用户名: 密码: 验证码:
前钙钛矿、钙钛矿氧化物纳米结构的可控制备、微结构和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低维钙钛矿结构氧化物,尤其是一维钙钛矿氧化物,因其在铁电非挥发性存储器(FeRAM)、压电纳米发电机和压电纳米传感器等方面的潜在应用而备受关注。开展一维钙钛矿纳米材料的可控制备、微结构与性能的研究对于发现新现象、拓展新应用具有重要的理论意义和实际价值。
     本文首先简要综述了钙钛矿结构氧化物的结构特点与研究现状,并重点总结和评述了一维钙钛矿铁电氧化物纳米结构的制备及性能研究。在这一方面,实验研究明显滞后于相关的理论研究,其主要原因在于一维钙钛矿铁电氧化物单晶纳米结构的可控制备仍是一个挑战。针对这一问题,本文首次通过高分子辅助水热方法合成出尺寸可控前钙钛矿相PbTiO3(PT)单晶纳米纤维,并通过固态相变获得尺寸可控的钙钛矿相PT单晶纳米纤维;通过高分子辅助水热/溶剂热法合成出Fe掺杂钙钛矿相PT类单晶自组装超结构。通过多种分析测试方法对前钙钛矿、钙钛矿相PT单晶纳米纤维的铁电性及其尺寸效应、Fe掺杂PT自组装超结构的铁磁性等进行了深入的研究;对前钙钛矿相PT单晶纳米纤维的生长模型、固态相变模型展开了讨论。主要研究内容如下:
     (1)利用高分子辅助水热法,通过调节水热过程中反应物前躯体浓度Pb/Ti的摩尔比值(提高Pb的加入量)成功实现了前钙钛矿相PT单晶纳米纤维的尺寸可控制备。纳米纤维的直径从平均约90nm到15nm,且伴随着尺寸的减小纤维长径比从120减小到40。水热系统中较高的Pb浓度提高了晶体成核量,而前钙钛矿相的大量成核则降低了晶核生长的驱动力,从而限制了晶体的生长,引起尺寸的减小
     (2)紫外可见吸收谱(UV)和荧光光谱(PL)研究表明前钙钛矿相PT纳米纤维光学带隙约为3.10eV,而PL发光位置为绿光波段(-550nm)和近红外波段(~900nm),且随尺寸无明显变化。其可能的机制是光激发后的电子和空穴分别形成Ti4+和Pb2+相关的自俘获激子(STE)态复合发光,而两个波段发光都没有明显的尺寸效应说明一维柱状的晶体结构起到重要作用。动态接触式静电力显微镜(DC-EFM)研究表明前钙钛矿相PT单晶纳米纤维的铁电性随尺寸的减小而降低。
     (3)通过前钙钛矿相PT纳米纤维空气中退火处理成功制备了不同尺寸的钙钛矿相PT单晶纳米纤维,其直径范围为85nm至15nm,长径比约为105至37。XRD、差热分析(DTA)、二次谐波(SHG)及压电力显微镜(PFM)等研究表明钙钛矿相PT单晶纳米纤维的铁电性随直径的减小而降低,且平均直径为15nm的纤维中仍然存在铁电性,这一结论在直径为13nm的单根纤维中得到了证实。
     (4)研究揭示了前钙钛矿结构水热合成实验条件,如矿化剂种类、矿化剂浓度、水热温度、水热时间、添加剂等,对产物物相及形貌的影响规律。利用SEM、HRTEM等手段研究了前钙钛矿相PT单晶纳米纤维的生长过程并提出了可能的取向聚集生长机制:前钙钛矿相PT晶核在PVA中羟基(-OH)的吸附作用下生长为直径约4nm-6nm,长度约50nm-200nm的生长基元,这些基元再通过空间取向聚集的方式生长成为前钙钛矿相PT单晶纳米纤维,取向聚集模型的驱动力可能是晶体的表面能及静电力。
     (5)利用DTA、XRD、原位TEM等分析方法对前钙钛矿-钙钛矿结构的相变过程展开了深入研究,并提出表面及界面诱导的虚拟熔化-结晶-晶核取向聚集生长的相变模型。前钙钛矿相晶体在表面能及界面上缺陷的驱动下,产生大量虚拟熔化的无序非晶区域,这些无序结构的出现降低了钙钛矿结构形核的动力学势垒并生成钙钛矿相PT晶核,钙钛矿相晶粒通过取向聚集的方式生长为单晶纳米纤维。前钙钛矿-钙钛矿结构相变温度有着随纤维直径的减小而升高的趋势,这可能是由于尺寸的减小降低了虚拟熔化形成的驱动力。
     (6)以稀磁半导体的掺杂研究为指导,利用高分子辅助水热/溶剂热法成功制备了高度(001)取向的钙钛矿相PT类单晶自组装超结构及Fe掺杂钙钛矿相PT类单晶自组装超结构。利用XRD、SEM、TEM等手段对其进行了表征并研究了PT自组装超结构的生长机制。利用MPMS研究了铁掺杂钙钛矿PT纳米结构的室温铁磁性,并提出大量增加的晶界界面提高了产生铁磁性的F色心交换作用,从而提高了其室温铁磁性。
Low-dimensional perovskite oxides, in particular, one-dimensional perovskite oxides have received extensive attention due to their promising potential applications in non-volatile ferroelectric memory (FeRAM), piezoelectric nanogenerators and piezoelectric nanosensors. Therefore, researches on controllable synthesis, microstructure and properties of one-dimensional (ID) perovskite nanomaterials should be of great significance both theoretically and practically in discovering new phenomena and exploring novel applications.
     In this dissertation, the characteristics crystal structure and the current status of researches of the perovskite oxides were reviewed firstly. And then the present studies concerning the preparation and properties of1D perovskite ferroelectric oxide nanomaterials have been summarized and commented in detail. However, the controllable preparation of single crystal nanostructures of1D perovskite ferroelectric oxide remains a challenge. In this perspective, experimental exploration has lagged far behind theoretical ones. Focusing on this problem, we report, for the first time, a polymer-assisted hydrothermal synthesis of single-crystal pre-perovskite PbTiO3(PT) nanofibers with a controllable size, and based on which single-crystal perovskite PT nanofibers have been prepared via a solid phase transformation route. Single-crystal like Fe-doped perovskite PT superstructure have been successfully synthesized through a self-assembly mechanism by the similar polymer-assisted hydrothermal/solvothermal method. By employing a variety of characterization methods, comprehensive and in-depth investigations on the ferroelectric property and size effect of single-crystal pre-perovskite/perovskite ferroelectric PT nanofibers and the ferromagnetic property of single-crystal like superstructure of Fe-doped perovskite PT are carried out systematically. Consequently, constructive and insightful discussions were concentrated on a growth model of the single-crystal pre-perovskite PT nanofibers and its solid phase transformation. The main contents are listed as follows:
     (1). Size-controlled synthesis of single-crystal pre-perovskite PT nanofibers was achieved through a polymer-assisted hydrothermal method by adjusting the precursor concentration of Pb/Ti molar ratio in the reactants during the hydrothermal process (increasing the added amount of Pb). The diameter of the as-prepared PT nanofibers decreased from an average size of~90nm to~15nm, accompanying with a reduction of aspect ratio from120and40. It has been found that the decrease in the size of the nanofibers can be attributed to the relatively higher Pb concentration during the hydrothermal process which significantly limited the number of crystal nucleation of the pre-perovskite oxides and undermined the driving force for the growth of pre-perovskite nucleates, leading to the decrease of size thus of the nanofibers.
     (2). UV-visible absorption spectroscopy (UV) and fluorescence spectra (PL) studies have shown that the pre-perovskite PT nanofibers possess an optical band-gap of~3.10eV, and corresponding PL emission located at the green light band (-550nm) and near infrared band (~900mn), where significant change of the emission the diameter of the nanofibers decreased. A possible mechanism underlying this photo excitation phenomenon can be attributed to the recombination of Ti4+and Pb2+related self-trapping excitons (STE) that formed from the optical excitation generated electrons and holes. We suggested that the1D columnar crystal structure of the pre-perovskite plays a key role in the size independence of the two-band luminescence phenomenon. Dynamic contact type electrostatic force microscopy (DC-EFM) studies revealed that the ferroelectric properties of the single-crystal nanofibers of pre-perovskite PT decrease with the diameter.
