用户名: 密码: 验证码:
沸石13XAPG吸附分离CO_2-N_2混合气过程研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气中CO2浓度的不断提升导致全球变暖己成为学术界共识,各种碳减排技术的开发和改进已得到国际社会的普遍关注。二氧化碳的捕集与封存技术是目前碳减排最直接有效的手段之一。吸附法以其设备简单、能耗低、腐蚀问题易处理和易实现自动化操作等优点受到越来越多的关注。本文基于新型高效CO2吸附材料沸石13XAPG,通过基础实验、理论模拟和中试实验,对其吸附捕集燃煤电厂烟道气中CO2的性能进行评估。
     首先,采用磁悬浮天平分别测定了CO2和N2在沸石13XAPG上的吸附平衡等温线,以Multi-site Langmuir等温线模型拟合,并计算吸附热。根据纯组分气体模型参数预测CO2/N2双组分的竞争吸附平衡,并进行实验验证,为吸附过程的设计提供基础数据。
     其次,测量CO2/N2混合气在沸石13XAPG上的吸附突破解吸曲线,结合双分散二级孔线性推动力扩散模型,计算扩散系数和传递参数,研究CO2/N2在沸石13XAPG上的吸附动力学。此外,实验发现H2O对沸石13XAPG吸附CO2的容量有显著影响,所以在实际烟道气吸附捕集过程中,需要预处理脱水单元。
     之后,采用沸石13XAPG填充吸附柱,通过实验和模拟研究几种循环吸附/解吸分离C02/N2的工艺,包括真空变压吸附工艺VPSA、变温吸附工艺TSA和真空变压变温耦合吸附工艺VTSA。研究发现真空变压变温耦合吸附工艺较为有效,具有一定应用前景,但是该工艺涉及变温过程,循环时间较长。在后续的中试实验中,采用快速的真空变压吸附(VPSA)技术来捕集燃煤电厂中二氧化碳。
     最后采用沸石13XAPG吸附捕集上海申能星火热电厂烟道气中的CO2,实验考察了中试规模单级和两级VPSA工艺的捕集效率和能耗。脱硫后烟道气经过氧化铝脱湿单元除去水蒸汽,再经过吸附单元捕集CO2。单级VPSA单元填充261kg沸石13XAPG,采用三柱八步流程,对于37.0Nm3/h的干烟气,经过单级VPSA单元能够将C02提浓到75.7%,回收率达到90.3%,能耗为2.08MJ/kgCO2。可见单级捕集得到的C02纯度未达到封存要求(>95%),因此进一步设计和运行两级真空变压吸附工艺,第一级VPSA单元即为上述单级VPSA单元,第二级VPSA单元填充68.6kg活性炭小球并运行两柱六步流程,且将第二级废气回流到第一级入口处。实验结果表明,处理35.5Nm3/h的干燥后烟道气,经过第一级VPSA单元CO2能够提浓到74.5%,然后通过第二级VPSA单元浓缩到95.6%,回收率达到90.2%,需要能耗为2.44MJ/kgCO2,能耗较低,且随着高吸附吸附剂的开发以及吸附工艺的优化,吸附法将成为比较有前景的燃烧后CO2捕集方法。
Academic concerns have been raised with respect to the impact of the increasing concentration of carbon dioxide in the atmosphere on the environment as global warming. This global recognition has attracted great attention in relation to the creation, development and improvement upon technologies and strategies for the reduction of CO? emissions. Carbon capture and storage (CCS) is one of the most effective CO2emission abatement strategies in the world. Among all the post combustion capture technologies, adsorption process relying on well-engineered solid adsorbents is suggested as a promising option due to simple equipment, low energy requirement, less corrosion problems, easiness to achieve automatic operation and operating flexibility. In this work, a novel adsorbent zeolite13XAPG was employed as the selective adsorbent for CO2/N2separation. The feasibility and efficiency of adsorption technology for post-combustion CO2capture from Hue gas using zeolite13XAPG were evaluated by fundamental experiments, simulation and pilot-scale experiments in an existed coal-fired power plant.
     Firstly, the adsorption equilibrium isotherms of CO2and N2on zeolite13XAPG were measured by a magnetic suspension balance. The adsorption heat was caculated from adsorption equilibrium data. Then Multi-site Langmuir model was employed to fit the experimental data with good agreement, and the fitted parameters were adopted in the prediction of binary competitive adsorption equilibrium, providing basic data for the design of adsorption process.
     Secondly, adsorption kinetics of CO2/N2on zeolite13XAPG was investigated by the experimental data of breakthrough and desorption curves. A mathematical model based on the bi-LDF approximation was derived from mass, energy and momentum balances. Diffusion coefficient and transfer parameters were calculated through the comparison of experimental and simulated results. Moreover, it was found from experiments that the adsorption capacity of H2O was much larger than CO2, and the adsorption of H2O had a significant impact on the CO2adsorption capacity on zeolite13XAPG. so a dehumidified unit was usually required before the adsorption unit in the capture process.
     thirdly, several adsorption processes by fixed bed packed with zeolite13XAPG were explored for CO2/N2separation by experiments and simulation, including vacuum pressure swing adsorption (VPSA) process (single bed. multibed and two-stage VPSA unit). temperature swing adsorption (TSA) process and hybrid vacuum pressure swing adsorption (VTSA) process. It was found that VTSA process was the most effective and promising process. However, the cycle time of VTSA process was too long due to the temperature swing process. Therefore, the VPSA process was adopted in the pilot-scale experiments for CO2capture from flue gas in an existing coal-fired power plant.
