用户名: 密码: 验证码:
新型金刚石砂轮的制备及其磨削性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要针对传统砂轮磨削温度高、磨粒容易脱落、加工塑性材料时容易堵塞、需定期修锐等问题,提出和研制了一种新型结构的金刚石砂轮。利用粉末注射成型技术和真空钎焊技术制备出长径比大、金刚石把持力大的金刚石微刃来取代传统砂轮的磨粒,并将金刚石微刃在砂轮胎体材料中进行定向有序排布制备出新型金刚石砂轮,同时通过选用合适的砂轮胎体材料及配方的优化,使其孔隙率增大,便于砂轮修整、修锐。新型金刚石砂轮制备后,开展了其与普通树脂结合剂金刚石砂轮及有序化超硬微刃刀具在相同实验条件下的对比试验,进一步分析了其磨削性能和磨削机理。
     金刚石微刃的制备是开发新型金刚石砂轮的关键一步。实验利用粉末注射成形技术将复合镀金刚石、Cu-10Sn-5Ti钎料粉末和蜡基粘结剂组成的均匀混合料制备出纤维状的成型坯,在这个过程中,通过控制注射成型参数以获得无缺陷、组织均匀的注射生坯;采用溶剂脱脂和热脱脂二步脱脂工艺进行脱脂处理;脱脂后对其进行真空钎焊烧结,使金刚石微刃具有一定的强度和良好的机械物理性能。实验结果表明:当烧结温度为920℃,保温时间为10min,升降温速度为5℃/min时,金刚石微刃的烧结性能最好。考察了单根金刚石微刃加工WC/12Co涂层的切削性能和金刚石主要破损形式,结果表明制备的金刚石微刃具有良好的加工性能。金刚石颗粒在磨削过程中主要经历了小块破碎、大块破碎及磨平等状态,很少看到整颗脱落的情况。
     金刚石微刃制备后,实验采用节块形式的方法以实现新型金刚石砂轮的制备。首先制备出节块模具并根据设计的排布方式在其周向开孔;然后将金刚石微刃——人为均匀排布在周向小孔中并粘结固定;通过选取一定配比的胎体材料压制成型制备出金刚石节块;将制备的多个金刚石节块在模具中整体热压成型制备出新型金刚石砂轮,并对其进行二次固化处理,使金刚石砂轮具有更高的强度、硬度和良好的磨削性能。
     新型金刚石砂轮制备后,考察了其与普通树脂结合剂金刚石砂轮及有序化超硬微刃刀具在相同实验条件下的磨削性能,并分析了其磨削机理。实验结果表明:相对于传统树脂结合剂金刚石砂轮,新型金刚石砂轮的磨削力要小,磨削温度要低,加工质量好于传统树脂结合剂金刚石砂轮。随着磨削的进行,普通树脂结合剂砂轮的工作表面留有许多金刚石磨粒的脱落坑,且在金刚石颗粒与颗粒之间出现了磨屑堵塞现象。而新型金刚石砂轮中的金刚石磨粒主要经历了小块破碎、大块破碎、磨耗等正常磨损阶段,很少发现金刚石整颗脱落的情况。同时金刚石微刃的人为均匀排布,使其容屑、排屑能力大幅度提高,砂轮发生堵塞的情况也得到了有效改善。与有序化超硬微刃刀具加工WC/12Co涂层的对比实验发现:新型金刚石砂轮的加工表面形貌和表面质量要好于有序化超硬微刃刀具,其磨削力大于有序化超硬微刃刀具的切削力。有序化超硬微刃刀具在加工过程中会产生崩刃等破坏形式,需对其刃磨,其刃磨工艺较为烦琐且需重新整体装配,刃磨效率低;而新型金刚石砂轮在磨削过程中主要经历完整-小块破碎-大块破碎-磨耗等正常磨损形式,砂轮使用寿命较长,且由于砂轮胎体材料具有一定的孔隙,也便于其修整、修锐。
     制备的新型金刚石砂轮是对传统砂轮的一种有益创新和改进,在工艺上是对传统砂轮的一种突破。其一方面克服了传统固结金刚石磨粒砂轮的金刚石容易脱落,金刚石存在大量浪费的问题;另一方面也有效克服了目前单层钎焊砂轮存在的工作层过薄,使用寿命有限的不足。在磨削过程中,新型金刚石砂轮中上层金刚石磨粒失去切削能力后,下层金刚石磨粒又可出露继续发挥其磨削能力,实现了在三维意义上的钎焊分布。同时,金刚石微刃的有序排布,使得其容屑空间增大,散热能力提高,加工表面质量和加工效率也能进一步改善。
The random nature of the abrasives geometries and their distribution in conventional wheel results in high temperature and high specific energy. It can cause the abrasives to fall off the grinding wheel prematurely, leading to inefficient use of the abrasives. Moreover, grinding wheel wear and loading problems become more severe when grinding "sticky" materials, which requires more frequent wheel truing and dressing and thus reduces grinding efficiency. This paper is aimed at developing a new diamond wheel in order to overcome these shortages of conventional diamond wheels. The diamond cutting edges are fabricated by combining powder injection molding with vacuum brazing, which have a large aspect ratio and diamonds grits pullouts cannot happen due to the presence of the chemical bonding. These diamond cutting edges can be artificially ordered so as to have the desired arrange pattern and space among themselves, and then suppressed with resin bond materials to prepare a new diamond wheel. The appropriate pore inducer is chosen to improve the self-sharpening ability and increase the clearance for debries of wheel. The paper compares the machining performance of the new diamond wheel with that of conventional resin bond diamnd wheel in machining the Al2O3ceramic, the machining performance of the new diamond wheel with that of the engineered cutter in machining the WC/12Co coating, respectively, and further discusses the grinding mechanism.