     (3). Perovskite PT nanofibers with a diameter ranging from85nm to15nm and aspect ratio of about105-37were successfully prepared by annealing the corresponding pre-perovskite nanofibers in air. X-ray diffraction (XRD), differential thermal analysis (DTA), second harmonic generation (SHG) and piezoelectric force microscopy (PFM) were employed to investigate the ferroelectric property of the single-crystal nanofibers of perovskite PT. The results demonstrate the decrease of the ferroelectricity with perovskite PT nanofiber size and the existence of ferroelectricity in perovskite PT nanofiber with a diameter as low as15nm. This was further confirmed by the fact that ferroelectricity still remains in a single perovskite PT nanofiber with a diameter of~13nm.
     (4). The effect of experimental conditions in the hydrothermal process, such as the type of mineralizer, mineralizer concentration, reaction temperature, reaction time and additives have been studies comprehensively on the formation of the resulting products and their morphology evolution. SEM and HRTEM were employed to investigate the growth process of pre-perovskite PT single crystal nanofibers, on the basis of which a possible growth mechanism via an oriented aggregation process was proposed. It is found that pre-perovskite PT nuclei developed into the growing units with diameter of about4nm-6nm and length of about50nm-200nm by the adsorption of hydroxyl (-OH) in PVA firstly. And then the growing units grew into the single-crystal nanofibers of pre-perovskite PT by orientation attachment. The driving force for the orientation attachment growth model could be the surface energy and static electric force existed in the system.
     (5). In-depth research into the phase transformation process from pre-perovskite structure to perovskite one was conducted by using DTA, XRD and in-situ TEM. On the basis of these experiments, we propose a surface-and interface-induced virtual melting-crystallization-nuclei oriented attachment growth procedure to model this phase transformation process. Large-scale of disordered amorphous regions by virtual melting were formed in pre-perovskite, resulting from the surface energy and the interfacial defects, which reduces the apparent kinetic energy barrier and the formation of perovskite PT nuclei. And then the single-crystal perovskite PT nanofibers were formed by the oriented attachment growth of the perovskite nanocrystals. The phase transformation temperature from pre-perovskite structure to perovskite structure increases with the decrease of the diameter size of the pre-perovskite nanofibers, which could be due to the decrease of virtual melting driving force resulting from the size reduction of PT pre-perovskite nanofibers.
     (6). Under the guidance of rare magnetic semiconductor, self-assembled single-crystal like superstructure of perovskite PT and Fe-doped perovskite PT with a high (001) orientation were successfully prepared via a polymer-assisted hydrothermal/solvothermal method. The growth mechanism of the self-assembled superstructure was explored by using XRD、SEM、TEM. MPMS was employed to study ferromagnetism of Fe-doped perovskite PT nanostructures. A significant increase in the grain boundary interfaces could increase F-color centers generating ferromagnetic exchange interaction, thereby improving its ferromagnetism.
引文
[1]N. Taniguchi. On the Basic Concept of Nano-Technology, Proc. Intl. Conf. Prod. Eng. Tokyo, Part Ⅱ. Japan Society of Precision Engineering,1974.
    [2]朱静.纳米材料和纳米器件.清华大学出版社,2003.
    [3]M.E. Lines, A.M. Glass. Principles and applications of ferroelectrics and related materials, Clarendon press, Oxford,1977.
    [4]J.G. Bednorz, A.K. Miiller. Perovskite-type oxides—The new approach to high-Tc superconductivity, Rev. Mod. Phys.,1988,60:585-600.
    [5]Y. Tokura. Colossal magnetoresistive oxides, Gordon and Breach Science, New York,2000.
    [6]Y. Kim, H. Han, Y. Kim, W. Lee, M. Alexe, S. Baik, J.K. Kim. Ultrahigh density array of epitaxial ferroelectric nanoislands on conducting substrates. Nano Lett.,2010,10:2141-2146.
    [7]M. Alexe, D. Hesse. Self-assembled nanoscale ferroelectrics. J. Mater. Sci.,2006,41 (1): 1-11.
    [8]J. F. Scott. Ferroelectric memories. Springer-Verlag, Berlin Heidelberg,2000.
    [9]K. Unchino. Pieozelectric Actuators and Ultrasonic Motors. Kluwer Academic, Boston,1996.
    [10]钟维烈,铁电体物理学,科学出版社,北京,2000.
    [11]张福学,王丽坤.现代压电学(上、中、下).北京:科学出版社,2003.
    [12]B. Raveau, A. Maignan, C. Martin, M. Hervieu. Colossal magnetoresistance manganite perovskites:Relations between crystal chemistry and properties. Chem. Mater.,1998,10(10): 2641-2652.
    [13]L. Han, C.L. Chen. Magnetocaloric and colossal magnetoresistance effect in layered perovskite La1.4Sr1.6Mn2O7. J. Mater. Sci. Technol.,2010,26 (3):234-236.
    [14]L.S. Ewe, I. Hamadneh, H. Salama, N.A. Hamid, S.A. Halim, R. Abd-Shukor. Magnetotransport properties of La0.67Ca0.33MnO3 with different grain sizes. Appl. Phys. A-Mater. Sci. Processing,2009,95 (2):457-463.
    [15]R.F. Service. Nanogenerators tap waste energy to powder ultrasmall electronics. Science, 2010,328 (5976):304-305.
    [16]C.A. Chagas, F.S. Toniolo, R.N.S.H. Magalhaes, M. Schmal. Alumina-supported LaCoO3 perovskite for selective CO oxidation (SELOX). Int. J. Hydrogen Energ.,2012,37 (6): 5022-5031.
    [17]G.C.M. Rodriguez, K. Kelm, B. Saruhan. H-2-selective catalytic reduction of NOx activity and microstructural analysis of new BaTi0.95Pd0.05O3 catalyst. Appl. Catal. A-Gen.,2010,387 (1-2):173-184.
    [18]K.J. Wang, P. Zhong. A kinetic study of CO oxidation over the perovskite-like oxide LaSrNiO4. J. Serb. Chem. Soc.,2010,75 (2):249-258.
    [19]J.A. Enterkin, W. Setthapun, J.W. Elam, S.T. Christensen, F.A. Rabuffetti, L.D. Marks, P.C. Stair, K.R. Poeppelmeier, C.L. Marshall. Propane oxidation over Pt/SrTiO3 nanocuboids. ACS Catal.,2031,1:629-635.
    [20]U. Sulaeman, S. Yin, T. Sato. Solvothermal synthesis and photocatalytic properties of chromium-doped SrTiO3 nanoparticles. Appl. Catal. B-Environ.,2011,105 (1-2):206-210.
    [21]S.S. Arbuj, R.R. Hawaldar, S. Varma, S.B. Waghmode, B.N. Wani. Synthesis and characterization of ATiO3(A=Ca, Sr and Ba) perovskite and their photocatalytic activity under solar irradiation. Sci. Adv. Mater.,2012,4 (5-6):568-572.
    [22]S. Xu, B.J. Hansen, Z.L. Wang. Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nature Commun.,2010,1:1-5.
    [23]X. Chen, S.Y. Xu, N. Yao, Y. Shi.1.6V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett.,2010,10:2133-2137.
    [24]H.P. Wang, Q.L. Zhang, H. Yang. Synthesis and microwave dielectric properties of CaSiO3 nanopowder by the sol-gel process.2008,34 (6):1405-1408.
    [25]H. Ullmann, N. Trofimenko. Composition, Structure and transport properties of perovskite-type oxides. Solid State Ionics,1999,119:1-8.
    [26]D. B. Yu, W. W. W. Yam. Hydrothermal-Induced Assembly of Colloidal Silver Spheres into Various Nanoparticles on the Basis of HTAB-Modified Silver Mirror Reaction. Jounal of Physical Chemistry B,2005,109 (12):5497-5503
    [27]T. Ohno, T. Mitsui, M. Matsumura. Photocatalytic Activity of S-Doped TiO2 Photocatalyst Under Visible Light. Chem. Lett.,2003,32 (4):364-365
    [28]M. N. Chong, B. Jin, C. W. K. Chow, C. Saint. Recent Developments in Photocatalytic Water Treatment Technology:a review. Water Research,2010,44 (10):2997-3027
    [29]B. Shelimov, N. Tolkachev, G. Baeva, A. Stakheev, V. Kazansky. Photocatalytic Purification of Indoor Air from Nitrogen Oxide Contaminants on Modified TiO2-based Catalysts. Catalysis Today,2011,176 (1):3-6
    [30]H. Irie, Y. Maruyama, K. Hashimoto. Ag+ and Pb-doped SrTiO3 photocatalysts. a correlation between band structure and photocatalytic activity. J. Phys. Chem. C,2007,111 (4): 1847-1852.
    [31]J.M. Macak, C. Zollfrank, B.J. Rodriguez, H. Tsuchiya, M. Alexe, P. Greil, P. Schmuki. Ordered ferroelectric lead titanate nanocellular structure by conversion of anodic TiO? nanotubes. Adv. Mater.,2009.21:1-5.
