用户名: 密码: 验证码:
褐煤水热脱水提质制备高浓度水煤浆的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水煤浆是一种清洁的代油燃料,也是水煤浆气化技术的原料。褐煤等低阶煤储量丰富,价格低廉,且反应活性较高,是一种理想的气化原料。利用褐煤制备水煤浆,可以降低原料成本,拓宽褐煤的应用范围,推动煤炭资源的清洁高效利用。
     褐煤含水量较高,热值较低,在应用之前需要进行干燥提质。水热脱水提质是一种“非蒸发”的干燥方式,能够对褐煤进行深度的脱水改性,使得褐煤在干燥之后的重吸水能力大幅度降低,热值大幅度的升高。
     本文主要对褐煤进行水热脱水提质,围绕褐煤水煤浆的性质以及褐煤水分的脱除规律,进行了以下工作:
     采用多种褐煤制备水煤浆,对褐煤水煤浆的成浆浓度、流变特性和稳定性进行深入研究分析,并与常规的烟煤水煤浆进行对比,得到褐煤水煤浆成浆浓度低的最主要原因是褐煤的煤阶较低,表面亲水性的含氧官能团含量较多,束缚水含量较大。
     采用密闭的高压反应釜对褐煤进行水热脱水提质,对水热提质过程中的固、液、气三相产物特性进行分析研究,发现随着水热温度的升高,褐煤的平衡水含量显著降低,热值大幅度的提高,煤阶明显升高。在液体产物中,含有大量的有机物和无机矿物质,且随着水热提质温度的升高,总有机碳的含量大幅度升高。在气体产物中,主要的成分是C02,同时还有一定浓度的CO、CH4、02、H2S、H2、N2等产物,其中CO、CH4在反应温度超过240℃后才有生成。
     对水热提质前后褐煤的理化性质进行分析,可以发现影响褐煤水煤浆性质的几大因素均得到了改善:经过水热提质之后,褐煤中羧基、羰基和酚羟基的含量明显降低,从而使褐煤的亲水性减弱,表现为煤-水接触角的增大,以及zeta电位的降低,等电点的升高。另一方面,褐煤的孔隙结构也得到了改善,与原煤相比,水热提质固体产物的比表面积、比孔容积以及平均孔径均有不同程度的降低。两方面综合作用,使得褐煤的固水能力大幅度弱化。
     将水热提质之后的煤样制备水煤浆,其定粘浓度大幅度升高,其中经过320℃水热提质,褐煤水煤浆的定粘浓度提高约9-14%,同时流变特性和稳定性也得到了进一步的改善;将水热提质的液体产物与固体产物混合制浆,能够使褐煤水煤浆的定粘浓度再度提高约1%,同时回收液体中可燃性物质的能量。
     采用热重-差示扫描量热分析研究了水热提质对褐煤水分的赋存形式的影响,发现根据煤水结合能(Eb)的大小可以将褐煤的平衡水分为四个部分:自由水(Eb=0)、物理束缚水(09000kJ/kg)。经过水热提质之后,褐煤与水分之间的结合能降低,自由水与物理吸附水所占的比例增大,化学吸附水的比例降低。根据薄层干燥理论对褐煤脱水活化能进行分析,发现普通褐煤在等温干燥过程中的干燥活化能范围约为21-27kJ/mol。经过水热提质后的褐煤,其平衡水的干燥活化能显著降低,褐煤的固水能力明显减弱。
     采用量子化学密度泛函数理论对褐煤水热提质的过程进行优化计算,发现褐煤较长的侧链具有较强的反应活性,在水热提质过程中首先发生化学反应并断裂,使得褐煤的侧链缩短,缩合程度增加。通过计算羧基、羟基、甲基等基团对水分子吸附能的影响,发现褐煤含氧基团对水分子的吸附能约在10kJ/mol左右,且对褐煤亲水性的影响大小:羧基>羟基>甲基;对褐煤水热脱水提质过程中的脱羧和脱羰反应进行热力学和动力学分析,发现在水热提质条件下,脱羧反应的活化能小于脱羰的,羧基在较低的温度下即可脱除,而脱羰反应在较低温度下的热力学可行性较低。
Coal water slurry (CWS), as an oil substitute, is a clean liquid fuel. Preparing for CWS is necessary process to gasify by texaco technology. Low rank coals, such as brown coal, are very abundant and low price in China. Brown coal with high reaction activity is a good source for gasification. Preparing brown coal for slurry, which can reduce the cost of CWS and increase the field of application, has an important function on high efficient and clean utilization of coal resource.