     At last, an experimental evaluation combined with simulation was performed for CO2capture from flue gas using a pilot-scale single and two-stage VPSA unit in Shanghai Shengneng XingHuo thermo-power plant. The desulfurized flue gas passed through the dehumidifying unit to remove moisture and then was supplied to the carbon capture plant. With a single3-bed8-step VPSA unit packed with261kg zeolite13XAPG, CO2can be concentrated to75.7%with a CO2recovery of90.3%from flue gas at feed flowrate of37.0Nm3/h, and the power consumption was measured onsite as2.08MJ/kgCO2. The purity was lower than the demand for storage (>95%), therefore a two-stage VPSA unit with the effluent from the second unit recycled to the inlet was designed and tested. The first unit was the same as the single VPSA unit before and the second VPSA unit packed with68.6kg pitch-based ACBs was operated as2-bed6-step cycle. With this process, a CO2purity of95.6%was obtained with recovery of90.2%at the feed flowrate of35.5Nm3/h, and the power consumption was2.44MJ/kgCO2(lower than absorption). With the development of the adsorbent and further optimization of the processes, the adsorption technology can be a promising CO2capture technology.
引文
[1]Working Group III of the Intergovernmental Panel on Climate Change. IPCC special report on carbon dioxide capture and storage[M].Cambridge University press,2005.
    [2]Core Writing Team, Pachauri R.K., Reisinger A. IPCC Fourth Assessment Report: Climate Change 2007[OL].Geneva, Switzerland:IPCC,2007. http://www.ipcc.ch/publications_and_data/publications_and_data_reports.shtml.
    [3]工涛.温室效应和CO2的处理技术[J].世界钢铁.2004,4:55-59.
    [4]DOE. Carbon Sequestration Research and Development,1999.
    [5]高洁,郭斌.温室气体二氧化碳的回收与资源化[J].污染防治技术.2007,20(1):56-59.
    [6]Armor J.N. Addressing the CO2 Dilemma[J]. Catalysis Letters.2007,114(3):115-121
    [7]费维扬,艾宁,陈健.温室气体CO2的捕集和分离--分离技术面临的挑战与机遇[J].化工进展.2005,24(1):1-4.
    [8]Yang H., Xu Z., Fan M., Gupta R., Slimane R.B., Bland A.E., Wright I. Progress in carbon dioxide separation and capture:A review[J]. Journal of Environmental Science. 2008,20:14-27.
    [9]CCS在中国:现状、挑战和机遇[J/OL].2010.http://www.theclimategroup.org.cn/publications/2010-07-Carbon_Capture_and_Storage.
    [10]Liu Z., Wang L., Kong X.M., et al. Onsite CO2 capture from flue gas by an adsorption process in a coal-fired power plant[J]. Industrial & Engineering Chemistry Research. 2012,51(21):7355-7363.
    [11]Stewart C., Hessami M. A study of methods of carbon dioxide capture and sequestration-the sustainability of a photosynthetic bioreactor approach[J]. Energy Conversion and Management.2005,46:403-420.
    [12]IEA. World Energy Outlook 2008. Paris:France,2008.
    [13]郭庆杰.温室气体氧化碳捕集和利用技术进展[M].北京:化学工业出版社.
    [14]The climate group. CCS:towards market transformation in China,2010.
    [15]Giittlicher G., Pruschek L. Comparison of CO2 systems for fossil-fueled power plant rocesses [J]. Energy Conversion and Management.1997,38:173-178.
    [16]Jose D.F., Timothy F., Sean P., et al. Advances in CO2 capture technology-the U.S. department of energy's carbon sequestration program[J]. International Journal of greenhouse gas control.2008,2:9-20.
    [17]Chaffee A.L., Knowles G.P., Liang Z.J., et al. CO2 capture by adsorption:materials and process development[J]. International Journal of Greenhouse Gas Control.2007,1(1): 11-18.
    [18]Ho M.T., Allinson G.W.. Wiley D.E. Reducing the cost of CO2 capture from flue gases using pressure swing adsorption[J]. Industrial & Engineering Chemistry Research.2008. 47(14):4883-4890.
    [19]Barzagli F.. DiVaira M.. Mani F.. et al. Improved solvent formulations for efficient CO2 absorption and low-temperature desorption[J]. Chemsuschem.2012.5(9):1724-1731.
    [20]周忠清.CO2的分离回收工艺[J].湖北化工.1992,4:34-38.
    [21]夏明珠,严莲荷.二氧化碳的分离回收技术与综合利用[J].现代化工.1999,19(5):45-48.
    [22]裴克毅.火力发电厂CO2减排技术的研究[D].哈尔滨:哈尔滨工业大学.2005.
    [23]Curt M.W., Brian R.S., Evan J.G., et al. Separation and capture of CO2 from large stationary sources and sequestration in geological formations-coal beds and deep saline aquifers[J]. Air & Waste Management Association.2003,53:645-715.
