter D G, Jackson M A, Guthrie A P, Natan M J. Kinetic Control of Interparticle Spacing in Au Colloid-Based Surfaces: Rational Nanometer-Scale Architecture[J]. J. Am. Chem. Soc.,1996,118(5):1148-1153.
    [125]Wu D, Fang Y. The adsorption behavior of p-hydroxybenzoic acid on a silver-coated filter paper by surface enhanced Raman scattering [J]. J. Colloid Interface Sci.,2003, 265(2):234-238.
    [126]Luo Z, Fang Y. SERS of C60/C70 on gold-coated filter paper or filter film influenced by the gold thickness[J]. J Colloid Interface Sci,2005,283(2):459-463.
    [127]Niu Z, Fang Y. Surface-enhanced Raman scattering of single-walled carbon nanotubes on silver-coated and gold-coated filter paper[J]. J Colloid Interface Sci.,2006. 303(l):224-228.
    [128]Bhandari D, Walworth M J, Sepaniak M J. Dual Function Surface-Enhanced Raman Active Extractor for the Detection of Environmental Contaminants [J]. Appl. Spectrosc,2009, 63(5):571-578.
    [129]Bhandari D, Wells S M, Retterer S T, Sepaniak M J. Characterization and Detection of Uranyl Ion Sorption on Silver Surfaces Using Surface Enhanced Raman Spectroscopy[J]. Anal. Chem.,2009,81(19):8061-8067.
    [130]Liu J, White I, DeVoe D L. Nanoparticle-functionalized porous polymer monolith detection elements for surface-enhanced Raman scattering[J]. Anal. Chem.,2011, 83(6):2119-2124.
    [131]Lee A, Dubinsky S, Tumarkin E, Moulin M, Beharry A A, Kumacheva E. Multifunctional Hybrid Polymer-Based Porous Materials[J]. Adv. Funct. Mater.,2011, 21(11):1959-1969.
    [132]Cao Q, Xu Y, Liu F, Svec F, Frechet J M. Polymer monoliths with exchangeable chemistries:use of gold nanoparticles as intermediate ligands for capillary columns with varying surface functionalities[J]. Anal. Chem.,2010,82(17):7416-7421.
    [133]Guerrouache M, Mahouche-Chergui S, Chehimi M M, Carbonnier B. Site-specific immobilisation of gold nanoparticles on a porous monolith surface by using a thiol-yne click photopatterning approach[J]. Chem. Commun. (Camb),2012,48(60):7486-7488.
    [134]Schmitt M, Popp J. Raman spectroscopy at the beginning of the twenty-first century[J]. J. Raman Spectrosc.,2006,37(l-3):20-28.
    [135]朱自莹,顾仁敖,陆天虹.拉曼光谱在化学中的应用[M].沈阳:东北大学出版社,1998.
    [136]崔丽,任斌,田中群.DNA碱基与高氯酸根共吸附行为的表面增强拉曼光谱研究[J].物理化学学报,2010,26(2):397-402.
    [137]Moskovits M, Suh J. Surface selection rules for surface-enhanced Raman spectroscopy:calculations and application to the surface-enhanced Raman spectrum of phthalazine on silver[J]. J. Phys. Chem.,1984,88(23):5526-5530.
    [138]Podstawka E. Structural properties of bombesin-like peptides revealed by surface-enhanced Raman scattering on roughened silver electrodes[J]. Biopolymers,2008, 89(11):980-992.
    [139]Le Ru E, Etchegoin P, Meyer M. Enhancement factor distribution around a single surface-enhanced Raman scattering hot spot and its relation to single molecule detection[J]. J. Chem. Phys.,2006,125:204701.
    [140]Bjerneld E J, Foldes-Papp Z, Kall M, Rigler R. Single-molecule surface-enhanced Raman and fluorescence correlation spectroscopy of horseradish peroxidase[J]. J. Phys. Chem. B,2002,106(6):1213-1218.
    [141]Zhao K, Xu H, Gu B, Zhang Z. One-dimensional arrays of nanoshell dimers for single molecule spectroscopy via surface-enhanced raman scattering[J]. J. Chem. Phys.,2006, 125:081102.
    [142]Kneipp K, Kneipp H, Itzkan I, Dasari R R, Feld M S. Ultrasensitive Chemical Analysis by Raman Spectroscopy [J]. Chem. Rev.,1999,99:2957-2975.