     Drying is the first essential step in brown coal utilization process because of its high moisture content and low heat value. Hydrothermal dewatering (HTD) is a non-evaporative method by which water is removed as a liquid. The coal rank can be upgraded and heat value of brown coal increased effectively after HTD process. And the HTD products reabsorb water no more.
     A series of work are performed under the subjects of CWS preparation from brown coal, the effect of HTD process and the moisture distribution in brown coal.
     Many types of brown coals are made into CWS. And the slurryability, rheological characteristics and stability of those brown coal water slurries (BCWS) are investigated. Results show that the solid ratio of BCWS is lower than bitumite water slurry, and the most important reason is the high inherent moisture content resulted from the high oxygen functional groups content.
     Brown coals were hydrothermally treated for dewatering and upgrading in an autoclave. The chemical composition of solid liquid and gas products during HTD process are studied. It can be concluded that the equilibrium moisture and volatile decrease, while the fixed carbon and heating value increase. And the coal rank is upgraded with the mole ratio of oxygen or hydrogen and carbon element goes down. Many organic matters and inorganic salts dissolve into the liquid product. The total organic carbon and total inorganic carbon concentrations in the wastewater increase as the increase of HTD temperature. CO2content Make up a large proportion of gas product, which consist of CO、CH4、O2、H2S、H2. Especially, CO and CH4appear when the temperature is above240℃
     Some physical and chemical properties of brown coal have improved after HTD. It can be concluded as follows:phenolic hydroxyl, carbonyl and carboxyl content decrease, leading a decrease of hydrophilicity of coal surface, which is expressed as the increase of contact angle between coal and water, and the point of zero charge. Moreover, the pore volume, surface and diameter of HTD products are smaller than raw coals. As a result, water holding capacity of brown coals weakened.
     The fixed-viscosity concentration of BCWS is significant increased. When HTD temperature is up to320℃, the increment of fixed-viscosity concentration is about9-13%. At the same time, the fluidity and stability of BCWS are also improved. Preparing the liquid products for BCWS can recover the energy of combustible organic matter from the wastewater. Furthermore, the fixed-viscosity concentration can raise1%more using liquid products.
     The method of thermogravimetric analysis-differential scanning calorimetry is employed to analyze the moisture distribution in brown coal. According to coal-water binding energy (Eb), the moisture in brown coal can be divided into four parts:free water (Eb=0), physical absorption water (Eb<2000kJ/kg), interim water (20009000kJ/kg). The ratios of free water and physical water increase during HTD. The dewatering activation energy of brown, which is about21~27kJ/mol during isothermal drying process, decreased by HTD.
     The density functional theory of quantum chemistry is used to optimize the structure and energy of brown coal. Result show that the long side chain with high active reaction in brown coal has weaken chemical bonds, which will rupture firstly during HTD process. As a result, the side chains are shortened and concentration increase in brown coal. The adsorption energy of H2O on coal surface is about10kJ/mol. And the effects on hydrophilicity of brown coal:carboxyl> hydroxyl> methyl. Thermodynamic and kinetic analyses of deoxidization reaction of brown coal show that the activation energy of decarboxylation is lower thande-carbonyl reaction. It is more difficulty to remove carbonyl.
引文
[1]《中国统计年鉴2012》。
    [2]吴吟。推动能源生产和利用方式变革。中国能源报,2012.6.1.
    [3]中国的能源政策(2012)。中华人民共和国国务院新闻办公室,2012.10.
    [4]国家能源局《国家能源科技十二五规划》.
    [5]国家工业和信息化部《先进煤气化节能技术推广实施方案》.
    [6]国务院《“十二五”节能环保产业发展规划》.
    [7]马玉峰,李建强,万启科,姜秀敏。水煤浆燃烧技术及其发展[J].洁净煤技术,2003,9(3):13-17.
    [8]尹立群。我国褐煤资源及其利用前景[J].煤炭科学技术,2004,32(8):12-14.
    [9]邵俊杰。褐煤提质技术现状及我国褐煤提质技术发展趋势初探[J].神华科技,2009,7(2):17-21.
    [10]戴和武,谢可玉。褐煤利用技术[M]。北京:煤炭工业出版社,1999.
    [11]董洪锋、云增杰、曹勇飞。我国褐煤的综合利用途径及前景展望[J].煤炭技术,2008,27(9):122-124.
    [1 2]欧阳建友。大容量褐煤锅炉技术的发展现状[J].电力职业技术学刊,2009,3:24.
    [13]冯蕾,武俊平。我国电力行业褐煤利用探讨[J].应用能源技术,2010,10:4-7.