    [32]N. Nuraje, K. Su, A. Haboosheh, J. Samson. E.P. Manning. N. Yang, H. Matsui. Room temperature synthesis of ferroelectric barium titanate nanoparticles using peptide nanorings as templates. Adv. Mater.,2006,18:807-811.
    [33]X.H. Zhu, Z.H. Zhang, J.M. Zhu, S. Ye, S.H. Zhou, Z.G. Liu. Single-crystalline PbTiO3 nanowires synthesized by microwave-hydrothermal process and their structure characterization by electron microscopy. Ferroelectrics,2010.402:10-15.
    [34]Z.L. Wang. Z.C. Kang. Functional and smart materials:structural evolution and structure analysis. Academic press:Peking, China,2002.
    [35]V. M. Goldschmidt,S.N.V.Oslo. I.Mat.-Nat.KI..1926
    [36]王中林,康振川.功能材料结构演化与结构分析,北京:科学出版社,2002.
    [37]L.G. Tejuca, J.L.G. Fierro, J.M.D. Tascon. Structure and reactivity of perovskite-type oxides. Advan. Catal.,1989,36:237-328.
    [38]李大光,章弘毅,张鹤丰,郭清泉,曹明澈.钙钛矿型复合氧化物的研究与应用进展.材料导报.2006,20:296-299.
    [39]F. S. Galasso, Perovskite and high Tc superconductors, New York:Gordon and Breach Science Publishers,1990,18-48
    [40]R.J.H. Voorhoeve. Advanced materials in catalysis, Academic Press,1977,129.
    [41]J. Kirchnerove, D.B. Hibbert. Structures and properties of La1-xSrxCoO3-y prepared by freeze drying, J. Mater. Sci.,1993,28:5800-5808.
    [42]J. M. D. Coey, C. B. Fitzgerald, M. Venkatesan. Ferromagnetism in Fe-doped SnO2 thin films. Appl. Phys. Lett.,2004,84 (8):1332-1334.
    [43]G. Fiquet, A. Dewaele, D. Andrault, M. Kunz, T. Le Bihan. Thermoelastic properties and crystal structure of MgSiO3 perovskite at lower mantle pressure and temperature conditions, Geophys. Res. Lett.,2000,27 (1):21-24.
    [44]B. Magyari-Kope, L. Vitos, G. Grimvall, B. Jahansson, J. Kollar. Low-temperature crystal structure of CaSiO3 perovskite:An ab initio total energy study. Phys. Rev. B,2002,65 (193107):1-4.
    [45]X. Liu, R.C. Liebermann. X-ray powder diffraction study of CaTiO3 perovskite at high temperatures. Phys. Chem. Minerals,1993,20 (3):171-175.
    [46]许煜寰.铁电与压电材料.北京:科学出版社,1978.
    [47]T. Kimura, T. Goto, H. Ishizaka, T. Arima, Y. Tokura. Magnetic control of ferroelectric polarization, Nature,2003,426 (6):55-58.
    [48]Y.F. Duan, H.L. Shi, L.X. Qin. Studies of tetragonal PbTiO3 subjected to uniaxial stress along the c-axis. J. Phys.:Condens. Matter.,2008,20 (175210):1-5.
    [49]K.H.H. Xu, L. Zhang, Generalized low-temperature synthesis of nanocrystalline rare-earth orthoferrites LnFeO3 (Ln=La, Pr, Nd, Sm, Eu, Gd). Cryst. Growth Des.,2008,8 (7): 2061-2065.
    [50]S.O.A.R. Oganov. Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in earth's D layer. Nature,2004,430,445-448.
    [51]M. Murakmai, T. Hirose, K. Kawamura, N. Sata, Y. Ohishi. A New Paradigm for Earth's Core-Mantle Boundary. Science,2004,304,855-858.
    [52]Z.H. Ren, G. Xu, Y. Liu, X. Wei, Y.H. Zhu, X.B. Zhang, G.L. Lv, Y.W. Wang, Y.W. Zeng, P.Y. Du, W.J. Weng, G. Shen, J.Z. Jiang, G.R. Han. PbTiO3 nanofibers with edge-shared TiO6 octahedra. J. Am. Chem. Soc.,2010,132 (16):5571-5573.
    [53]Z. Xiao, Z.H. Ren, Z.Y. Liu, X. Wei, G. Xu, Y. Liu, X. Li, G. Shen, G.R. Han. Single-crystal nanofibers of Zr-dopped new structured PbTiO3:hydrothermal synthesis, characterization and phase transformation. J. Mater. Chem.,2011,21 (11):3562-3564.
    [54]L.H. Ni, Y. Liu, Z.H. Ren, X. Li, G. Xu, C.L. Song, G.R. Han. Theoretical and experimental study of Raman spectra of pre-perovskite PbTiO3. J. Appl. Phys.,2011,110 (063506):1-5.
    [55]R. T. Service. Nanogenerators tap waste energy to power ultrasmall electronics. Science, 2010,328:304-305.
    [56]W. Lee, H.Han, A. Lotnyk, M. A. Schubert, S. Senz, M. Alexe, D. Hesse, S. Baik, U. Gosele. Individually addressable epitaxial ferroelectric nanocapacitor arrays with near Tb inch-2 density. Nat. Mater.,2008,3:402-407.
    [57]C. H. Aln, K. M. Rabe. J. M. Tricone. Ferroelectricity at the nanoscale:local polarization in oxide thin films and heterostructures. Science,2004,303:488-491.
    [58]J.F. Scott, F.D. Morrison, M. Miyake, P. Zubko. Nano-ferroelectric materials and devices. Ferroelectrics,2006,336:237-245..
    [59]H.G. Graighead. Nanoelectromechanical systems. Science.2000,290:1532-1535.
    [60]F. Li, S.J. Zhang, Z. Xu, X.Y. Wei, T.R. Shrout. Critical property in relaxor-PbTiO3 single crystal-Shear piezoelectric response. Adv.Funct. Mater.,2011,21:2118-2128.
    [61]M.L. Calzada, M. Torres, J. Ricote, L. Pardo. Ferroelectric PbTiO3 nanostructures onto Si-based substrates with size and shape control. J. Nanopart Res..2009,11:1227-1233.
    [62]R.E. Cohen. Origin of ferroelectricity in perovskite oxides. Nature,1992,358:136-138.
    [63]任召辉.钙钛矿和前钙钛矿氧化物纳米材料的制备、结构与性能研究[博士学位论文].杭州:浙江大学材料系,2008.
    [64]魏晓.钙钛矿氧化物纳米结构的控制生长和性能研究[博士学位论文].杭州:浙江大学材料系,2008.
    [65]N. Ikeda, H. Ohsumi, K. Ohwada, K. Ishii, T. Inami. K. Kakurai, Y. Murakami, K. Yoshii, S. Mori, Y. Horibe, H. Kito. Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe2O4. Nature,2005,436 (25):1136-1138.
    [66]B.V. Aken, T.T.M. Palstra, A. Filippetti, N.A. Spaldin. The origin of ferroelectricity in magnetoelectric YMnO3. Nat. Mater.,2004,3:164-170.
    [67]D.V. Efremov, J.V.D. Brink, D.I. Khomskii. Bond-versus site-centred ordering and possible ferroelectricity in manganites. Nat. Mater.,2004,3:853-856.
    [68]A. Srinivas, Dong-Wan Kim, Kug Sun Hong, S. V. Suryanarayana. Obsrebation of ferroelectromagnetic nature in rare-earth-substituted bismuth iron titanate, Appl. Phys. Lett, 2003,83 (11):2217-2219.
    [69]Y. F. Popov, A. M. Kadomlseva, G. P. Vorobev. Magnetoelectric (Bi, Ln)FeO3 compounds: Crystal growth, structure and properties. Feroelectrics,1994,162:135-140.
    [70]C. Michel, J.M. Moreau, G.D.Achenbach. The atomic structure of BiFeO3. Solid State Commun.,1969,7:701-704.
    [71]J.M. Moreau, C. Michel, R. Gerson. Ferroelectric BiFeO3 X-ray and neutron diffraction study. J. Phys. Chem. Solids,1971,32:1315-1320.
    [72]J.R. Teague, R. Gerson, W.J. James. Dielectric hysteresis insingle crystal BiFeO3 Solid State Commun.1970.8:1073-1074.
    [73]K.Y. Yun, M. Noda, M. Okuyama. Prominent ferroelectricity of BiFeO,thin films prepared by pulsed-laer deposition. Appl.Phys. Lett,2003,83:3981-3983.
    [74]V.R. Palkar, J. John, R. Pinto. Observation of saturated polarization and dielectric anomaly in magnetoelectric BiFeO3 thin films. Appl. Phys. Lett,2002,80:1628-1630.