    [143]Moyer P J, Schmidt J, Eng L M, Meixner A J, Sandmann G W, Dietz H, Plieth W. Surface-enhanced Raman scattering spectroscopy of single carbon domains on individual Ag nanoparticles on a 25 ms time scale[J]. J. Am. Chem. Soc.,2000,122(22):5409-5410.
    [144]Etchegoin P, Maher R C, Cohen L F, Hartigan H, Brown R J C, Milton M J T, Gallop J C. New limits in ultrasensitive trace detection by surface enhanced Raman scattering (SERS)[J]. Chem. Phys. Lett.,2003,375(1-2):84-90.
    [145]Pieczonka N P, Aroca R F. Single molecule analysis by surfaced-enhanced Raman scattering [J]. Chem. Soc. Rev.,2008,37(5):946-954.
    [146]Michaels A M, Nirmal M, Brus L E. Surface Enhanced Raman Spectroscopy of Individual Rhodamine 6G Molecules on Large Ag Nanocrystals[J]. J. Am. Chem. Soc.,1999, 121(43):9932-9939.
    [147]Tolaieb B, Constantino C J L, Aroca R F. Surface-enhanced resonance Raman scattering as an analytical tool for single molecule detection[J]. Analyst,2004, 129(4):337-341.
    [148]Yonzon C R, Stuart D A, Zhang X, McFarland A D, Haynes C L, Van Duyne R P. Towards advanced chemical and biological nanosensors-An overview[J]. Talanta,2005, 67(3):438-448.
    [149]Hering K, Cialla D, Ackermann K, Dorfer T, Moller R, Schneidewind H, Mattheis R, Fritzsche W, Rosch P, Popp J. SERS:a versatile tool in chemical and biochemical diagnostics[J]. Anal. Bioanal. Chem.,2008,390(1):113-124.
    [150]Culha M, Stokes D, Allain L R, Vo-Dinh T. Surface-enhanced Raman scattering substrate based on a self-assembled monolayer for use in gene diagnostics[J]. Anal. Chem., 2003,75(22):6196-6201.
    [151]Smith W E. Practical understanding and use of surface enhanced Raman scattering/surface enhanced resonance Raman scattering in chemical and biological analysis[J]. Chem. Soc. Rev.,2008,37(5):955-964.
    [152]Graham D, Goodacre R. Chemical and bioanalytical applications of surface enhanced Raman scattering spectroscopy [J]. Chem. Soc. Rev.,2008,37(5):883-884.
    [153J Abell J L, Garren J M, Driskell J D, Tripp R A, Zhao Y. Label-Free Detection of Micro-RNA Hybridization Using Surface-Enhanced Raman Spectroscopy and Least-Squares Analysis[J]. J. Am. Chem. Soc.,2012,134:12889-12892.
    [154]Zhang H, Harpster M H, Wilson W C, Johnson P A. Surface-enhanced Raman scattering detection of DNAs derived from virus genomes using Au-coated paramagnetic nanoparticles[J]. Langmuir,2012,28(8):4030-4037.
    [155]Sha M Y, Xu H, Natan M J, Cromer R. Surface-enhanced Raman scattering tags for rapid and homogeneous detection of circulating tumor cells in the presence of human whole blood[J]. J.Am. Chem. Soc.,2008,130(51):17214-17215.
    [156]Yonzon C R, Haynes C L, Zhang X, Walsh J T, Van Duyne R P. A glucose biosensor based on surface-enhanced Raman scattering:improved partition layer, temporal stability, reversibility, and resistance to serum protein interference [J]. Anal. Chem.,2004,76(l):78-85.
    [157]Liang Y, Gong J-L, Huang Y, Zheng Y, Jiang J H, Shen G L, Yu R Q. Biocompatible core-shell nanoparticle-based surface-enhanced Raman scattering probes for detection of DNA related to HIV gene using silica-coated magnetic nanoparticles as separation tools[J]. Talanta,2007,72(2):443-449.
    [158]韩晓霞.基于表面增强拉曼散射的蛋白质检测方法研究[D].吉林:吉林大学,2009.
    [159]Schmit V L, Martoglio R, Carron K T. Lab-on-a-bubble surface enhanced Raman indirect immunoassay for cholera[J]. Anal. Chem.,2012,84(9):4233-4236.
    [160]Walter A, Marz A, Schumacher W, Rosch P, Popp J. Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device[J]. Lab Chip,2011,11 (6):1013-1021.