    [24]毛松柏,朱道平,叶宁.NCMA法脱碳新技术及应用[J].气体净化.2004,4(4):25-28.
    [25]王晓刚,李立清,唐琳等.温室气体CO2的减排技术研究[J].能源环境保护.2006,20(2):1-6.
    [26]Bates D.E., Rebecca D. M., et al. CO2 capture by a task-specific ionic liquid[J]. Journal of the American Chemical Society.2002,124(6):926-927.
    [27]Yang, R.T. Gas separation by adsorption processes[M]. Boston:Butterworths.1987.
    [28]SahaD., Bao Z., Jia F., et al. Adsorption of CO2, CH4, N2O, and N2 on MOF-5. MOF-177, and zeolite 5A[J]. Environmental Scienceand Technology.2010,44(5):1820-1826.
    [29]Harlick P.J.E., Tezel F.H. Adsorption of carbon dioxide, methane and nitrogen:pure and binary mixture adsorption for ZSM-5 with SiO2/Al2O3 ratio of 280[J]. Separation and Purification Technology.2003,33(2):199-210.
    [30]Cavenati S.. Grande C.A., Rodrigues A.E. Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures[J]. Journal of Chemical and Engineering Data.2004,49 (4):1095-1101.
    |31] BelmabkhoutY.. Guerrero R. S., Sayari A. Amine-bearing mesoporous silica for CO2 removal from dry and humid air[J]. Chemical Engineering Science.2010,65(11): 3695-3698.
    [32]Richter H.J., Knoche K.F. Reversibility of Combustion Processes [M]. Efficiency and Costing; American Chemical Society.1983:71-85.
    [33]Ruthven D.M. Principles of adsorption and adsorption process[J]. New York:John Wiley & Sons.1984.
    [34]Samanta A., Zhao A., Shimizu G.K.H., et al. Post-combustion CO2 capture using solid sorbents:areview[J]. Industrial & Engineering Chemistry Research.2012.51(4): 1438-1463.
    [35]宋燕,凌立成,李开嘉:,吕春祥,刘朗.超级活性炭的制备和结构及其性能研究进展[J].煤炭转化.2001,24(2):27-31.
    [36]Siriwardane R.V.. Shen M.Sh., Fisher E.P., et al. Adsorption of CO2 on molecular sieves and activated carbon[J]. Energy & Fuels.2001,15:279-284.
    [37]Peng X., Wang W., Xue R., et al. Adsorption separation of CH4/CO2 on mesocarbon microbeads:experiment and modeling[J]. AIChE Journal.2006,52(3):994-1003.
    [38]Shao X., Feng Z., Xue R., et al. Adsorption of CO2, CH4, CO2/N2 and CO2/CH4 in novel activated carbon beads:preparation, measurements and simulation[J]. AIChE Journal. 2011.57(11):3042-3051.
    [39]邓继勇.张海涛.王亚龙.张利兴.曾汉民.活性炭纤维的吸附性能---对CO2、N2、O2与氙气的吸附规律[J].材料研究学报.2001.15(3):303-307.
    [40]Wei H., Deng S., Hu B., et al. Granular bamboo-derived activated carbon for high CO2 adsorption:the dominant role of narrow micropores[J]. Chemsuschem.2012,5(12): 2354-2360.
    [41]Shen W., He Y., Zhang S., et al. Yeast-based microporous carbon materials for carbon dioxide capture[J]. Chemsuschem.2012,5(7):1274-1279.
    [42]Chen J., Loo L.S., Wang K. High-pressure CO2 adsorption on a polymer-derived carbon molecular sieve[J]. Journal of Chemical and Engineering Data.2008,53:2-4.
    [43]Song H.K. Lee K.H. Adsorption of carbon dioxide on chemically modified carbon adsorbents[J]. Separation Science and Technology.1998,33(13):2039-2057.
    [44]Ribeiro R.P., Sauer T.P., Lopes F.V., et al. Adsorption of CO2, CH4, and N2 in activated carbon honeycomb monolith[J]. Journal of Chemical and Engineering Data,2008, 53(10):2311-2317.
    [45]Shuji H.TK, Shoichi F. High-Pressure adsorption equilibria of methane and carbon dioxide on several activated carbons[J]. Journal of Chemical and Engineering Data,2005, 50:369-376.
    [46]Shen C.Z.,Grande C.A., Li P., Yu J.G., Rodrigues A.E. Adsorption equilibria and kinetics of CO2 and N2 on activated carbon beads[J]. Chemical Engineering Journal,2010,160: 398-407.
    [47]Burchell T. D., Judkins R.R., Rogers M.R., et al. A novel process and material for the separation of carbon dioxide and hydrogen sulfide[J]. Carbon.1997,35(9):1279-1294.
    [48]Kyaw K., Shibata T., Watanabe F., Matsuda H., Hasatani M. Applicability of zeolite for CO2 storage in a CaO-CO2 high temperature energy storage systerm[J]. Energy Conversion and Management.1997,38(10-13):1025-1033.
    [49]Hu Y.H., Ruckenstein, et al. Applicability of Dubinin-Astakhov equation to CO2 adsorption on single-walled carbon nanotubes[J]. Chemical Physics Letters,2006, 425(4-6):306-310.