    [75]S. Y. Yang, F. Zavaliche, L. M. Aradbili. Metalorganic chemical Vapor deposition of lead-free ferroelectric BiFeO3 films for memory applications. Appl. Phys. Lett,2005,87: 102903-102906.
    [76]刘小辉,屈绍波,陈江丽,徐卓.磁电材料的研究进展及发展趋势.稀有金属材料与工程,2006,35:13-16
    [77]W. Eerenstein, N. D. Mathur, J. F. Scott. Multiferroic and magnetoelectric materials. Nature, 2005,442:759-765.
    [78]N.A. Hill. Why are there so few magnetic ferroelectrics?. J. Phys.Chem.B,2000,104: 6694-6709.
    [79]M. Fiebig, T. Lotiermoser. Observation of coupled magnetic and electric domains. Nature, 2002,419:818-820.
    [80]迟振华,靳常青.单相磁电多铁性体研究进展.物理学进展,2007,27(2):225-238.
    [81]M.L. Keith, R.Roy. Structural relations among double oxides of trivalent elements. Am. Miner.,1954,39:1-6.
    [82]苗兰冬,宋功保,王美丽,李健.浅谈多铁性材料.中国陶瓷工业,2006,13(6):39-42.
    [83]J.Y. Zhai, N. Cai, L. Liu. Dielectric behavior and magnetoelectric properties of lead zirconate titanate/Co-ferrite particulate composites. Mater. Sci. Eng.,2003,99:329-331.
    [84]V. J. Suchtelen. Product properties:A new application of composite materials. Philips. Res. Rapts.,1972,27:28-30.
    [85]V.D. Boomgaard, R.A.G Born. A sintered magnetoelectric composite materials BaTiO3-Ni(Co,Mn)Fe2O4, Mater Sci. J.,1978,13:1538-1548.
    [86]K. Mori, M. Wuttig. Magnetoelectric coupling in Terfenol-D/polyvinylidenedifluoride composites. Appl. Phys. Lett.,2002,81 (1):100-101.
    [87]X.M. Chen, Y.H. Tang, I. W. Chen. Dielectric and magnetoelectric characterization of CoFe2O4/Sr0.5Ba0.5Nb2O6 Composites. J. Appl. Phys.,2004,96 (11),6520-6522
    [88]Nan C.W, L. Liu, N. Cai. A three-phase magnetoelectric composite of piezoelectric ceramics, rare-earth iron alloys, and polymer. Appl. Phys. Lett.,2002,81 (20):3831-3832.
    [89]J. Ryu, K, Uchino, H.E. Kim. Magnetoelectric properties in piezoelectric and magnetostrictive laminate composites. Jpn. J. Appl. Phys.,2001,40:4948-4951.
    [90]C.W. Nan, G. Liu, Y. H. Lin, Influence of interfacial bonding on giant magnetoelectric response of multiferroic laminated composites of Tb1-xDyxFe2 and PbZrxTi1-xO3. Appl. Phys. Lett.,2003,83 (21):4366-4368.
    [91]G. Srinivasan, E.T. Rasmussen, J. Gallegos. Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides. Phys. Rev. B.,2001,64 (214408):1-6.
    [92]G. Srinivasan, E.T. Rasmussen, B.J. Levin. Magnetoelectric effects in bilayers and multilayers of magnetostrictive and piezoelectric perovskite oxides. Phys. Rev. B,2002,65 (15):134402/1-134402/7
    [93]N. Lampis, C. Franchini, G. Satta. Electronic structure of PbFe1-xTaxO3:crystallographic ordering and magnetic properties. Phys. Rev. B.,2004,69 (6):064412-064415
    [94]M.M. Kumar, S. Srinath, G..S. Kumar. Spontaneous magnetic moment in BiFeO3-0.3BaTiO3 solid solutions at low temperatures. J. Magn. Mater.,1998,188:203-212.
    [95]J.S. Kim, C. Cheon, Y.N. Choi. Ferroelectric and ferromagnetic properties of BiFeO3-PrFeO3-PbTiO3 solid solutions. J. Appl. Phys,2003,93 (11):9263-9265.
    [96]M. Li, M. Ning, Y. Ma, Q. Wu, and C. K. Ong. Room temperature ferroelectric, ferromagnetic and magnetoelectric properties of Ba-doped BiFeO3 thin films. J. Phys. D., 2007,40:1603-1607.
    [97]R. Schmidt, W. Eerenstein, T. Winiecki, F. D. Morrison, and P. A. Midgley. Impedance spectroscopy of epitaxial multiferroic thin films. Phys. Rev. B.,2007,75 (245111):1-8.
    [98]W. Prellier, A. Fouchet, B. Mercey. Oxide-diluted magnetic semiconductors:a review of the experimental status. J. Phys.:Condens. Matter.,2003,15:R1583-R1601.
    [99]L.Y. Zhu, Y. Xie, X.W. Zheng. Growth of compound BiⅢ-VIA-ⅦA crystals with special morphologies under mild conditions. Inorg.Chem.,2002,41:4560-4566.
    [100]Y.F. Liu, J.H. Zhan, J.H.Zeng. Ethanolthermal synthesis to γ-Cul nanocrystals at low temperature. J.Mater.Sci.Lett.,2001,20:1865-1867.
    [101]C.T. Dameron, D.R. Wings. Characterization of peptide-coated cadmium-sulfide crystallites. Inorg.Chem.,1990,29:1343-1348.
    [102]M. Kowshik. W. Vogel, J. Urban. Microbial synthesis of semiconductor PbS nanocrystallites. Adv. Mater.,2002,14:815-818.
    [103]宋红章,李永祥,殷庆瑞.铁电体中相变临界尺寸的研究现状.无机材料学报,2007,22(4):583-589.
    [104]H. Fujisawa, M. Okaniwa, H. Nonomura, M. Shimizu, H. Niu. Ferroelectricity of the 1.7nm-high and 38-wide self-assembled PbTiO3 island. J. European. Ceram. Soc.,2004,24 (6):1641-1645.
    [105]J.Y. Son, Y.H. Shin, S. Ryu, H. Kim, H.M. Jang. Dip-Pen lithography of ferroelectric PbTiO3 nanodots, J. Am. Chem. Soc.,2009,131 (41):14676-14678.
    [106]C. Jaccard, W. Kanzig, M. Peter. Das Verhalten Von Kolloidalen Seignetteelektrika.1. Kaliumphosphat KH2PO4 Helv. Phys. Acta.,1953,26:521.
    [107]M. Anliker, H. R. Brugger, W. Kanzig., Das Verhalten Von Kolloidalen eignetteelektrika.3. Bariumtitanat BaTiO3. Helv. Phys. Acta.,1954,27:99-124.
    [108]K. Uchino, E. Sadanaga, T. Hirose. Dependence of the crystal-structure on paticle-size in Barium-titanate. J. Am. Ceram. Soc.,1989,72 (8):1555-1558.
    [109]K. Ishikawa, K. Yoshikawa, N. Okada. Size effect on the ferroelectric transition in PbTiO3 ultrafine particles. Phys. Rev. B,1988,37 (10):5852-5855.
    [110]Y.G. Wang, W.L. Zhong. P.L. Zhang. Size driven phase-transition in ferroelectric particles. Solid State Comm.,1994,90 (5):329-332.
    [111]Y.G. Wang, W.L. Zhong, P.L. Zhang. Size effects on the curie-temperature of ferroelectric particles. Solid State Comm.,1994,92 (6):519-523.
    [112]W.L. Zhong, Y.G. Wang, P.L. Zhang, B.D. Qu. Phenomenological study of the size effect on phase-transition in ferroelectric particles. Phys. Rev. B,1994,50 (2):698-703.
    [113]W.L. Zhong, Y.X. Wang, P.L. Zhang. Size drive ferroelectric-paraelectric phase transition from the surface energy viewpoint. Chin. Phys. Lett.,2003,20 (7):1134-1136.
    [114]T. Ohno, T. Mori, H. Suzuki, F.S. Fu, W. Wunderlich, M. Takahashi, K. Ishikawa. Size effect for lead zirconium titanate nanopowders with Pb(Zr0.3Ti0.7)O3. Jpn. J. Appl. Phys., 2002,41 (11B):6985-6988.
    [115]A. Roelofs, T. Schneller, K. Szot, R. Waser. Piezoresponse force microscopy of lead titanate nanograins possibly reaching the limit of ferroelectricity. Appl. Phys. Lett.,2002, 81:5231-5233.
    [116]A. Roelofs, T. Schneller, K. Szot, R. Waser. Towards the limit of ferroelectric nanosized grains. Nanotechnology,2003,14:250-253.