    [14]王俊香。低变质程度动力煤干燥体质的可行性研究[J].煤炭工程,2009(9):63-65.
    [15]吕舜,邸传耕。神东矿区金烽煤低温干燥脱水的研究[J].煤质技术,2008(4): 4-6.
    [16]陈鹏,崔文权,许红英。低温干燥对神华金烽矿煤结构和自燃性的影响[J].煤炭科学技术,2009(10):118-121.
    [17]刘利,许红英,陈鹏等。干燥脱水工艺对煤低温氧化活化能影响的研究[J].煤炭工程,2010(6):79-81.
    [18]万永周,肖雷,陶秀祥。褐煤脱水预干燥技术进展[J].煤炭工程,2008(8)91-93.
    [19]郭树才.煤化学工程[M].北京:冶金工业出版社,1991
    [20]高俊荣,陶秀祥,侯彤,万永周。褐煤干燥脱水技术的研究进展[J].洁净煤技术,2008,14(6):73-76.
    [21]Chun-zhun Li. Advances in the science of Victorian Brown Coal [M]. oxford: Elsevier ltd.2004.
    [22]蒋斌,李胜,梁国林。褐煤过热蒸汽预干燥探讨[J].电力技术,2010(4):40-42.
    [23]陈训刚。微光波对水煤浆的成浆性和气化性的影响[D].浙江大学,2008.
    [24]Meikap B C, PurohitN K, Mahadevan V. Effect of microwave pretreatment of coal for improvement of rheological characteristics of coal water slurries [J]. Journal of Colloid and Interface Science,2005,281:225-235.
    [25]周俊虎,李艳昌,程军等。神华煤微波改性提高成浆性能的研究[J].煤炭学报,2007,32(6):617-621.
    [26]Lester E, Kingman S. The effect of microwave preheating on five different coals [J]. Fuel,2004,83 (14/15):1941-1947.
    [27]Kaushal K Tiwari, Sibendra K Basu, Kumaresh C Bit. High concentration coal water slurry from Indian coals using newly developed additives [J]. Fuel Processing Technology,2004,85 (1):31-42.
    [28]罗运俊,何梓年,王长贵。太阳能利用技术[M].北京:化学工业出版社.2005.P15-25.
    [29]樊军庆,张宝珍.太阳能干燥技术在农产品加工中的利用[J].农场品加工.2009,(5):68-70.
    [30]罗炉林,刘建忠,陈静等.太阳能干燥褐煤的可行性与初步研究[c].2010中国可再生能源科技发展大会论文集,2010.12.17-19,北京,第Ⅱ卷,1284-1251.
    [31]Lulin Luo, Jianzhong Liu,Jing Cheng, et al..Experimental Study on Solar Drying of Lignite.2010 International Conference on Digital Manufacturing & Automation (ICDMA 2010), Changsha,2010, Volume 1:709-712.
    [32]罗炉林,刘建忠,陈静等。太阳能干燥脱水技术及其应用[J].可再生能源, 已收录
    [33]Favas, G. and W.R. Jackson. Hydrothermal dewatering of lower rank coals.1. Effects of process conditions on the properties of dried product. Fuel.2003, 82(1):p.53-57.
    [34]Favas, G. and W.R. Jackson. Hydrothermal dewatering of lower rank coals.2. Effects of coal characteristics for a range of Australian and international coals [J]. Fuel.2003,82(1):p.59-69.
    [35]Favas, G., W.R. Jackson, and M. Marshall. Hydrothermal dewatering of lower rank coals.3. High-concentration slurries from hydrothermally treated lower rank coals [J]. Fuel.2003,82(1):p.71-79.
    [36]Nakagawa, H., A. Namba, M. Bohlmann, et al.. Hydrothermal dewatering of brown coal and catalytic hydrothermal gasification of the organic compounds dissolving in the water using a novel Ni/carbon catalyst [J]. Fuel.2004,83(6):p. 719-725.
    [37]Mursito. A.T., T. Hirajima, and K. Sasaki. Upgrading and dewatering of raw tropical peat by hydrothermal treatment [J]. Fuel.2010,89(3):p.635-641.
    [38]Mursito, A.T., T. Hirajima, K. Sasaki, et al.. The effect of hydrothermal dewatering of Pontianak tropical peat on organics in wastewater and gaseous products [J]. Fuel.2010,89(12):p.3934-3942.
    [39]赵卫东,刘建忠,周俊虎,曹晓哲,张光学,岑可法。低阶煤高温高压水热处理改性及其成浆特性[J].化工学报,2009.6.17,60(6):1560-1567.