    [50]Zou Y. Mata V.G., Rodrigues A.E. Adsorption of carbon dioxide on chemically modified high surface area carbon-based adsorbents at high temperature [J]. Adsorption.2001,7: 41-50.
    [51]江霞,蒋文举,金燕,张振鹏.改性活性炭在环境保护中的应用[J].环境科学与技术.2003,26(5):55-57.
    [52]Stavropoulos G.G., Samaras P., Sakellaropoulos G.P. Effect of activated carbons modification on porosity, surface structure and phenol adsorption[J]. Journal of Hazardous Materials.2008,151 (2-3):414-421.
    [53]Zhang Z.. Xu M., Wang H., et al. Enhancement of CO2 adsorption on high surface area activated carbon modified by N2, H2 and ammonia[J]. Chemical Engineering Journal. 2010.160(2):571-577.
    [54]王重庆,刘晓勤.表面改性活性炭对CO2的吸附性能[J].南京化工大学学报.2000.22(2):63-65.
    [55]Zou Y. Rodrigues A.E. Adsorbent materials for carbon dioxide[J]. Adsorption Science and Technology.2001.19(3):255-266.
    [56]叶振华.化工吸附分离过程[M].北京:中国石化出版社.1992.
    [57]Chou C.T.. Chen C.Y. Carbon dioxide recovery by vacuum swing adsorption[J]. Separation and Purification Technology.2004.39:51-65.
    [58]Xiao P., Zhang J., Webley P., Li G., Singh R., Todd R. Capture of CO2 from flue gas streams with zeolite 13X by vacuum-pressure swing adsorption[J]. Adsorption. 2008, 14: 575-582.
    [59]Shen C, Yu J. G., Li P., Grande C.A., Rodrigues A.E. Capture of CO2 from due gas by vacuum pressure swing adsorption using activated carbon beads[J]. Adsorption. 2011, 17: 179-188.
    [60]Krista S.W., Morgan B.A., Douglas L.M. CO2 adsorption in Y and X zeolites modified by alkali metal cation exchange[J]. Microporous and Mesoporous Materials. 2006, 91:78-84.
    [61]Khelifa A., Benchehida L., Derriche Z. Adsorption of carbon dioxide by X zeolites exchanged with Ni2+ and Cr3+: isotherms and isosteric heat[J]. Journal of Colloid and Interface Science. 2004, 278(1): 9-17.
    [62]Romero-Perez, A.,Aguilar-Armenta, G. Adsorption kinetics and equilibria of carbon dioxide, ethylene, and ethane on 4A(CECA) zeolite[J]. Journal of Chemical and Engineering Data. 2010, 55(9): 3625-3630.
    [63]Xu X.L., Zhao X.X., SunL.B. Liu X.Q. Adsorption separation of carbon dioxide, methane, and nitrogen on Hβ and Na-exchanged β-zeoIite[J]. Journal of Natural Gas Chemistry. 2008, 17(4): 391-396.
    [64]Ahn H., Lee C. Effects of capillary condensation on adsorption and thermal desorption dynamics of water in zeolite 13X and layered beds[J|. Chemical Engineering Science. 2004. 59(13): 2727-2743.
    [65]Ribeiro A.M., Sauer T.P., Grande C.A., et al. Adsorption equilibrium and kinetics of water vapor on different adsorbents[J]. Industrial & Engineering Chemistry Research. 2008, 47(18): 7019-7026.
    [66]Kim J-H, Lee C-H, Kim W-S, et al. Adsorption equilibria of water vapor on alumina, zeolite 13X, and a zeolite X/activated carbon composite[J]. Journal of Chemical & Engineering Data. 2003,48(1): 137-141.
    [67]Li G., Xiao P., Webley PA., et al. Capture of CO2 from high humidity flue gas by vacuum swing adsorption with zeolitel3X[J]. Adsorption. 2008. 14(2-3): 415-422.
    [68]Li G., Xiao P., Webley P.A., et al. Competition of CO2/H2O in adsorption based CO2 capture[J]. Energy Procedia. 2009, 1(1): 1123-1130.
    [69]梅华,陈道远,姚虎卿,沈健.硅胶的二氧化碳吸附性能及其微孔结构的关系[J].天然气化工.2004,5:21-25.
    [70]张辉,刘应书,刘文海,孟宇,郑新港,吴全,陈伟杰.高志成,冼定邦,张良.烟气中低浓度二氧化碳吸附捕集中试试验研究[J].低温与特气.2009,1:12-16.
    [71]付鑫.氮气/二氧化碳的吸附分离[D].天津:天津大学.2007.
    [72]Belmabkhout Y., Serna-Guerrero R., Sayari A. Adsorption of CO2 from dry gases on MCM-41 silica at ambient temperature and high pressure. 1: Pure adsorption[J]. Chemical Engineering Science. 2009. 64(17): 3721-3728.
    [73]Belmabkhout Y, Sayari A. Adsorption of CO2 from dry gases on MCM-41 silica at ambient temperature and high pressure. 2: Adsorption of CO2/N2, CO2/CH4 and CO2/H2 binary mixtures[J|. Chemical Engineering Science. 2009. 64(17): 3729-3735.
    [74]王林芳.马磊.王爱琴,刘茜,张涛.氨基硅烷修饰的SBA-15用于CO2的吸附[J]. 催化学报.2007,28(9):805-810.