    [117]E.K. Akdogan, C.J. Rawn, W.D. Porter, E.A. Payzant, A. Safari. Size effects in PbTiO3 nanocrystals:effect of particle size on spontaneous polarization and strains. J. Appl. Phys., 2005,97(084305):1-8.
    [118]M. Tanaka, Y. Makino. Finite size effects in submicron barium titanate particles. Ferroelectr. Lett. Sect.,1998,24 (1-2):13-23.
    [119]S. Chattopadhyay, P. Ayyub, V.R. Palkar, M. Multani. Size-induced diffuse phase transition in the nanocrystalline ferroelectric PbTiO3. Phys. Rev. B,1995,52: 13177-13183.
    [120]W.L. Zhong, B. Jiang, P.L. Zhang, J.M. Ma, H.M. Cheng, Z.H. Yang, L.X. Li. Phase-transition in PbTiO3 ultrafine particles of different sizes. J. Phys.:Condens. Matter, 1993,5 (16):2619-2624.
    [121]T. Yu, Z.X. Shen, W.S. Toh, J.M. Xue, J. Wang. Size effect on the ferroelectric phase transition in SrBi2Ta209 nanoparticles. J. Appl. Phys.,2003,94 (1):618-620.
    [122]R.A. Mckee, F.J. Walker, M.F. Chisholm. Physical structure and inversion charge at a semiconductor interface with a crystalline oxide. Science,2001,293 (20):468-471.
    [123]S.M. Yang, J.G. Yool, T.W. Noh. Nanoscale studies of defect-mediated polarization switching dynamics in ferroelectric thin film capacitors. Curr. Appl. Phys.,2011,11: 1111-1125.
    [124]P. Ghosez, K.M. Rabe. Microscope mode of ferroelectricity in stress-free PbTiO3 ultrathin films. Appl. Phys. Lett.,2000,76(19):2767-2769.
    [125]D.D. Fong, G.B. Stephenson, S.K. Streiffer. Ferroelectricity in ultrathin perovskite films. Science,2004,304:1650-1653.
    [126]J. Junquera, P. Ghosez. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature,2003,422 (6931):506-509.
    [127]Y. Drezner, S. Berger. Nanoferroelectric domains in ultrathin BaTiO3 films. J. Appl. Phys., 2003,94 (10):6774-6778.
    [128]Y. Drezner, S. Berger. Thermodynamic stability of BaTiO3 nano-domains. Mater. Lett., 2005,59(12):1598-1602.
    [129]T. Tybell, C.H. Ahn, J.M. Triscone. Ferroelectricity in thin perovskite film. Appl. Phys. Lett.,1999,75 (6):856-858.
    [130]A. G. Zembilgotov, N. A. Pertsev, H. Kohlstedt, R. Waser. Ultrathin epitaxial ferroelectric films grown on compressive substrates:Competition between the surface and strain effects. J.Appl. Phys.,2002,91:2247-2254.
    [131]R. Castro-Rodriguez, M. Quadrelli, E. Vasco, F. Calderon, F. Leccabue, B.E. Watts, Effects of particle size on the phase transition in Pb(Zr,Ti)O3 grown by the sol-gel technique. Mater. Lett.,1998,34 (3-6):326-331.
    [132]I. I. Naumov, L. Bellaiche, H. X. Fu, Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 2004,432:737-740.
    [133]S.Iijima. Helical microtubules of graphitic carbon. Nature,1991,354:56-58.
    [134]M. Alexe, D. Hesse, V. Schmidt, S. Senz, H.J. Fan, M. Zacharias, U. Gosele. Ferroelectric nanotubes fabricated using nanowires as positive templates. Appl. Phys. Lett.,2006,89: 171907-172909.
    [135]B.Im, H. Jun, K.H. Lee, S.H. Lee, Ⅱ K. Yang, Y.H. Jeong, J.S. Lee. Fabrication of a vertically aligned ferroelectric perovskite nanowire array on conducting substrate. Chem. Mater.,2012,22 (16):4806-4813.
    [136]Y.R. Lin, Y.T. Liu, H.A. Sodano. Hydrothermal synthesis of vertically aligned lead zirconate titanate nanowire arrays. Appl. Phys. Lett.,2009,95 (112901):1-3.
    [137]D. Chen, H.T. Zhang, R. Chen, X.Y. Deng, J.B. Li, G.Q. Zhang, L.M. Wang. Well-ordered array of ferroelectric single-crystalline BaTiO3 nanostructures. Phys. Status. Solidi A.,2012, 209 (4):714-717.
    [138]J. Kim, S.A. Yang, Y.C. Choi, J.K. Han, K.O. Jeong, Y.J. Yun, D.A. Kim, S.M. Yang, D. Yoon, H.S. Chang, T.W. Noh, S.D. Bu. Ferroelectricity in high ordered arrays of ultra-thin walled Pb(Zr,Ti)O3 nanotubes composed of nanometer-sized perovskite crystallines. Nano Lett.,2008,8 (7):1813-1818.
    [139]W.J. Dong, B.J. Li, Y. Li, X.B. Wang, L.N. An, C.R. Li, B.Y. Chen, G. Wang, Z. Shi. General approach to well-defined perovskite MTiO3(M=Ba, Sr,Ca, and Mg) nanostructures. J. Phys. Chem. C,2011,115:3918-3925.
    [140]U.A. Joshi, J.S. Lee. Template-free hydrothermal synthesis of single-crystalline barium titanate and strontium titanate nanowires. Small,2005,1 (12):1172-1176.
    [141]U.A. Joshi, S.H. Yoon, S.G. Baik, J.S. Lee. Surfactant-free hydrothermal synthesis of high tetragonal barium titanate nanowires:A structure investigation. J. Phys. Chem. B,2006, 110(25):12249-12256.
    [142]Y. Jing, S. Jin, Y.Z. Jia, J.D. Han, J.H. Sun. Preparation of SrTiO3 nanofibers by hydrothermal method. J. Mater. Sci.,2005,40 (23):6315-6317.
    [143]A. Magrez, E. Vasco, J.W. Seo, C. Dieker, N. Setter, L. Forro. Growth of single-crystalline KNbO3 nanostructures. J. Phys. Chem. B,2006,110 (1):58-61.
    [144]J. J. Urban, W.S. Yun, Q. Gu, H. Park. Synthesis of Single-Crystalline Perovskite Nanorods Composed of Barium Titanate and Strontium Titanate. J. Am. Chem. Soc.,2002,124: 1186-1187(2002).
    [145]W. S. Yun, J. J. Urban, Q. Gu, H. Park. Ferroelectric Properties of Individual Barium Titanate Nanowires Investigated by Scanned Probe Microscopy. Nano Lett.,2002,2: 447-450.
    [146]J.E. Spanier, A.M. Kolpak, J.J. Urban, I. Grinberg, O.Y. Liao, W.S. Yun, A.M. Rappe, H. Park. Ferroelectric phase transition in individual single-crystalline BaTiO3 nanowires. Nano Lett.,2006,6 (4):735-739.
    [147]G. Geneste, E. Bousquet, J. Junquera, P. Ghosez. Finite-size effect in BaTiO3 nanowires. Appl. Phys. Lett.,2006,88 (112906):1-3.
    [148]Z. Wang, J. Hu, M. F. Yu. One-dimensional ferroelectric monodomain formation in single crystalline BaTiO3 nanowire. Appl. Phys. Lett.,2006,89 (263119):1-3.
    [149]Z. Wang, J. Hu, M. F. Yu. Axial polarization switching in ferroelectric BaTiO3 nanowire. Nanotechnology,2007,18 (235203):1-4.
    [150]H. X. Fu, L. Bellaiche. Ferroelectricity in Barium Titanate Quantum Dots and Wires. Phys. Rev. Lett.,2003,91 (257601):1-7.
    [151]H. Nonomure, M. Nagata, H. Fujisawa, M. Shimizu, H. Niu, K. Honda. Structure control of self-assembled PbTiO3 nanoislands fabricated by metalorganic chemical vapor deposition. Appl. Phys. Lett.,2005,86 (163106):1-3.
    [152]J.F. Scott. Applications of modern ferroelectrics. Science,2007,315 (5814):954-959.
    [153]K. Nishida, T. Yamamoto, M. Osada, O. Sakata, S. Kimura, K. Saito, M. Nishide, T. Katoda, S. Yokoyama, H. Funakubo. Orientation controlled deposition of Pb(Zr,Ti)O3 films using a micron-size patterned SrRuO3 buffer layer. J. Mater. Sci.,2009,44 (19): 5339-5344.