    [161]Qian X, Peng X H, Ansari D O, Yin-Goen Q, Chen G Z, Shin D M, Yang L, Young A N, Wang M D, Nie S. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags[J]. Nat. Biotechnol.,2008,26(1):83-90.
    [162]王大宁,董益阳,邹明强.农药残留检测与监控技术[M].北京:化学工业出版社,2006.
    [163]曲云鹤.农药残留的快速检测方法和仪器的研究[D].上海:华东师范大学,2010.
    [164]Baranowska I, Barchanska H, Pacak E. Procedures of trophic chain samples preparation for determination of triazines by HPLC and metals by ICP-AES methods[J]. Environ. Pollut.,2006,143(2):206-211.
    [165]Goncalves C, Alpendurada M F. Solid-phase micro-extraction-gas chromatography-(tandem) mass spectrometry as a tool for pesticide residue analysis in water samples at high sensitivity and selectivity with confirmation capabilities[J]. J. Chromatogr. A, 2004,1026(1-2):239-250.
    [166]Muccio A D, Camoni I. Ventriglia M, Attard Barbini D, Mauro M, Pelosi P, Generali T, Ausili A, Girolimetti S. Simplified clean-up for the determination of benzimidazolic fungicides by high-performance liquid chromatography with UV detection [J]. J. Chromatogr. A,1995,697:145-152.
    [167]Papadopoulou-Mourkidou E, Patsias J. Development of a semi-automated high-performance liquid chromatographic-diode array detection system for screening pesticides at trace levels in aquatic systems of the Axios River basin[J]. J. Chromatogr. A, 1996,726(1-2):99-113.
    [168]Valenzuela A I, Lorenzini R, Redondo M J, Font G. Matrix solid-phase dispersion microextraction and determination by high-performance liquid chromatography with UV detection of pesticide residues in citrus fruit[J]. J. Chromatogr. A,1999,839(1-2):101-107.
    [169]Stockton A M, Chiesl T N, Scherer J R, Mathies R A. Polycyclic Aromatic Hydrocarbon Analysis with the Mars Organic Analyzer Microchip Capillary Electrophoresis System[J]. Anal. Chem.,2008,81(2):790-796.
    [170]孙旭东,郝勇,刘燕德.表面增强拉曼光谱法检测农药残留的研究进展[J].食品安全质量检测学报,2012,3(5):421-426.
    [171]Mukherjee K, Sanchez-Cortes S, Garcia-Ramos J. Raman and surface-enhanced Raman study of insecticide cyromazine[J]. Vib. Spectrosc.,2001,25(1):91-99.
    [172]Lee D, Lee S, Seong G H, Choo J, Lee E K, Gweon D-G, Lee S. Quantitative analysis of methyl parathion pesticides in a polydimethylsiloxane microfluidic channel using confocal surface-enhanced Raman spectroscopy[J]. Appl. Spectrosc.,2006,60(4):373-377.
    [173]Guerrini L, Aliaga A E, Carcamo J, Gomez-Jeria J S, Sanchez-Cortes S, Campos-Vallette M M, Garcia-Ramos J V. Functionalization of Ag nanoparticles with the bis-acridinium lucigenin as a chemical assembler in the detection of persistent organic pollutants by surface-enhanced Raman scattering[J]. Anal. Chim. Acta,2008,624(2):286-293.
    [174]Kim H J, Lee C J, Karim M R, Kim M S, Lee M S. Surface-enhanced Raman spectroscopy of omethoate adsorbed on silver surface[J]. Spectrochim. Acta. Part A,2011, 78(1):179-184.
    [175]Guerrini L, Sanchez-Cortes S, Cruz V L, Martinez S, Ristori S, Feis A. Surface-enhanced Raman spectra of dimethoate and omethoate[J]. J. Raman Spectrosc.,2011, 42(5):980-985.
    [176]吉芳英,黎司,虞丹尼,周光明,何强.氧化乐果的振动光谱及其表面增强拉曼散射研究[J].分析化学,2010,38:1127-1132.
    [177]黎司,吉芳英,虞丹尼,周光明,何强.乐果与氧化乐果在金/银核-壳粒子上的SERS研究[J].化学学报,2010,68(16):1616-1622.
    [178]Costa J C, Ando R A, Sant'Ana A C, Rossi L M, Santos P S, Temperini M L, Corio P. High performance gold nanorods and silver nanocubes in surface-enhanced Raman spectroscopy of pesticides[J]. Phys. Chem. Chem. Phys.,2009, 11(34):7491-7498.