    [75]Son W-J, Choi J-S, Ahn W-S. Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials[J]. Microporous and Mesoporous Materials.2008,113:31-40.
    [76]Stuart L. James. Metal-organic frameworks[J]. Chemical Society Review.2003,32: 276-288.
    [77]Keskin S., van Heest T.M., Sholl D.S. Can metal-organic framework materials play a useful role in large-scale carbon dioxide separations [J]. Chemsuschem.2010,3(8): 879-891.
    [78]Kitagawa S., Kitaura R., Noro S. Functional porous coordination polymers[J]. Angewandte chemie-international edition.2004,43(18):2334-2375.
    [79]Wang Q.M., Shen D.M., Bulow M., et al. Metal-organic molecular sieve for gas separation and purification [J]. Microporous and Mesoporous Materials.2002,55: 217-230.
    [80]Millward A.R., Yaghi O.M. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature [J]. Journal of the American Chemical Society.2005,127:17998-17999.
    [81]Aprea P., Caputo D., Gargiulo N., et al. Modeling carbon dioxide adsorption on microporous substrates:comparison between Cu-BTC metal organic framework and 13X zeolitic molecular sieve[J]. Journal of Chemical and Engineering Data.2010,55(9): 3655-3661.
    [82]Alcerreca-Corte I., Fregoso-Israel E., Pfeiffer H. CO2 absorption on Na2ZrO3:a kinetic analysis of the chemisorption and diffusion processes [J]. The Journal of Physical Chemistry C.2008,112(16):6520-6525.
    [83]Siriwardane R.V., Robinson C., Shen M., et al. Novel regenerable sodium-based sorbents for CO2capture at warm gas temperatures [J]. Energy & Fuels,2007,21(4):2088-2097.
    [84]Zhao T., Ochoa-Fernandez E., R(?)nning M., et al. Preparation and high-temperature CO2 capture properties of nanocrystalline Na2ZrO3[J]. Chemistry of Materials.2007,19(13): 3294-3301.
    [85]Hadenfeldt S., Benndorf C, Strieker A., et al. Adsorption of CO2 on K-promoted Cu(111) surfaces[J]. Surface Science.1996,352:295-299.
    [86]Pan Y., Liu C-J, Ge Q. Adsorption and protonation of CO2 on partially hydroxylated y-Al2O3 surfaces:a density functional theory study[J]. Langmuir.2008,24(21): 12410-12419.
    [87]Yong Z., Mata V., Rodrigues A.E. Adsorption of carbon dioxide at high temperature-a review[J]. Separation and Purification Technology.2002,26(2-3):195-205.
    [88]李莉,袁文辉,韦朝海.二氧化碳的高温吸附剂及其吸附过程[J].化工进展.2006,25(8):918-922.
    [89]Gupta H., Fan L.S. Carbonation-calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas[J]. Industrial & Engineering Chemistry Research.2002.41:4035-4042.
    [90]Gupta H.. Iyer M.V.. Sakadjian B.B., Fan L.S. Reactive separation of CO? using pressure pelletised limestone[J]. International Journal of Environmental Technology and Management.2004,4:3-20.
    [91]Yong Z., Rodrigues A.E. Hydrotalcite-like compounds as adsorbents for carbon dioxide[J]. Energy Conversion and Management.2002,43(14):1865-1876.
    [92]Oliveira E.L.G, Grande C.A., Rodrigues A.E. CO2 sorption on hydrotalcite and alkali-modified (K and Cs) hydrotalcites at high temperatures[J]. Separation and Purification Technology.2008,62(1):137-147.
    [93]Yong Z., Mata V., Rodriguez A.E. Adsorption of carbon dioxide onto hydrotalcite-like compounds (HTlcs) at high temperatures[J]. Industrial & Engineering Chemistry Research.2001,40(1):204-209.
    [94]Lee K.B., Verdooren A., Caram H.S., Sircar S. Chemisorption of carbon dioxide on potassium-carbonate-promoted hydrotalcite[J].Journal of Colloid and Interface Science. 2007,308:30-39.
    [95]Kato M., Yoshikawa S., Nakagawa K. Carbon dioxide absorption by lithium orthosilicate in a wide range of temperature and carbon dioxide concentrations[J]. Journal of Materials Science Letters.2002,21(6):485-487.
    [96]Ida J., Xiong R.T., Lin Y.S. Synthesis and CO2 sorption properties of pure and modified lithium zirconate [J]. Separation and Purification Technology.2004,36(1):41-51.
    [97]Daniel J., Fauth T., Elizabetll A. Eutectic salt promoted lithium zirconate:novel high temperature sorbent for CO2 capture[J]. Fuel Processing Technology.2005, 86:1503-1521.
    [98]王银杰,其鲁,杜柯等.K元素的掺杂对锆酸钾材料吸收CO2性能的影响[J].北京大学学报.2005,41(4):501-505.
    [99]吕国强,王华等.Li4SiO4吸收CO2的实验研究[J].工业加热.2007,36(5):4-5.
    [100]Kato M., Nakagawa K., Essaki K., Maezawa Y., Takeda S., Kogo R., Hagiwara Y. Novel CO2 absorbents using lithium-containing oxide[J]. International Journal of Applied Ceramic Technology.2005,2:467-475.