    [40]Hulston. Janine. Chaffee, Alan L., Bergins. Comparison of Physico-Chemical Properties of Various Lignites Treated by Mechanical Thermal Expression [J]. International Journal of CoalPreparation and Utilization,2005 (25):4, 269—293.
    [41]Artanto, Yuli andChaffee, Alan L. Dewatering Low Rank Coals by Mechanical Thermal Expression (MTE) and its Influence on Organic Carbon and Inorganic Removal [J]. International Journal of CoalPreparation and Utilization,2005 (25):4,251—267.
    [42]Bergins, C. Kinetics and mechanism during mechanical/thermal dewatering of lignite[small star, filled [J]. Fuel.2003,82(4):p.355-364.
    [43]Bergins, C. Mechanical/thermal dewatering of lignite. Part 2:A rheological model for consolidation and creep process [J]. Fuel.2004,83(3):p.267-276.
    [44]Bergins, C. J. Hulston, K. Strauss, et al., Mechanical/thermal dewatering of lignite. Part 3:Physical properties and pore structure of MTE product coals [J]. Fuel.2007,86(1-2):p.3-16.
    [45]Guo J, Tiu C., Hodges,S. Hydrothermal-mechanical upgrading of brown coal[J]. Coal Preparation,1999,21(1):3-22.
    [46]Wheeler RA. Mechanical thermal expression:characterisation and modeling of the compression mechanism. Phd dissertation. Monash University, Melbourne, Australia; 2007.
    [47]Scholes ON. Mechanical thermal expression dewatering of lignite:directional dewatering and permeability characteristics. Phd dissertation. Monash University, Melbourne, Australia; 2005.
    [48]万永周,高俊荣,肖雷等.褐煤的脱水提质研究[J].煤炭工程,2010(4):75-77.
    [49]Miura, K., K. Mae, R. Ashida, et al., Dewatering of coal through solvent extraction [J]. Fuel.2002,81(11-12):p.1417-1422.
    [50]Kanda, H. and H. Makino. Energy-efficient coal dewatering using liquefied dimethyl ether [J]. Fuel.2010,89(8):p.2104-2109.
    [51]Mahidin, Ogaki Y., Usui H., Okuma O. The advantages of vacuum-treatment in the thermal upgrading of low-rank coals on the improvement of dewatering and devolatilization [J]. Fuel Processing Technology,2003,84(1-3):147-160.
    [52]Umar D. F., Usui H., Daulay B. Change of combustion characteristics of Indonesian low rank coal due to upgraded brown coal process [J]. Fuel Processing Technology,2006,87(11):1007-1011.
    [53]游伟,赵涛,章卫星.美国低阶煤提质技术发展概述[J].化肥设计,2009(8):5-9.
    [54]谢克昌。煤的结构与反应性[M].北京:科学出版社,2002.
    [55]曹阳。量子化学引论[M].上海:人民教育出版社,1980.
    [56]王宝俊,张玉贵,谢克昌。量子化学计算在煤的结构与反应性研究中的应用[J].化工学报,2005,54(4):477-488.
    [57]廖沐真,吴国是,刘洪霖。量子化学从头计算方法[M].北京:清华大学出版社,1984
    [58]王志中,李向东。半经验分子轨道理论与实践[M].北京:科学出版社,1981.
    [59]苏克和,胡小玲。物理化学[M].西安:西北工业大学出版社,2004
    [60]Given P.H. The distribution of hydrogen in coals and its relation to coal structure [J].Fuel,1960,39:147-153.
    [61]Wiser W.H. Conference proceedings D. O. E. Symposium Series, W. Virginia Universitity,1977.
    [62]朱培之,高晋生。煤化学[M].上海:上海科学技术出版社,1984.
    [63]Shinn J.H. From coal to single-stage and two-stage products:a reactive model of coal structure [J]. Fuel,1984,63:1187-1196.
    [64]Ades H.F., Subbaswamy K.P. Theoretical modeling of coliquefaction reaction of coal and polymers [J]. Fuel processing thchnology,1996,49:207-218.
    [65]Sato Y, Inaba A, Uemasu I, Kushiyama S. Molecular orbital study of the effect of hydrogen donating solvent on the coal liquefaction [C]. ICCS,1985 Vol. I: 730-733.
    [66]Hou X.J., Yang J.Y., Gu Y.D., Li Y.W., Li B.Q. Theoretical study on the reactivity of coal structure [C], ICCS,1999, Vol. I:295-298
    [67]侯新娟,杨建丽,李永旺。煤大分子结构的量子化学研究[J].燃料化学学报,1999,27:142-148
    [68]Wang B.J., Wu Z.M., Li F., Xie K.C. The study on the electronic structures and molecular models of coal macerals. ICCS,1999, Vol.1:271-274.