    [179]Xie Y, Mukamurezi G, Sun Y, Wang H, Qian H, Yao W. Establishment of rapid detection method of methamidophos in vegetables by surface enhanced Raman spectroscopy[J]. Eur. Food Res. Technol.,2012,234(6):1091-1098.
    [180]Shao M W, Lu L, Wang H, Wang S, Zhang M L, Ma D D, Lee S T. An ultrasensitive method:surface-enhanced Raman scattering of Ag nanoparticles from beta-silver vanadate and copper[J]. Chem. Commun.,2008, (20):2310-2312.
    [181]Yang L B, Chen G Y, Wang J, Wang T T, Li M Q, Liu J H. Sunlight-induced formation of silver-gold bimetallic nanostructures on DNA template for highly active surface enhanced Raman scattering substrates and application in TNT/tumor marker detection[J]. J. Mater. Chem.,2009,19(37):6849-6856.
    [182]Li X, Chen G, Yang L, Jin Z, Liu J. Multifunctional Au-Coated TiO2 Nanotube Arrays as Recyclable SERS Substrates for Multifold Organic Pollutants Detection[J]. Adv. Funct. Mater.,2010,20(17):2815-2824.
    [183]Yang L, Ma L, Chen G, Liu J, Tian Z Q. Ultrasensitive SERS detection of TNT by imprinting molecular recognition using a new type of stable substrate[J]. Chem. Eur. J.,2010, 16(42):12683-12693.
    [184]McGlashen M L, Davis K L, Morris M D. Surface-Enhanced Raman Scattering of Dopamine at Polymer-Coated Silver Electrodes[J]. Anal. Chem.,1990,62:846-849.
    [185]Li Q, Du Y, Tang H, Wang X, Chen G, Iqbal J, Wang W, Zhang W. Ultra sensitive surface-enhanced Raman scattering detection based on monolithic column as a new type substrate[J]. J. Raman Spectrosc.,2012,43(10):1392-1396.
    [186]李青青,杜一平,唐慧容,汪宣,陈贵平,王文明.基于整体柱的超灵敏表面增强拉曼检测[J].光散射学报,2012,24(3):245-250.
    [187]Evanoff D D, Chumanov G. Size-Controlled Synthesis of Nanoparticles.2. Measurement of Extinction, Scattering, and Absorption Cross Sections[J]. J. Phys. Chem. B, 2004,108(37):13957-13962.
    [188]Huang Z, Meng G, Huang Q, Yang Y, Zhu C, Tang C. Improved SERS performance from Au nanopillar arrays by abridging the pillar tip spacing by Ag sputtering [J]. Adv. Mater., 2010,22(37):4136-4139.
    [189]Lal S, Grady N K, Kundu J, Levin C S, Lassiter J B, Halas N J. Tailoring plasmonic substrates for surface enhanced spectroscopies[J]. Chem. Soc. Rev.,2008,37(5):898-911.
    [190]Michaels A M, Jiang J, Brus L. Ag Nanocrystal Junctions as the Site for Surface-Enhanced Raman Scattering of Single Rhodamine 6G Molecules[J]. J. Phys. Chem. B.2000,104(50):11965-11971.
    [191]Wilson R. Bowden S A, Parnell J. Cooper J M. Signal Enhancement of Surface Enhanced Raman Scattering and Surface Enhanced Resonance Raman Scattering Using in Situ Colloidal Synthesis in Microfluidics[J]. Anal. Chem.,2010,82(5):2119-2123.
    [192]Ling X, Xie L, Fang Y, Xu H, Zhang H, Kong J, Dresselhaus M S, Zhang J, Liu Z. Can graphene be used as a substrate for Raman enhancement?[J]. Nano Lett.,2010, 10(2):553-561.
    [193]Zhao H, Fu H, Tian C, Ren Z, Tian G. Facile shape-controlled synthesis of palladium nano structures on copper for promising Surface-enhanced Raman scattering [J]. Mater. Lett., 2010,64(20):2255-2257.
    [194]Zhou Y, Zhi J, Zhao J, Xu M. Surface-Enhanced Raman Scattering of 4-Aminothiophenol Adsorbed on Silver Nanosheets Deposited onto Cubic Boron Nitride Films[J]. Anal. Sci.,2010,26(9):957-961.