    [101]李俊成,肖降斌.变压吸附提纯二氧化碳技术应用[J].大氮肥.2007,30(1):19-21.
    [102]Chue K., Kim J., Yoo Y., et al. Comparison of activated carbon and zeolite 13X for CO2 recovery from flue gas by pressure swing adsorption[J]. Industrial & Engineering Chemistry Research.1995,34(2):591-598.
    [103]Diagne D., Goto M., Hirose T. Experimental study of simultaneous removal and concentration of CO2 by an improved pressure swing adsorption process[J]. Energy Conversion and Management.1995,36(6-9):431-434.
    [104]Na B.K., Lee H., Koo K.K., Song H.K. Effect of rinse and recycle methods on the pressure swing adsorption process to recover CO2 from power plant flue gas using activated carbon[J]. Industrial & Engineering Chemistry Research.2002,41:5498-5503.
    [105]Reynolds S.P., Mehrotra A., Ebner, A.D., Ritter, J.A. Heavy reflux PSA cycles for CO2 recovery from flue gas:part I. performance evaluation[J]. Adsorption.2008,14:399-413.
    [106]Park J-H, Beum H-T, Kim J-N, et al. Numerical analysis on the power consumption of the PSA process for recovering CO2 from flue gas[J]. Industrial & Engineering Chemistry Research.2002,41(16):4122-4131.
    [107]Ishibashi M., Ota H., Akutsu N., et al. Technology for removing carbon dioxide from power plant flue gas by the physical adsorption method[J]. Energy Conversion and Management.1996,37(6-8):929-933.
    [108]Merel J., Clausse M., Meunier F. Experimental investigation on CO2 post-combustion capture by indirect thermal swing adsorption using 13X and 5A zeolites[J]. Industrial & Engineering Chemistry Research.2008,47:209-215.
    [109]Clausse M., Merel J., Meunier F. Numerical parametric study on CO2 capture by indirect thermal swing adsorption[J]. International Journal of Greenhouse Gas Control.2011, 5(5):1206-1213.
    [110]Grande C.A., Ribeiro R.P.L., Oliveira E.L.G., Rodrigues A.E. Electric swing adsorption as emerging CO2 capture technique[J]. Greenhouse Gas Control Technologies.2009, 1(1):1219-1225.
    [111]Petkovska M., Tondeur D., Grevillot G., et al. Temperature swing gas separation with electrothermal desorption step[J]. Separation Science and Technology.1991,26(3): 425-444.
    [112]Jon D.S., James G. Methyl bromide recovery on activated carbon with repeated adsorption and electrothermal regeneration[J]. Industrial & Engineering Chemistry Research.2001,40:2925-2933.
    [113]Yu F.D., Luo L., Grevillot G. Electrothermal swing adsorption of toluene on an activated carbon monolith experiments and parametric theoretical study [J]. Chemical Engineering and Processing.2007,46:70-81.
    [114]Grande C.A., Ribeiro R.P.L., Rodrigues A.E. Challenges of electric swing adsorption for CO2 capture[J]. Chemsuschem.2010,3(8):892-898.
    [115]Moon S.H., Shim J.W. A novel process for CO2/CH4 gas separation on activated carbon fibers-electric swing adsorption [J]. Journal of Colloid and Interface Science.2006, 298(2):523-528.
    [116]Mulgundmath V., Tezel F.H. Optimisation of carbon dioxide recovery from flue gas in a TPSA System[J]. Adsorption.2010,16:587-598.
    [117]Plaza M.G., Garcia S., Rubiera F., et al. Post-combustion CO2 capture with a commercial activated carbon:comparison of different regeneration strategies[J]. Chemical Engineering Journal.2010,163(1-2):41-47.
    [118]Yang R.T. Adsorbents:fundamentals and applications[J]. John Wiley & Sons:Hoboken, NJ.2003.
    [119]Thomas W.J.C.B. Adsorption technology & design[M].Butterworth Heinemann:Oxford, 1998.
    [120]Gomes V.G., Yee K.W.K.. Pressure swing adsorption for carbon dioxide sequestration from exhaust gases[J]. Separation and Purification Technology.2002,28(2):161-171.
    [121]Cho S.H., Park J.H., Beum H.T., et al. A 2-stage PSA process for the recovery of CO2 from flue gas and its power consumption[J]. Study in Surface Science and Catalysis, 2004,153:405-410.
    [122]Ebner A.D., Ritter J.A. State-of-the-art adsorption and membrane separation processes for carbon dioxide production from carbon dioxide emitting industries[J]. Separation Science and Technology.2009,44(6):1273-1421.
    [123]Ko D., Siriwardane R.. Biegler L.T. Optimization of a pressure-swing adsorption process using zeolite 13X for CO2 sequestration[J]. Industrial & Engineering Chemistry Research.2003,42(2):339-348.
    [124]McIntyre J.A., Ebner A.D., Ritter J.A. Experimental study of a dual reflux enriching pressure swing adsorption process for concentrating dilute feed streams[J]. Industrial & Engineering Chemistry Research.2010.49(4):1848-1858.