    [69]王宝俊,凌丽霞,章日光,谢克昌。煤热化学性质的量子化学研究[J].煤炭学报,2009,34(9):1239-1243.
    [70]赵俐娟,凌丽霞,章日光,柳学芳,王宝俊。煤相关含氧模型化合物苯甲醚热解机理的量子化学研究[J].化工学报,2008,59(8):2095-2102.
    [71]凌丽霞,赵俐娟,章日光,王宝俊。苯甲酸和苯甲醛热解机理的量子化学研究[J].化工学报,2009,60(5):1224-1230.
    [72]贾建波,曾凡桂,李美芬,谢克昌。用密度泛函理论研究煤中甲基苯生成甲烷的反应机理[J].化工学报,2010,61(12):3235-3242
    [73]庞先勇,吕存琴,吕永康。煤脱硫过程的量子化学研究[J].煤炭转化,2006,29(4): 17-20.
    [74]黄充,张军营,陈俊,郑楚光。煤中噻吩型有机硫热解机理的量子化学研究[J].煤炭转化,2005,28(2):33-35.
    [75]孟韵,居学海,肖鹤鸣。密度泛函理论研究煤中有机氮的热解机理[J].南京理工大学学报(自然科学版),2008,32(2):241-247
    [76]Bennett A.J., Mccarroll B., Messmer R.P. Molecular orbital approach to chemisotption:Ⅱ-Aomic H, C, N, O and F on graphite. Phys.Rev.,1971, B3 (3):397-404.
    [77]降文萍,崔永君,张群,李育辉。煤表面与CH4,C02相互作用的量子化学研究[J].煤炭学报,2006,31(2):237-240.
    [78]降文萍,崔永君,张群,钟玲文,李育辉。不同变质程度煤表面与甲烷相互作用的量子化学研究[J].煤炭学报,2007,32(3):292-295.
    [79]王宝俊,凌丽霞,赵清艳,章日光,谢克昌。气体与煤表面吸附作用的量子化学研究[J].化工学报,2009,60(4):995-1000.
    [80]Roh N.S., Shin D.H., Kim D.C., Kim J.D. Rheological behavior of coal-water mixtures.1. Effects of coal type, Loading and particle-size [J]. Fuel,1995,74 (8):1220-1225.
    [81]Roh N.S., Shin D.H., Kim D.C., Kim J.D. Rheological behavior of coal-water mixtures.2. Effects of surfactants and temperature [J]. Fuel,1995,74 (9): 1313-1318.
    [82]张荣曾。水煤浆制浆技术[M].北京:科学出版社,1996.
    [83]尉迟唯,李保庆,李文,陈皓侃。中国不同变质程度煤制备水煤浆的性质研究[J].燃料化学学报,2005,33(2):155-160.
    [84]Atesok G., Boylu F., Sirkeci A. A., Dincer II. The effect of coal properties on the viscosity of coal-water slurry [J]. Fuel,2002,81 (14):1855-1858.
    [85]孙成功,李保庆,尉迟唯。煤的孔结构对水煤浆性质的影响[J].燃料化学学报,1996,24(5):434-439.
    [86]Schafer HNS. Carboxyl groups and ion exchange in low-rank coals [J]. Fuel, 1970,49(2):197-213.
    [87]R. Yavuz, S. Kucukbayrak. An investigation of some factors affecting the dispersant adsorption of lignite [J]. Powder Technology,2001,119 (2-3): 89-94.
    [88]张延霖,邱学青,王卫星,杨东杰。木素磺酸盐在煤-水界面的吸附性能[J].华南理工大学学报(自然科学版),2005,33(6):50-54.
    [89]Qiu, X.; Zhou, M.; Lou,H.; et al. Evaluation of sulphonated acetone-formaldehyde (SAF) used in coal-water slurries prepared from different coals[J]. Fuel,2007,86:1439-1445.
    [90]邹立壮,朱书全。不同分散剂对煤成浆性的促进作用[J].煤炭学报,2003,28(6):636-640.
    [91]岑可法,姚强,曹欣玉,赵翔,黄镇宇,周俊虎,刘建忠,任建兴,方梦祥。水煤浆燃烧、流动、传热和气化的理论与应用技术[M].杭州:浙江大学出版社,1997.
    [92]朱书全,邹立壮,黄波,崔广文,王奇。水煤浆添加剂与煤之间的相互作用规律研究Ⅰ.复合煤颗粒间的相互作用对水煤浆流变性的影响[J].燃料化学学报,2003,31(6):519-524.