    [195]Sarkar J, Chowdhury J, Pal P, Talapatra G. Ab initio, DFT vibrational calculations and SERRS study of Rhodamine 123 adsorbed on colloidal silver particles[J]. Vib. Spectrosc., 2006,41(1):90-96.
    [196]Panigrahi S, Praharaj S, Basu S, Ghosh S K, Jana S, Pande S, Vo-Dinh T, Jiang H, Pal T. Self-Assembly of Silver Nanoparticles:Synthesis, Stabilization, Optical Properties, and Application in Surface-Enhanced Raman Scattering [J]. J. Phys. Chem. B,2006, 110(27):13436-13444.
    [197]Kleinman S L, Ringe E, Valley N, Wustholz K L, Phillips E, Scheidt K A, Schatz G C, Van Duyne R P. Single-Molecule Surface-Enhanced Raman Spectroscopy of Crystal Violet Isotopologues:Theory and Experiment [J]. J. Am. Chem. Soc.,2011,133(11):4115-4122.
    [198]Zhang L, Li Q, Tao W, Yu B, Du Y. Quantitative analysis of thymine with surface-enhanced Raman spectroscopy and partial least squares (PLS) regression[J]. Anal. Bioanal. Chem.,2010,398(4):1827-1832.
    [199]Tsochatzis E, Menkissoglu-Spiroudi U, Karpouzas D, Tzimou-Tsitouridou R. A multi-residue method for pesticide residue analysis in rice grains using matrix solid-phase dispersion extraction and high-performance liquid chromatography-diode array detection[J]. Anal. Bioanal. Chem.,2010,397(6):2181-2190.
    [200]Gao R, Choi N, Chang S I, Kang S H, Song J M, Cho S I, Lim D W, Choo J. Highly sensitive trace analysis of paraquat using a surface-enhanced Raman scattering microdroplet sensor [J]. Anal. Chim. Acta,2010,681(1-2):87-91.
    [201]Wang J, Kong L, Guo Z, Xu J, Liu J. Synthesis of novel decorated one-dimensional gold nanoparticle and its application in ultrasensitive detection of insecticide[J]. J. Mater. Chem.,2010,20(25):5271-5279.
    [202]Otto C, Van den Tweel T. De Mul F. Greve J. Surface-enhanced Raman spectroscopy of DNA bases[J]. J. Raman Spectrosc.,1986,17(3):289-298.
    [203]Cho K H, Choo J, Joo S W. Tautomerism of thymine on gold and silver nanoparticle surfaces:surface-enhanced Raman scattering and density functional theory calculation study[J]. J. Mol. Struct.,2005,738(1):9-14.
    [204]唐慧容.银溶胶表面增强拉曼光谱(SERS)定性和定量分析农药残留的方法研究[D].华东理工大学,2012.
    [205]Lo H C, Hsiung H I, Chattopadhyay S, Han H C, Chen C F, Leu J P, Chen K H, Chen L C. Label free sub-picomole level DNA detection with Ag nanoparticle decorated Au nanotip arrays as surface enhanced Raman spectroscopy platform[J]. Biosens. Bioelectron.,2011, 26(5):2413-2418.
    [206]Guerrini L, Garcia-Ramos J V, Domingo C n, Sanchez-Cortes S. Nanosensors Based on Viologen Functionalized Silver Nanoparticles:Few Molecules Surface-Enhanced Raman Spectroscopy Detection of Polycyclic Aromatic Hydrocarbons in Interparticle Hot Spots[J]. Anal. Chem.,2009,81(4):1418-1425.
    [207]Roldan M L, Corrado G, Francioso O, Sanchez-Cortes S. Interaction of soil humic acids with herbicide paraquat analyzed by surface-enhanced Raman scattering and fluorescence spectroscopy on silver plasmonic nanoparticles[J]. Anal. Chim. Acta,2011, 699(1):87-95.
    [208]Wustholz K L, Henry A I, McMahon J M, Freeman R G, Valley N, Piotti M E, Natan M J, Schatz G C, Van Duyne R P. Structure-Activity Relationships in Gold Nanoparticle Dimers and Trimers for Surface-Enhanced Raman Spectroscopy [J]. J. Am. Chem. Soc.,2010, 132(31):10903-10910.
    [209]Doering W E, Nie S M. Single-Molecule and Single-Nanoparticle SERS:Examining the Roles of Surface Active Sites and Chemical Enhancement [J]. J. Phys. Chem. B,2002, 106(2):311-317.