     The fabrication of diamond cutting edges is a key step for the successful preparation of the new diamond wheel. The typical fabrication process of the diamond cutting edges are mixing, injection molding, debinding and vacuum brazing. Initially, a suitable formulation of binder is mixed with the coated diamonds and copper based alloy powders. The injection green parts are molded on a reciprocating screw injection molding machine. The binder must be removed from the molded parts, a two-step debinding process is selected. Brazing is the last stage of the process, it is essentially a removal of pores, accompanied by strong bonding strength between the diamonds and copper based alloy. The test indicated that the diamond cutting edges with no defects were prepared by vacuum brazing process (brazing temperature is920℃, holding time is10min, heating/cooling rate is5℃/min). The paper investigates the machining performance of the single diamond cutting edge in machining the WC/12Co coating. The test indicated that diamond cutting edge has good cutting properties, the diamonds mainly occurred micro-fracture and fracture, diamonds pull-out cannot easily happen during the grinding processing owe to the presence of strong adhesion between the diamond grits and brazing alloy, the diamond grits were used efficiently.
     Because the diamond cutting edges have high transverse-rupture strength and large aspect ratio, they can been artificially distributed in the matrix material in accordance with array parameters, and further fabricate the new diamond wheel through autoclave process. The production process flow of the new diamond wheel is as follow:Initially, produce diamond segment die and oval open in the cylindrical in accordance with array parameters. Secondly, put the diamond cutting edges into the hole and hold them immovably, Then embeds into resin bond materials and porosity inducer to fabricate diamond segments. Finally, prepare the new diamond wheel through autoclave process and further make the bond matrix higher strength through curing process
     After the preparation of the new diamond wheel, it discusses the grinding performances of the new diamond wheel and the conventional resin bond diamond wheel machining Al2O3ceramic at the same conditions. The test indicated that the grinding force and grinding temperature of the new diamond wheel are smaller than that of the conventional wheel, and the machining quality of the former is better than that of the latter. The changes of morphologies of diamond grits in grinding are observed, the worn states of diamond grits of the new diamond wheel are intact, micro-fractured, macro-fractures, and the diamond grits are difficult to be pulled out because of the strong bonding strength, in addition, the blockage of wheel is decreased through the controlled distributing of diamond cutting edges. In contrast, diamond grits falling off from conventional grinding wheel are observed, and the surface easy to block, which would result in grinding temperature rise even thermal damage. The machining performance of the new diamond wheel with the engineered cutter in machining the WC/12Co coating was compared, the test indicated that the machining quality of the former is better than that of the latter, And the wear test showed that the cutting edges of the engineered cutter appear tipping, they need to be sharpened again, but the sharpening technology is complex and time-consuming. In contrast, The primary wearing way of the diamond grits of the new diamond wheel are intact, micro-fractured and macro-fractured, and it was easy dressed.
     The new diamond wheel has more superiority than conventional diamond wheels on grinding performance. On the one hand, the new diamond wheel overcome the shortage of diamond grits easy to fall off the surface of the conventional grinding wheel, on the other hand, the lifetime of the new diamond wheel is longer than that of the brazed monolayer wheel. When the diamonds of the new diamond wheel lose the cutting ability, the diamonds under-layer can expose and continue to cut. The chip-pocket space and cooling ability are increased because of the optical orientation of diamond cutting edges, which also affects the wheel life and machining quality.