    [93]Turian R. M., Ma T. W., Hsu F. L. G., Sung D.J., Characterization, settling, and rheology of concentrated fine particulate mineral slurries [J]. Powder Technology,1997,93:219-233.
    [94]赵卫东。低阶煤水热改性制浆的微观机理及燃烧特性研究[D].浙江大学博士学位论文,2009.
    [95]丁明玉,田松柏。离子色谱原理与应用[M].北京,清华大学出版社,2001.
    [96]牟世芬,刘克纳,丁晓静。离子色谱方法及应用[M].北京,化学工业出版社,2010
    [97]李冰,杨红霞。电感耦合等离子体质谱原理和应用[M].北京,地质出版社,2005.
    [98]特伦斯·科斯格雷夫著;李牛,李姝译。胶体科学原理、方法与应用[M].北京,化学工业出版社,2009.
    [99]刘虎威。气相色谱方法及应用[M].北京,化学工业出版社,2000.
    [100]许国旺。现代实用气相色谱法[M].北京,化学工业出版社,2006.
    [101]王建琪,吴文辉,冯大明。电子能谱学引论[M].北京,国防工业出版社,1992.
    [102]近藤精一,石川达雄,安部郁夫著;李国希译。吸附科学[M].北京,化学工业出版社,2010.
    [103]朱银惠。煤化学[M].北京,化学工业出版社,2010.
    [104]孙林兵,魏贤勇,刘晓勤,宗志敏。Illinois No.6煤中有机氮和硫赋存心态的研究[J].中国矿业大学学报,2010,39(3):
    [105]Artok L., Schobert H.H., Nomura M., Erbatur O., Kidena K. Effects of water and molecular hydrogen on heat treatment of Turkish low-rank coals [J]. Energy & Fuels,1998,12(6):1200-1211.
    [106]杨卉艳。微生物法脱除煤中有机氮研究[D].太原理工大学硕士学位论文2005
    [107]吴国光,王祖衲。低阶煤的热重-傅立叶变换红外光谱的研究[J].中国矿业大学学报,1998,27(2):181-184.
    [108]埃利奥特。煤利用化学[M].北京,化学工业出版社,1991.
    [109]Maa P.S., Randall Lewis C., Hamrin C. E. Sulphur transformation and removal for Western Kentucky coals [J]. Fuel,1975,54(1):62-69.
    [110]van Heek K.H., Hodek W. Structure and pyrolysis behavior of different coals and relevant model substances [J]. Fuel,1994,73 (6):886-896.
    [Ill]Grzybek T., Pietrzak R., Wachowska H. X-ray photoelectron spectroscopy study of oxidized coals with different sulphur content [J]. Fuel Process Technology,2002,17:77-78.
    [112]段旭琴,王祖讷。煤显微组分表面含氧官能团的XPS分析[J].辽宁工程技 术大学学报(自然科学版),2010,29(3):498-501
    [113]陶建红。褐煤中含氧官能团的测定与研究[J].河南化工,2010,27(4):8-10.
    [114]赵鹏,史士东。用XPS研究胜利褐煤中有机氧的赋存形态[J].煤炭科学技术,2004,32(7):51-52.
    [115]S.R. Kelemen, M. Afeworki, M.L. Gorbaty. Characterization of organically bound oxygen forms in lignites, peats, and pyrolyzed peats by X-ray photoelectron spectroscopy (XPS) and solid-state 13C NMR methods [J]. Energy & Fuels 2002,16,1450-1462.
    [116]J.H. Zhou, Z.J. Sui, J. Zhu, P. Li, D. Chen, Y.C. Dai, W.K. Yuan. Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR [J]. Carbon 2007,45,785-796.
    [117]Z.R. Yue, W. Jiang, L.Wang, S.D. Gardner, Jr. Pittman. Surface characterization of electrochemically oxidized carbon fibers [J]. Carbon,1999, 37,1785-1796.
    [118]格雷格,K.S.W.辛。吸附、比表面与孔隙率[M].北京:化学工业出版社,1989.
    [119]Murray J.B., Evans D.G. The brow-coal/water system:part 3. Thermal dewatering of brown coal [J]. Fuel,1972,51 (4):290-296.
    [120]沈钟,赵振国,王果庭。胶体与表面化学[M].北京:化学工业出版社,2010.
    [121]Drew M. Surfaces, Interfaces, and Colloids:Principles and Applications [M]. Weinheim:Wiley-VCH,1999.