    [210]Zhou J, An J, Tang B, Xu S, Cao Y, Zhao B, Xu W, Chang J, Lombardi J R. Growth of Tetrahedral Silver Nanocrystals in Aqueous Solution and Their SERS Enhancement [J]. Langmuir,2008,24(18):10407-10413.
    [211]Zeng J. Jia H, An J, Han X, Xu W, Zhao B, Ozaki Y. Preparation and SERS study of triangular silver nanoparticle self-assembled films[J]. J. Raman Spectrosc.,2008, 39(11):1673-1678.
    [212]Nalbant Esenturk E, Hight Walker A R. Surface-enhanced Raman scattering spectroscopy via gold nanostars[J]. J. Raman Spectrosc.,2009,40(l):86-91.
    [213]Rule Wigginton K. Vikesland P J. Gold-coated polycarbonate membrane filter for pathogen concentration and SERS-based detection[J]. Analyst,2010,135(6):1320-1326.
    [214]Yu W W, White I M. A simple filter-based approach to surface enhanced Raman spectroscopy for trace chemical detection[J]. Analyst,2012,137(5):1168-1173.
    [215]Huh Y S, Chung A J, Cordovez B, Erickson D. Enhanced on-chip SERS based biomolecular detection using electrokinetically active microwells[J]. Lab Chip,2009, 9(3):433-439.
    [216]Kneipp K, Wang Y, Kneipp H, Itzkan I, Dasari R R, Feld M S. Population Pumping of Excited Vibrational States by Spontaneous Surface-Enhanced Raman Scattering [J]. Phys. Rev. Lett.,1996,76(14):2444-2447.
    [217]Tiwari V S, Oleg T, Darbha G K, Hardy W, Singh J P, Ray P C. Non-resonance SERS effects of silver colloids with different shapes[J]. Chem. Phys. Lett.,2007,446(1-3):77-82.
    [218]Gilbert-Lopez B, Jaen-Martos L, Garcia-Reyes J F, Villar-Pulido M, Polgar L, Ramos-Martos N, Molina-Diaz A. Study on the occurrence of pesticide residues in fruit-based soft drinks from the EU market and morocco using liquid chromatography-mass spectrometry[J]. Food Control,2012,26(2):341-346.
    [219]Kim M S, Kim M K, Lee C J, Jung Y M, Lee M S. Surface-enhanced Raman Spectroscopy of Benzimidazolic Fungicides:Benzimidazole and Thiabendazole[J]. Bull. Korean Chem. Soc.,2009,30(12):2930-2934.
    [220]柯以侃,董慧茹等.分析化学手册第三分册:光谱分析[M].北京:化学工业出版社,2001.
    [221]Lopez-Ramirez M R, Guerrini L, Garcia-Ramos J V, Sanchez-Cortes S. Vibrational analysis of herbicide diquat:A normal Raman and SERS study on Ag nanoparticles[J]. Vib. Spectrosc.,2008,48(1):58-64.
    [222]Li Y, Song C, Zhang L, Zhang W, Fu H. Fabrication and evaluation of chiral monolithic column modified by β-cyclodextrin derivatives[J]. Talanta,2010, 80(3):1378-1384.
    [223]Xue C, Li Z, Mirkin C A. Large-Scale Assembly of Single-Crystal Silver Nanoprism Monolayers[J]. Small,2005,1(5):513-516.
    [224]Wang W, Ruan C, Gu B. Development of gold-silica composite nanoparticle substrates for perchlorate detection by surface-enhanced Raman spectroscopy[J]. Anal. Chim. Acta,2006,567(1):121-126.
    [225]李小灵,徐蔚青,张俊虎.一种新型表面增强拉曼活性基底的制备方法[J].高等学校化学学报,2003,24(11):2092-2094.
    [226]Wang X, Du Y, Li Q, Wu T, Hu H, Xu Y, Zhang H, Pan Y. Fabrication of stable and uniform substrate based on silver nanoparticles decorated glycidyl methacrylate-ethylene dimethacrylate porous material for ultrasensitive surface-enhanced Raman scattering detection. J. Raman Spectrosc.,2013, submit.
    [227]Strickland A D, Batt C A. Detection of Carbendazim by Surface-Enhanced Raman Scattering Using Cyclodextrin Inclusion Complexes on Gold Nanorods[J]. Anal. Chem.,2009, 81(8):2895-2903.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700