    [154]H.P. Zhou, P.F. Wang, Z.C. Qiu, G.Q. Zhu, P. Liu. Flower-like Pb(Zro.52Tio.4g)O3 nanoparticles on the CoFe2O4 seeds. J. Cryst. Growth,2008,310 (2):508-512.
    [155]李宁,刘晓峰,孔庆平,张文彦.浅谈模板法制备纳米材料.中国高新技术企业,2010,3:178-179.
    [156]S.J. Limmer, S. Seraji, Y. Wu, T.P. Chou, C. Nguyen, G.Z. Cao. Template-based growth of various oxide nanorods by sol-gel electrophoresis. Adv. Funct. Mater.,2002,12:59-64.
    [157]B.A. Hernandez, K.S. Chang, E.R. Fisher, P.K. Dorhout, Sol-gel template synthesis and characterization of BaTiO3 and PbTiO3 nanotubes. Chem. Mater.,2002,14 (2):480-482.
    [158]S.J. Limmer, S. Seraji, M.J. Forbess, Y. Wu, T.P. Chou, C. Nguyen, G.Z. Cao. Electrophoretic growth of lead zirconate titanate nanorod. Adv. Mater.,2001,13 (16): 1269-1272.
    [159]Y. Liu, I. Szafraniak, N.D. Zakharov, V. Nagarajan, M. Steinhart, R.B. Wehrspohn. J.H. Wendorff, R. Ramesh, M. Alexe. Nanoshell tubes of ferroelectric lead zirconate titanate and barium titanate. Appl. Phys. Lett.,2003,83 (3):440-442.
    [160]X.Y. Zhang, X. Zhao, C.W. Lai. Synthesis and piezoresponse of highly ordered PbZr0.53Ti0.47O3 nanowires array. Appl. Phys. Lett.,2004,85:4190-4192.
    [161]M. Liu, X. Li, H. Imrane,Y.J. Chen, T. Goodrich, Z.H. Cai, K.S. Ziemer, J.Y. Huang, N.X. Sun. Synthesis of ordered array of multiferroic NiFe2O4-PbZr0.52Ti0.48O3 core-shell nanowires. Appl. Phys. Lett.,2007,90 (15):152501-152503.
    [162]Z.L. Qian, H.S. Gu, Y.M. Hu, D. Zhou, Z. Wang, H.T. Xia. Fabrication and characterization of K0.5Nao 5NbO3 nanotube array by sol-gel AAO template method. J. Inorg. Mater.,2010,25 (7):687-690.
    [163]J. Wang. M.Y. Li, X.L. Liu, L. Pei, J. Liu, B.F. Yu, X.Z. Zhao. Synthesis and multiferroic properties of BiFeO3 nanotubes. Chinses Phys. Lett.,2009,26 (11):117301.
    [164]Q.A. Wu, M. Sadakane, H. Ogihara, W. Ueda. Immobilization of nanofibrous A-or B-site substituted LaMnO3 perovskite-type oxides on macroscopic fiber with carbon nanofibers templates. Mater. Res. Bull.,2010,45 (9):1330-1333.
    [165]W.J. Wu, Y.X. Li. Topochemical synthesis of plate-like Na0.5Bi0.5TiO3 temolates from Bi4Ti30,2. Mater. Lett.,2010,64 (10):1157-1159.
    [166]J.Q. Qi, L. Sun, P. Du, L.T. Li. Slurry synthesis of bismuth sodium titanate with a transient aurivillius-type structure. J. Am. Ceram. Soc,2010,93 (4):1044-1048.
    [167]S.F. Poterala, Y.F. Chang, T. Clark, R.J. Meyer, Jr., G.L. Messing. Mechanistic interpretation of the aurivillius to perovskite topochemical microcrystal conversion process. Chem. Mater.,2010,22 (6):2061-2068.
    [168]S.F. Poterala, R.J. Meyer, G.L. Messing. Synthesis of high aspect ratio PbBi4Ti4O15 and topochemical conversion to PbTiO3-based microplatelets. J. Am. Ceram. Soc.,2011.94 (8): 2323-2329.
    [169]G. Xu, Z.H. Ren, P.Y. Du, W.J. Weng, G. Shen. G.R. Han. Polymer-assisted hydrothermal synthesis of single-crystalline tetragonal perovskite PbZr0.52Ti0.48O3 nanowires. Adv. Mater., 2005,17 (7):907-910.
    [170]G.F. Teixeira. G. Gasparotto, E.C. Paris, M.A. Zaghete, E. Longo, J.A. Varela. Photoluminescence properties of PZT 52/48 synthesized by microwave hydrothermal method using PVA with template. J. Lumin.,2012,132:46-50.
    [171]Y.X. Liu, H.X. Dai, Y.C. Du, J.G. Deng, L. Zhang, Z.X. Zhao. Lysine-aided PMMA-templating preparation and high performance of three-dimensionally ordered macroporous LnMnO3 with mesoporous walls for the catalytic combustion of toluene. Appl. Catal. B.,2012,119-120:20-31.
    [172]J. Aizenberg, A.J. Black, G.M. Whitesides. Control of crystal nucleation by patterned self-assembled monolayers. Nature,1999,398:495-498.
    [173]T.V. Anuradha. Template-assisted sol-gel synthesis of nanocrystalline BaTiO3. E-J. Chem., 2010,7(3):894-898.
    [174]S. S. N. Bharadwaja, M. Olszta, S. Trolier-McKinstry. Fabrication of High Aspect Ratio Ferroelectric Microtubes by Vacuum Infiltration using Macroporous Silicon Templates. J. Am. Ceram. Soc.,2006,89 (9):2695-2701.
    [175]W.V. Zoelen, A.H.G. Vlooswijk, A. Ferri, A.M. Andringa, B. Noheda, G.T. Brinke. Orderd arrays of ferroelectric nanoparticles by pulsed laser deposition on PS-b-P4VP(PDP) supramolecule-based templates. Chem. Mater.,2009,21 (19):4719-4723.
    [176]A. Bernadette, S. Hernandez, K. Chang, T. Michael. S. J. L. Burris, S. Kohli, E. R. Fisher, K. Dorhout. Examination of Size-Induced Ferroelectric Phase Transitions in Template Synthesized PbTiO3 Nanotubes and Nanofibers. Chem. Mater.2005.17:5909-5919
    [177]C.Y. Chao, Z.H. Ren, Y.H. Zhu, Z. Xiao, Z.Y. Liu, G. Xu, J.Q. Mai, X. Li, G. Shen, G.R. Han. Self-templated synthesis of single-crystal and single-domain ferroelectric nanoplates. Angew. Chem. Int. Ed.,2012,51:9283-9287.
    [178]C. Burda, X.B. Chen, R. Narayanan, M.A. El-Sayed. Chemistry and properties of nanocrystals of different shapes. Chem. Rev.,2005,105 (4):1025-1102.
    [179]C.J. Briuker, G.W. Scherer. Sol-gel science the physics and chemistry of S-G processing. New York:academic press Inc,1990.
    [180]蒋华麟,陈萍华.溶胶-凝胶法制备纳米材料研究进展,广东化工,2010,37(11):262-264.
    [181]S. O'Brien, L. Brus, C.B. Murray. Synthesis of monodisperse nanoparticles of barium titanate:toward a generalized strategy of oxide nanoparticle synthesis. J. Am. Chem. Soc., 2001,123(48):12085-12086.
    [182]C. Liu, B.S. Zou, A.J. Rondinone, Z.J. Zhang. Sol-gel synthesis of free-standing ferroelectric lead zirconate titanate nanoparticles. J. Am. Chem. Soc,2001,123 (18): 4344.4345.
    [183]G. Garnweitner, M. Niederberger. Nonaqueous and surfactant-free synthesis routes to metal oxide nanoparticles. J. Am. Ceram. Soc.,2006,89:1801-1808.
    [184]M. Niederberger. Nonaqueous sol-gel routes to metal oxide nanoparticles. Acc. Chem. Res., 2007,40 (9):793-800.
    [185]徐如人,庞文琴.无机合成与制备化学,北京:高等教育出版社,2001.
    [186]施尔畏,夏长态,王步国.水热法的应用于发展,无机材料学报,1996,11:193-206.
    [187]M. M. Lencka, R. E. Riman. Thermodynamics modeling hydrothermal synthesis of ceramic powders. Chem. Mater.,1993,5:61-70.
    [188]M. M. Lencka, A. Andrko, R. E. Riman. Synthesis of lead titanate:thermodynamic modeling and experimental verification. J. Am. Ceram. Soc.,1993,76:2649-2659.
    [189]M. M. Lencka, R. E. Riman. Hydrothermal synthesis of perovskite materials: thermodynamic modeling and experimental verification. Ferroelectrics,1994,151:159-164.