    [122]Crawford R.J., Mainwaring D.E. The influence of surfactant adsorption on the surface characterization of Australian coals [J]. Fuel,2011,80 (3):313-320.
    [123]王宝俊,李敏,赵清艳,秦育红,谢克昌。煤的表面电位与表面官能团间的关系[J].化工学报,2004,55(8):1329-1334
    [124]D. Das, S. Panigrahi., P. K. Misra, A.Nayak, Effect of organized assemblies. Part 4. Formulation of highly concentrated coal-water slurry using a natural surfactant [J]. Energy Fuels 2008,22:1865-1872.
    [125]F. F. Aplan, B. J. Arnold.part2:wet fine particle concentration. Section 3: Flotation. Coal Preparation. J.W. L. a. B.C. Hardinge. SME, Littleton, Colorado, 1991.
    [126]O. Ozdemir, E. Taran, M.A. Hampton, S.I. Karakashev, A.V. Nguyen. Surface chemistry aspects of coal flotation in bore water [J]. Int. J. of Miner. Process. 2009,92(3-4):177-183.
    [127]Turian R.M., Attal J.F. Sung D.J., Properties and rheology of coal-water mixtures using different coals [J]. Fuel,2002,81 (16):2019-2033.
    [128]Boylu F., Atesok G, Dincer H. The effect of carboxymethyl cellulose (CMC) on the stability of coal-water slurries [J]. Fuel,2005,84(23):315-319.
    [129]沈其君,SAS统计分析[M].南京:东南大学出版社,2001。
    [130]洪楠,侯军。SAS for windows统计分析系统教程[M].北京:电子工业出版社,2001.
    [131]胡良平。Windows SAS for 6.12&8实用统计分析教程[M].北京,军事医学科学出版社,2001.
    [132]Karr, C. Analytical Methods for Coal and Coal Products, Vol. I [M]. New York, Academic Press:1978.
    [133]Rong R.X. Advances in Coal Preparation Technology, Vol.2:Literature Review on Fine Coal and Tailings Dewatering [C]. University of Queensland, 1993. JKMRC report on AMIRA Project P239C.
    [134]Le Roux M.; Campbell Q.P. An investigation into an improved method of fine coal dewatering [J]. Journal of Minerals Engineering 2003,16:999-1003.
    [135]Muthusamy K., Wu Z.H., Arun S.M. Low-rank coal drying technologies-Current status and new developments [J]. Dry Technology,2009,27:403-415
    [136]Norinaga K., Hayashi J.I., Kudo N., Chiba T. Evaluation of effect of predrying on the porous structure of water-swollen coal based on the freezing property of pore condensed water [J]. Engry & Fuels,1999,13(5):1058-1066.
    [137]Norinaga K., Kumagai H., Hayashi J.I., Chiba T. Classification of water sorbed in coal on the basis of congelation characteristics [J]. Engry & Fuels,1998,12 (3):574-579.
    [138]Hayashi J., Norinaga K., Kudo N., Chiba T. Estimation of size and shape of pores in moist coal utilizing sorbed water as a molecular probe [J]. Engry & Fuels,2001,15 (4):903-909.
    [139]Mraw S.C., O Rourke D.F. Water in coal pores:The enthalpy of fusion reflects pore size distribution [J]. Journal of Colloid and Interface Science,1982,89 (1):268-271.
    [140]Ishikiriyama K., Todoki M., Motomura K. Pore size distribution (PSD) measurements of silica gels by means of differential scanning calorimetry:I. Optimization for determination of PSD [J]. Journal of Colloid and Interface Science,1995,171 (1):92-102.
    [141]Allardice D.J., Clemow L.M., Favas G., Jackson W.R., Marshall M., Sakurovs R. The characterization of different forms of water in low rank coals and some hydrothermally dried products [J]. Fuel,2003,82 (6):661-667.
    [142]吴海勇,曾加庆。微波加热在煤除湿中的应用研究[J].工业应用,2009,38(2): 12-16.
    [143]Ferrasse J.H., Lecomte D. Simultaneous heat-flow differential calorimetry and thermogravimetry for fast determination of soption isotherms and heat of sorption in environmental or food engineering [J]. Chemical Engineering Science,2004,59(6):1365-1376.
    [144]Allardice D.J., Evans D.G. The brown-coal/water system:part 1, the effect of temperature on the evolution of water from brown coal [J]. Fuel,1971,50 (2): 201-210.
    [145]Abhari R., Isaacs L.L. Drying kinetics of lignite, subbituminous coals, and high-volatile bituminous coals [J]. Energy & Fuels,1990,4(5):448-452.