    [125]Langmuir I. The adsorption of gaseson plane surfaces of glass, mica and platinum[J]. Journal of the American Chemical Society.1918,40:1361-1402.
    [126]Ritter J.A., Ebner A.D. On the use of the dual-process Langmuir model for correlating unary equilibria and predicting mixed-gas adsorption equilibria[J]. Langmuir.2011,27: 4700-4712.
    [127]Shubhra J.B., Ebner A.D., Ritter J.A. On the use of the dual process Langmuir model for predicting unary and binary isosteric heats of adsorption[J]. Langmuir,2012,28(17): 6935-6941.
    [128]Nitta T., Masayuki K., Katayama T. An adsorption isotherm of multi-site occupancy model for heterogeneous surface[J]. Journal of Chemical Enginerring of Japan. 1984,17(1):45-52.
    [129]D'Alessandro D.M., Smit B., Long J.R. Carbon dioxide capture:prospects for new materials[J]. Angewandte Chemie-Intemational Edition.2010,49(35):6058-6082.
    [130]Do D.D. Adsorption analysis:equilibria and kinetics[M]. Imperial College Press: London, UK.1998.
    [131]Sircar S. Basic research needs for design of adsorptive gas separation processes[J]. Industrial & Engineering Chemistry Research.2006,45:5435-5448.
    [132]Mohr R.J.,Vorkapic D., RaoM. B., et al. Pure and binary gas adsorption equilibria and kinetics of methane and nitrogen on 4A zeolite by isotope exchange techniquefJ]. Adsorption.1999,5:145-158.
    [133]Lee J-S, Kim J-H, Kim J-T, et al. Adsorption equilibria of CO2 on zeolite 13X and zeolite X/activated carbon composite[J]. Journal of Chemical and Engineering Data. 2002,47(5):1237-1242.
    [134]Anson A., Lin C.C.H., Kuznicki S.M., et al. Adsorption of carbon dioxide, ethane, and methane on titanosilicate type molecular sieves[J]. Chemical Engineering Science.2009, 64(16):3683-3687.
    [135]Van Noorden T.L., Lunel S.M.V., Bliek A. The efficient computation of periodic states of cyclically operated chemical processes[J]. IMA Journal of Applied Mathematics.2003, 68(2):149-166.
    [136]Grande C.A., Rodrigues A.E. Adsorption kinetics of propane and propylene in zeolite 4A[J]. Chemical Engineering Research & Design.2004.82:1604-1612.
    [137]Brandani F., Ruthven D., Coe C.G. Measurement of adsorption equilibrium by the zero length column (ZLC) technique part 1:Single-component systems[J].Industrial & Engineering Chemistry Research.2003,42(7):1451-1461.
    [138]Ustinov E.A. An analysis of the equilibrium adsorption of nitrogen, oxygen, and their mixtures on zeolite NaX at temperatures of from-20 to+30 degrees C[J]. Russian Journal of Physical Chemistry A.2007.81(2):246-254.
    [139]Loos J., Verheijen P., Moulijn J.A. Improved estimation of zeolite diffusion coefficients from zero-length column experiments[J]. Chemical Engineering Science.2000,55(1): 51-65.
    [140]Habgood W.H. The kinetics of molecular sieve action:sorption of nitrogen-methane mixtures by Linde molecular sieve 4A[J]. Canadian Journal of Chemistry.1958,36: 1384-1397.
    [141]Grzybek R., Grochowski L. The ways to pure hydrogen at the nitrogen works Kedzierzyn SA[J]. Przemysl Chemiczny.2005,84(11):820-824.
    [142]Wakao N., Funazkri T. Effect of fluid dispersion coefficients on particle-to-fluid mass transfer coefficients in packed beds[J]. Chemical Engineering Science.1978,33: 1375-1384.
    [143]Bird R.B., Lightfoot E.N. Transport phenomena (2nd ed.)[M]. Singapore:Wiley International.2002.
    [144]Poling B., Prausnitz J., O'Connell J.. The properties of gases and liquids (5thEd)[M]. McGraw-Hill International Editions:Boston, USA.2001.
    [145]Glueckauf E., Coates J.I. Theory of chromatography. part IV. the influence of incomplete equilibrium on the front boundary of chromatograms and on the effectiveness of separation[J]. Journal of the Chemical Society (Resumed).1947,1:1315-1321.
    [146]Desai N.J., Yang R.T. Temperature swing separation of hydrogen-methane mixture [J]. Industrial & Engineering Chemistry Process Design and Development.1985,24:57-62.
    [147]Liaw C.H., Greenkorn R.A., Chao K.C. Kinetics of fixed-bed adsorption:a new solution[J]. AIChE Journal.1979,25:376-381.
    [148]Rice R.G. Approximate solutions for batch, packed tube, and radial flow adsorbers-comparison with experiments[J]. Chemical Engineering Science.1982,37:83-91.
    [149]Wakao N., Kaguei S., Funazkri T. Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed beds:correlation of nusselt numbers[J]. Chemical Engineering Science.1979,34:325.
    [150]Sircar S. Excess properties and thermodynamics of multicomponent gas adsorption [J]. Journal of the Chemical Society, Faraday Transactions 1:Physical Chemistry in Condensed Phases.1985,81(7):1527-1540.