    [190]M. M. Lencka, R. E. Riman. Thermodynamics of the hydrothermal synthesis of calcium titanate with reference to other alkaline-earth titanates. Chem. Mater.,1995,7:18-25.
    [191]M.J. Haun, E. Furman, S.J. Jang and L.E. Cross. Thermodynamic theory of the lead zirconate-titanate solid solution system, Part I-V. Ferroelectrics,1989,99:13-62.
    [192]M. M. Lencka, A. Andrzej, R. E. Riman. Hydrothermal precipitation of lead zirconate titanate solid solutions:thermodynamic modeling and experimental synthesis. J. Am. Ceram. Soc.,1995,78:2609-2618.
    [193]H. Zhang, X.H. Wang, Z.B. Tian, C.F. Zhong, Y.C. Zhang, C.K. Sun, L.T. Li. Fabrication of monodispersed 5-nm BaTiO3 nanocrystals with narrow size distribution via one-step solvothermal route. J. Am. Ceram. Soc,2011,94 (10):3220-3222.
    [194]M. Niederberger, N. Pinna, J. Polleux, M. Antonietti. A general soft-chemistry route to perovskite and related materials:Synthesis of BaTiO3, BaZrO3, and LiNbO3 nanoparticles. Angew. Chem. Int. Ed.,2004,43 (17):2270-2273.
    [195]M. Niederberger, G. Garnweitner, N. Pinna, M. Antonietti. Nonaqueous and hadide-free route to crystalline BaTiO3, SrTiO3, and (Ba,Sr)TO>3 nanoparticles via a mechanism involving C-C bond formation. J. Am. Chem. Soc.,2004,126 (29):9120-9126.
    [196]H.C. Du, S. Wohlrab, M. Weiss, S. Kaskel. Preparation of BaTiO3 nanocrystals using a two-phase solvothermal method. J. Mater. Chem.,2007,17 (43):4605-4610.
    [197]Y.V. Kolen'ko, K.A. Kovnir, I.S. Neira, T. Taniguchi, T. Ishigaki, T. Watanabe, N. Sakamoto, M. Yoshimura. A novel controlled, and high-yield solvothermal drying route to nanosized barium titanate powders. J. Phys. Chem. C,2007,111 (20):7306-7318.
    [198]S. Ray, Y.V. Kolen'ko, D.H. Fu, R. Gallage, N. Sakamoto, T. Watanabe. M. Yoshimura, M. Itoh. Direct observation of ferroelectricity in quasi-zero-dimensional barium titanate nanoparticles. Small,2006,2 (12):1427-1431.
    [199]Y. Wang, G. Xu, Z. Ren, X. Wei, W. Weng, P. Du, G. Shen, G. Han. Mineralizer-Assisted Hydrothermal Synthesis and Characterization of BiFeO3 Nanoparticles. J. Am. Ceram. Soc., 2007,90:2615-2617.
    [200]Y. Wang, G. Xu, L. Yang, Z. Ren, X. Wei, W. Weng, P. Du, G. Shen, G. Han. Alkali Metal Ions-Assisted Controllable Synthesis of Bismuth Ferrites by a Hydrothermal Method. J. Am. Ceram. Soc.,2007,91:3673-3675.
    [201]X. Wei, G. Xu, Z.H. Ren, Y.G. Wang, G. Shen, G.R. Han. Synthesis of highly dispersed barium titanate nanoparticles by a novel solvothermal method. J. Am. Ceram. Soc.,2008, 91 (1):315-318.
    [202]Z. Ren, G. Xu, X. Wei, G. Han. Room-temperature ferromagnetism in Fe-doped PbTiO3 nanocrystals. Appl. Phys. Lett.,2007,91 (063106):1-6.
    [203]G. Shirane, S. Hoshino, K. Suzuki. X-ray study of the phase transition in lead titanate. Phys. Rev.,1950,80:1105-1106.
    [204]T. Takeuchi, M. Tabuchi, I. Kondoh, N. Tamari, H. Kageyama. Synthesis of dense lead titanate ceramics with submicrometer grains by spark plasma sintering, J.Am.Ceram.Soe, 2000,83:541-544.
    [205]J.W. Zhai, X. Yao, M. zhang. Preparation and microwave characterization of PbTiO3 ceramic and Powder. J.Phys.D:Appl.Phys.,2001,34:1413-1416.
    [206]E. Erdem, H.C. Semmelhack, R. Bottcher, H. Rumpf, J. Banys, A. Matthes, H.J. GlaselJ, D. Hirsch, E. Hartmann. Study of the tetragonal-to-cubic phase transition in PbTiO3 nanopowders, J.Phys-Condes. Matter.,2006,18:3861-3874.
    [207]A. Glazer, S.A. Mabud. Powder profile refinement of lead zirconate titanate at several temperatures.1. PbZr0.9Ti0.1O3. Acta Crystallogr. Sect. B.,1978,34:1065-1070.
    [208]Y. Kuroiwa, S. Aoyagi, A. Sawada, J. Harada, E. Nishibori, M. Takata, M. Sakata. Evidence forPb-0 covalency in tetragonal PbTiO3. Phys. Rev. Lett..2001,87 (217601): 1-4.
    [209]C. L. Jia. S. B. Mi, K. Urban. Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nat. Mater.,2008,7:57-61.
    [210]C. L. Jia, K. W. Urban, M. Alexe, D. Hesse, I. Vrejoiu. Direct Observation of Continuous Electric Dipole Rotation in Flux-Closure Domains in Ferroelectric Pb(Zr,Ti)O3. Science,2011,331:1420-1423.
    [211]Z. H. Ren, G. Xu, X. Wei, Z. Y. Liu, Y. G. Wang, Z. Xiao, G. Shen, G. R. Han. Ring and single-crystal-like superstructures of Fe-doped PbTiO3 nanocrystals. J. Cryst. Growth.,2009, 311:4593-4597.
    [212]X.F. Lu, D.L. Zhang, Q.D. Zhao, C. Wang, W.J. Zhang, Y. Wei. Large-scale synthesis of necklace-like single-crystalline PbTiO3 nanowires. Macromol. Rapid. Comm.,2006,27 (1): 76-80.
    [213]M.C. Hsu, I.C. Leu, Y.M. Sun, M.H. Hon. Template synthesis and characterization of PbTiO3 nanowire arrays from aqueous solution. J. Solid State Chem.,2006,179: 1421-1425.
    [214]L.F. Liu, T.Y. Ning, Y. Ren, Z.H. Sun, F.F. Wang. Synthesis, characterization, photoluminescence and ferroelectric properties of PbTiO3 nanotube arrays. Mater. Sci. Eng. B,2008,149:41-46.
    [215]Y. Yang, X.H. Wang, C.K. Sun, L.T. Li. Photoluminescence of high-aspect-ratio PbTiO3 nanotube array. J. Am. Ceram. Soc.,2008,91 (11):3820-3822.
    [216]H.S. Gu, Y.M. Hu, H. Wang, X.R. Yang, Z.L. Hu, Y. Yuan, J. You. Fabrication of lead titanate single crystalline nanowires by hydrothermal method and their characterization. J. Sol-gel Sci. Techn.,2007,42:293-297.
    [217]H.S. Gu, Y.M. Hu, J. You, Z.L. Hu, Y. Yuan, T.J. Zhang. Characterization of single-crystalline PbTiO3 nanowire growth via surfactant-free hydrothermal method. J. Appl. Phys.,2007,101 (024329):1-7.
    [218]Y.G. Wang, G. Xu, L.L. Yang, Z.H. Ren, X. Wei, W.J. Weng, P.Y. Du, G. Shen, G.R. Han. Preparation of single-crystal PbTiO3 nanorods by phase transformation from Pb2Ti2O6 nanorods. J. Alloys Compd.,2009,481:L27-L30.
    [219]T. Shimada, S. Tomoda, T. Kitamura. Ab intio study of ferroelectricity in edged PbTiO3 nanowires under axial tension. Phys. Rev. B,2009,79 (024102):1-7
    [220]G. Pilania, R. Ramprasad. Complex polarization ordering in PbTiO3 nanowires:A first-principles computational study. Phys. Rev. B.,2010,82 (155442):1-8
    [221]J. Kobayashi, S. Okmoto, R. Ueda. Dielectric Behavior of Lead Titanate at Low Temperature. Phys. Rev. B.,1956,103:830-831.
    [222]P. Doshi, J. Glass, M. Novotny. Low temperature structure of PbTiO3. Phys. Rev. B.,1973, 7:4260-4263.
    [223]J. Kobayashi, Y. Uesu, Y. Sakemi. Novotny, X-ray and optical studies on phase transition of PbTiO3 at low temperatures. Phys. Rev. B.,1983,28:3866-3872.