    [146]Norinaga K., Kumagai H., Hayashi J.I., Chiba T. Evaluation of drying induced changes in the molecular mobility of coal by means of pulsed proton NMR [J]. Engry & Fuels,1998,12(5):1013-1019.
    [147]Vorres K.S., Wertz D.L., Malhotra V., Dang Y., Joseph J.T., Fisher R. Drying of Beulah-Zap lignite [J]. Fuel,1992,71 (9):1047-1053.
    [148]曹崇文论文选编。农产品干燥机理、工艺与技术[M].北京:中国农业大学出版社,1998.
    [149]郭治,杜万斗,初茉,吴戈峰。褐煤干燥动力学模型研究[J].神华科技,2011,9(5):66-69.
    [150]范科飞,王景阳,廖传华。含湿多孔介质的干燥特性[J].干燥技术与设备,2006,4(2):77-80.
    [151]王宝和。干燥动力学研究综述[J]。干燥技术与设备,2009,7(1):51-56.
    [152]吴亚娟。城市生活垃圾典型组分水分分布特性及干燥过程试验研究[D].浙江大学硕士学位论文,2011.
    [153]Yang H., Sakai N., Watanabe M. Drying model with non-isotropic shrinkage deformation undergoing simultaneous heat and mass transfer [J]. Drying Technology,2001,19 (7):1441-1460.
    [154]Seyh D., Sarkar A. Alumped parameter model for effective moisture diffusivity in air drying of foods [J]. Food and Bioproducts Processing,2004,82(C3): 183-192.
    [155]Doymaz I. Air-drying characteristics of tomatoes [J]. Journal of Food Engineering,2007,78 (4):1291-1297.
    [156]Afzal T.M., Abe T. Diffusion in potato during far infi-ared radiation drying [J]. Journal of Food Engineering,1998,37 (4):353-365.
    [157]韩德刚,高盘良。化学动力学基础[M].北京:北京大学出版社,2001.
    [158]Eleen Frisch, Michael J. Frisch, Gary W. Trucks; Zork译。Gaussian 03中文用户参考手册。2004.
    [159]Hohenberg P., Kohn W. Ingomogeneous electron gas [J], Phys. Rev.,1964, 136:b864-b871.
    [160]Raghacachari K., Pople J.A., Replog E.S. Head-Gordon M. Fifth order moller-plesset perturbation theory:comparison of existion correlation methods and implementation of new methods correct to fifth-order [J]. J.Phys.Chem., 1990,94:5579.
    [161]Parr R.G., Yang W. Density functional theory of atoms and molecules [M]. Oxford University Press:Oxford,1989.
    [162]Pople J.A., Gill P.M.W., Johnson B.G. Kohn-sham density-functional theory within a finite basis set [J]. Chem. Phys. Lett.,1992,199:557-560.
    [163]周婧。NH2-与SCX(X=O,S)反应机理的量子化学理论研究[D].西北师范大学硕士学位论文,2011.
    [164]孙庆雷,李文,陈皓侃,李保庆。煤显微组分分子结构模型的量子化学研究[J].燃料化学学报,2004,32(3):282-286.
    [165]王宝俊。煤结构与反应性的量子化学研究[D].太原理工大学博士学位论文,2006.
    [166]聂百胜,何学秋,王恩元,张力。煤吸附水的微观机理[J].中国矿业大学学报,2004,33(4):379-383.
    [167]朱学栋,朱子彬,韩崇家,唐黎华。煤的热解研究Ⅲ.煤中官能团与热解生成物[J].华东理工大学学报,2000,25(1):14-17.
    [168]Laidler K.J. Just what is a transition stste [J]. J. Chem. Educ.,1988,65(6): 540.
    [169]Moore J. W., Pearson R. G. Kinetics and mechamism,3rd ed [M]. Wiley:NY, 1981.
    [170]Klumpp G. W. Reactivity in organic chemistry [M]. Wiley:NY,1982, p.227.
    [171]史密斯,马奇编;李艳梅译。March高等有机化学:反应、机理与结构[M]。北京:化学工业出版社,2010.
    [172]傅献彩,沈文霞,姚天扬。物理化学[M].北京:高等教育出版社,1990.
    [173]王宝俊,魏贤勇,谢克昌。用密度泛函方法研究N-甲基吡咯烷酮与二硫化碳的反应[J].化工学报,2004,55(4):569-574.
    [174]肖继军,张骥,杨栋,肖鹤鸣。环四甲撑四硝铵(HMX)结构和性质的DFT研究[J].化学物理学报,2002,15(1):41-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700