    [151]Incropera F.P., Witt D.P.D. Fundamentals of heat and mass transfer (5th ed.)[M].New York:John Wiley & Sons.2002.
    [152]De Wasch A.P., Froment G.F. Heat transfer in packed beds[J]. Chemical Engineering Science.1972,27(3):567-576.
    [153]Kamiuto K., Goubaru A.E. Diffusion coefficients of carbon dioxide within type 13X zeolite particles[J]. Chemical Engineering Communications.2006,193(5):628-638.
    [154]Bar N.K., McDaniel P.L., Coe C.G., Seiffert G., Karger J. Measurement of intracrystalline diffusion of nitrogen in zeolites NaX and NaCaA using pulsed field gradient n.m.r.[J]. Zeolites.1997,18:71-74.
    [155]Kikkinides E.S., Yang R.T. Concentration and recovery of CO2 from flue gas by pressure swing adsorption[J]. Industrial & Engineering Chemistry Research.1993,32(11): 2714-2720.
    [156]Jiang L., Fox V., Biegler L.T. Simulation and optimal design of multiple-bed pressure swing adsorption systems[J]. AIChE Journal.2004.50(11):2904-2917.
    [157]Tlili N., Grevillot G., Vallieres C. Carbon dioxide capture and recovery by means of TSA and/or VSA[J]. International Journal of Greenhouse Gas Control.2009,3(5): 519-527.
    [158]Ruthven D.M., Farooq S., Knaebel K.S. Pressure swing adsorption[M]. VCH, New York. 1994.
    [159]Shen C., Liu Z., Li P., et al. Two-stage VPSA process for CO2 capture from flue gas using activated carbon beads[J]. Industrial & Engineering Chemistry Research. 2012,51(13):5011-5021.
    [160]Zhang J., Webley P. Cycle development and design for CO2 capture from flue gas by vacuum swing adsorption[J]. Environmental Science & Technology.2008,42(2): 563-569.
    [161]Bonjour J., Clausse M., Meunier F. A TSA process with indirect heating and cooling: parametric analysis and scaling-up to practical sizes[J]. Chemical Engineering and Processing:Process Intensification.2005,44(9):969-977.
    [162]Grande C.A., Rodrigues A.E. Electric swing adsorption for CO2 removal from flue gases[J]. International Journal of Greenhouse Gas Control.2008,2:194-202.
    [163]Ania C.O., Parra J.B., Menendez J.A., et al. Effect of microwave and conventional regeneration on the microporous and mesoporous network and on the adsorptive capacity of activated carbons[J]. Microporous and Mesoporous Materials.2005,85(1):7-15.
    [164]Zhang J., Webley P.A., Xiao P. Effect of process parameters on power requirements of vacuum swing adsorption technology for CO2 capture from flue gas[J]. Energy Conversion and Management.2008,49(2):346-356.
    [165]Choi W.K., Kwon T.I., Yeo Y.K., et al. Optimal operation of the pressure swing adsorption (PSA) process for CO2 recovery [J]. Korean Journal of Chemical Engineering. 2003,20:617-623.
    [166]Na B.K., Ko K.K., Eum H.M.. et al. CO2 recovery from flue gas by PSA process using activated carbon[J]. Korean Journal of Chemical Engineering.2001,18(2):220-227.
    [167]Merel J., Clausse M., Meunier F. Carbon dioxide capture by indirect thermal swing adsorption using 13X zeolite[J]. Environmental Progress.2006,25(4):327-333.
    [168]Mehrotra A., Ebner A., Ritter J. Arithmetic approach for complex PSA cycle scheduling[J]. Adsorption.2010,16(3):113-126.
    [169]Agarwal A., Biegler L., Zitney S. A superstructure-based optimal synthesis of PSA cycles for post-combustion CO2 capture[J]. AIChE Journal.2009,56(7):1813-1828.
    [170]Rezaei F., Mosca A., Webley P., et al. Comparison of traditional and structured adsorbents for CO2 separation by vacuum-swing adsorption[J]. Industrial & Engineering Chemistry Research.2010.49(10):4832-4841.
    [171]刘振.燃煤电厂烟道气中二氧化碳吸附捕集过程的研究[D].上海:华东理工大学,2012.
    [172]Ribeiro A.M., Santos J.C., Rodrigues A.E., et al. Pressure swing adsorption process in coal to Fischer-Tropsch fuels with CO2 capture[J]. Energy & Fuels.2012,26(2): 1246-1253.
    [173]Pirngruber G.D., Hamon L., Bourrelly S.. et al. A method for screening the potential of MOFs as CO2 Adsorbents in pressure swing adsorption processes[J]. Chemsuschem. 2012.5(4):762-776.
    [174]Takamura Y., Narita S., Aoki J., et al. Evaluation of dual-bed pressure swing adsorption for CO2 recovery from boiler exhaust gas[J]. Separation and Purification Technology. 2001,24(3):519-528.
    [175]Abu-Zahra M.R.M., Niederer J.P.M., Feron P.H.M., et al. CO2 capture from power plants:part Ⅱ. a parametric study of the economical performance based on mono-ethanolamine[J]. International Journal of Greenhouse Gas Control.2007,1(2): 135-142.
    [176]沈春枝.碳材料捕获燃烧后二氧化碳过程研究[D].上海:华东理工大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700