    [224]Z. Wu, R. E. Cohen. Pressure-Induced Anomalous Phase Transitions and Colossal Enhancement of Piezoelectricity in PbTiO3. Phys. Rev. Lett.,2005,95(037601):1-7.
    [225]M. Ahart, M. Somayazulu, R. E. Cohen. Origin of morphotropic phase boundaries in ferroelectrics. Nature,2008,451:545-548.
    [226]M. T. Buscaglia, C. Harnagea, M. Dapiaggi, V. Buscaglia, A. Pignolet, P. Nanni. Ferroelectric BaTiO3 Nanowires by a topochemical Solid-State Reaction. Chem. Mater., 2009,21:5058-5065..
    [227]Z. L. Wang, J. Song. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowires Arrays. Science,2006,312:242-246.
    [228]Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally. J. Liphardt, P. Yang. Tunable nanowires nonlinear optical probe. Nature,2007,447: 1098-1102.
    [229]H. Colfen, M. Antonietti. Mesocrystals:Inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew. Chem. Int. Ed.,2005,44:5576-5591.
    [230]V.M. Yuwono, N.D. Burrows, J.A. Soltis, R.L. Penn. Oriented aggregation:Formation and transformation of mesocrystal intermediates revealed. J. Am. Chem. Soc.,2010,132: 2163-2165.
    [231]Q. Zhang, S. Liu, S. Yu. Recent advances in oriented attachment growth and synthesis of functional materials:concept, evidence, mechanism, and future. J. Mate. Chem.,2009,19: 191-207.
    [232]R. L. Penn and J. F. Banfield. Imperfect oriented attachment:Dislocation generation in defect-free nanocrystals. Science.,1998,281(5379),969-971.
    [233]K. Cho, D. V. Talapin, W. Gaschler, C. B. Murray. Designing PbSe Nanowires and Nanorings through Oriented Attachment of Nanoparticles. J. Am. Chem. Soc.,2005,127 (19):7140-7147.
    [234]M. M. Lencka, R. E. Riman. Thermodynamics modeling hydrothermal synthesis of ceramic powders. Chem. Mater.,1993,5:61-70.
    [235]B. Liu, S. H. Yu, L. Li, F. Zhang, Q. Zhang, M. Yoshimura. P. Shen. Nanorod-direct oriented attachment growth and promoted crystallization processes evidenced in case of ZnWO4. J. Phys. Chem. B..2004,108:2788-2792.
    [236]V. I. Levitas. Crystal-Amorphous and crystal-crystal phase transformations via virtual melting. Phys. Rev. Lett.,2005,95 (075701):1-6.
    [237]V. I. Levitas, B. F. Henson, L. B. Smilowitz, B. W. Asay. Solid-solid phase transformation via virtual melting signifivantly below the melting temperature. Phys. Rev. Lett.,2004,92 (235702):1-6.
    [238]C. N. R. Rao. K. J. Rao. Phase transitions in solids, McGraw-Hill, New York,1978.
    [239]B. Xiang, Q. X. Wang, Z. Wang. Synthesis and field emission properties of TiSi2 nanowires. Appl. Phys. Lett.,2005,86 (243103):1-5.
    [240]V. I. Levitas, Z. Ren, Y. Zeng. Z. Zhang, G. Han. Crystal-crystal phase transformation via surface-induced virtual premelting. Phys. Rev. B.,2012,85 (220104):1-5.
    [241]任召辉.一维柱状结构钛酸铅纳米管的铁电和光学性能研究[博士后研究报告].杭州:浙江大学材料系,2010.
    [242]D. Kan, T. Terashima, R. Kanda, A. Masuno, K. Tanaka, S. Chu, H. Kan, A. Ishizumi, Y. Kanemitsu, Y. Shimakawa, M. Takano. Blue-light emission at room temperature from Ar"-irradiated SrTiO3. Nat. Mater.,2005,4:816-819.
    [243]L. G. J. De Haart, A. J. Vries, G. Glasse. On the photoluminescence of semiconducting titanates applied in photoelectrochemical cells. J. Solid. State Chem.,1985,59:291-300.
    [244]R. Leonelli, J. L. Brebner. Time-resolved spectroscopy of the cisible emission band in strontium titanate. Phys. Rev. B.,1986,33:8649-8656.
    [245]M. S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio. Exciton photophysics of carbon nanotubes. Annu. Rev. Phys. Chem.,2007,58:719-747.
    [246]H. Tang, H. Berger, P. E. Schmid, F. Levy, G. Burri. Photoluminescence in TiO2 anatase single crystals, Solid State Commu.,1993,87:847-850.
    [247]J. Azuma, K. Tanaka, K. Kanno. Two types of self-trapped excitons in a Quasi-One-Dimensional crystal piperidinium tribromoplumbate. J. Phys. Soc. Jpn.,2002,71:971-977.
    [248]C. T. Lin, B. W. Scanlan, J.D. Mcneill. Crystallization behavior in a low temperature acetate process for perovskite PbTiO3, Pb(Zr,Ti)O3, and (Pb1-x,Lax)(Zry,Ti1-y)1-x/4O3 bulk powders. J. Mater. Res.,1992,9:2546-2554.
    [249]K. Momma, F. Izumi. VESTA:a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr,2008,41:653-658.
    [250]H. Kruger, R. X. Fischer. Divergence-slit intensity corrections for Bragg-Brentano diffractometers with circular sample surfaces and known beam intensity distribution. J. Appl. Crystallogr,2004,37:472-476.
    [251]S. Smaalen, L. Palatinus, M. Schneider. The maximum-entropy method in superspace. Acta. Crystallogr A.,2003,59:459-469.
    [252]J.W. Hong, K.H. Noh, S. Park, S.I. Kwun, Z.G. Khim. Surface charge density and evolution of domain structure in triglycine sulfate determined by electrostatic-force microscopy. Phy. Rev. B.,1998,58 (8):5078-5084.
    [253]G. Burns, B. A. Scott. Raman studies of underdamped soft modes in PbTiO3. Phys. Rev. Lett.,1970,25(3):167-170
    [254]H. Cai, W. Zhang, J. Ge, Y. Zhang, K. Awaga, T. Nakamura, R. Xiong.4-(cyanomethyl) anilinium Perchlorate:A New Displacive-Type Molecular Ferroelectric. Phys. Rev. Lett., 2011,107(147601):1-5.
    [255]S. K. Kurtz, T. T. Perry. A Powder Technique for the Evaluation of Nonlinear Optical Materials. J. Appl. Phys.1968,39 (8):3798-3813.
    [256]J. M. D. Coey, A. P. Douvalis, C. B. Fitzgerald, and M. Venkatesan. Ferromagnetism in Fe-doped SnO2 thin films. Appl. Phys. Lett.,2004,84 (8):1332-1334.
    [257]M. Li, M. Ning, Y. Ma, Q. Wu, and C. K. Ong. Room temperature ferroelectric, ferromagnetic and magnetoelectric properties of Ba-doped BiFeO3 thin films. J. Phys. D., 2007,40(6):1603-1607
    [258]J.Hemberger, P. Lunkenheimer, R. Fichtl, H. A. Nidda, V. Tsurkan, A. Loidl. Relaxor ferroelectricity and colossal magnetocapacitive coupling in ferromagnetic CdCr2S4. Nature., 2005,434(7031),364-367.
    [259]C.R. Peterson, E.B. Slamovich, Effect of processing parameters on the morphology of hydrothermally derived PbTi03 powders, J. Am. Ceram. Soc.,1999,82 (7):1702-1710.
    [260]D. Rangappa, S. Ohara, T. Naka, A. Kondo, M. Ishii, T. Adschiri. Synthesis and organic modification of CoAl2O4 nanocrystals under supercritical water conditions. J. Mater. Chem., 2007,17 (41):4426-4429.
    [261]K. C. Verma, R. K. Kotnala, N. S. Negi. Improved Dielectric and Ferromagnetic Properties in Fe-Doped PbTiO3 Nanoparticles at Room Temperature. Appl. Phys. Lett.,2008,92 (152902):1-3.
    [262]K. C. Verma, R. K. Kotnala, N. Thakur, V. S. Rangra. N. S. Negi. Resistivity Dependent Dielectric and Magnetic Properties of Pb(Fe0.012Ti0.988)O3 Nanoparticles. J. Appl. Phys., 2008,104(093908):1-5.
    [263]R. K. Kotnala, K. C. Verma, M. C. Mathpal. N. S. Negi. Multifunctional Behaviour of Nanostructured Pb0.7Sr0.3Fe0.012Ti0.988)O3 Thin Film. J. Phys. D.,2009,42 (085408):1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700