引文
[1]李伯民,赵波等.现代磨削技术.北京:机械工业出版社,2003
    [2]任敬心,华定安.磨削原理.西安:西北工业大学出版社,1988
    [3]蔡光起,巩亚东,宗贵亮.磨削技术利用与应用.沈阳:东北大学出版社2002
    [4]Zhang G F, Zang B, Deng Z H. Recent advances and future perspectives in grinding wheel structures. International Journal of Abrasives technology,2009, 2(2):113-129
    [5]Ulrich E K, Liu C L, Fazal A K, et al. Influence of brazing parameters and alloy composition on interface morphology of brazed diamond. Materials Science and Engineering,2008,495:265-270
    [6]Sung J C, Sung M. The brazing of diamond. Journal of Refractory Metals and Hard Materials,2009,27:382-393
    [7]Khalid F A, Klotz U E, Elsener H R, et al. On the interfacial nanostructure of brazed diamond grits. Scripta Materiallia,2004,50:1139-1143
    [8]Chattopadhyay A K, Chollet L, Hintermann H E. On performance of brazed boned monolayer diamond grinding wheel. Annals of the CIRP,1991,40(1): 347-350
    [9]Li W C, Liang C, Lin S T. Epitaxial interface of nanocrystalline TiC formed between Cu-10Sn-15Ti alloy and diamond. Diamond and Related Materials, 2002,11:1366-1372
    [10]肖冰,徐鸿钧,武志斌AgCuTi合金钎焊单层立方氮化硼砂轮.焊接学报,2002,23(2):29-32
    [11]Hintermann H E, Chattopadhyay A K. New Generation Superabrasive Tool with Monolayer Configuration. Diamond and Related Material,1992,1(12):1131-1143
    [12]Suzumura A, Yamazaki T. Solidification Phenomena and Bonding Strength at the Interface of Diamond and Active Metal Brazing Filler. Welding Society,1994,4: 509-512
    [13]Sun F L, Feng J C, Li D. Bonding of CVD diamond thick films using an Ag-Cu-Ti brazing alloy. Journal of Material Processing Technology,2001, 115(3):333-337
    [14]Yamazaki T, Suzumura A. Role of the Reaction Product in the Solidification of Ag-Cu-Ti Filler for Brazing Diamond. Journal of Materials Science,1998,331: 1379-1384
    [15]Klotz U E, Khalid F A, Elsener H R. Nanocrystalline phases and epitaxial interface reactions during brazing of diamond grits with silver based Incusil-ABA alloy. Diamond and Related Materials,2006,15:1520-1524
    [16]Chattopadhyay A K, Chollet L, Hintermann H E. Experimental investigation on induction brazing of diamond with Ni-Cr hardfacing alloy under argon atmosphere. Journal of Materials Science,1991,26:5093-5100
    [17]王艳辉,臧建兵,王明智等.镀Ti金刚石工具磨粒破坏形态分析.金刚石与磨料磨具工程,2002,128(2):25-28
    [18]王艳辉,王明智,关长斌等.Ti镀层对金刚石-铜基合金复合材料界面结构和性能的作用[J].复合材料学报,1993,10(2):107-112
    [19]孙凤莲.CVD金刚石厚膜与硬质合金的钎焊连接机理及工艺研究:[哈尔滨工业大学博士学位论文].哈尔滨:哈尔滨工业大学,2002
    [20]武志斌,徐鸿钧,肖冰等.钎焊单层金刚石砂轮的实验研究.中国机械工程,2001,12(12):1423-1424
    [21]武志斌,徐鸿钧,肖冰等.银基钎料钎焊单层金刚石砂轮的试验.焊接学报,2001,22(1):24-26
    [22]姚正军,徐鸿钧,肖冰等.Ni-Cr合金Ar气保护炉中钎焊金刚石砂轮的研究.中国机械工程,2001,12(8):956-958
    [23]肖冰,徐鸿钧,武志斌等.Ni-Cr合金真空单层钎焊金刚石砂轮.焊接学报,2001,22(2):23-26
    [24]傅玉灿,徐鸿钧.一种适于国内引进开发的新型超硬磨粒砂轮.中国机械工程,1999,10(4):375-377
    [25]肖冰,武志斌,徐鸿钧.Ni-Cr合金真空感应钎焊单层金刚石砂轮的实验研究.工具技术,2000,34(10):3-5
    [26]陈燕,徐鸿钧,苏宏华等.钎焊气氛对金刚石磨耗特性的影响.中国机械工程,2008,19(22):2733-2737
    [27]Chen Y, Xu H J, Fu Y C, et al. Effects of brazing atmosphereson interfacial microstructure between diamond grits and brazing alloy. Transcations of Nanjing University of Aeronautics and Astronautics,2008,25(4):248-252
    [28]马泊江,徐鸿钧,傅玉灿等.两种钎焊金刚石工具微观结构的对比分析.机械工程材料,2005,29(7):10-13
    [29]卢金斌,徐九华,徐鸿钧等.Ni-Cr合金真空钎焊金刚石界面反应的热力学与动力学分析.焊接学报,2004,25(1):21-24
    [30]徐西鹏,吴键,沈剑云等.结合剂中金刚石固位机理及提高固位能力的技术.中国有色金属学报,1998,8:8-10
    [31]黄辉,詹友基,徐西鹏.磨削花岗石过程中钎焊金刚石磨损特性研究.摩擦学学报,2007,27(3):279-283
    [32]詹友基,黄辉,徐西鹏.钎焊金刚石砂轮磨削石材中金刚石粒度对磨削力的影响研究.金刚石与磨料磨具工程,2006,3:17-20
    [33]Huang H, Zhang G Q, Zhan Y J, et al. Force in surface grinding of granites with a brazed diamond wheel. Key Engineering Materials,2006,315-316:185-189
    [34]张宾,沈剑云,徐西鹏.钎焊金刚石砂轮修整实验研究.金刚石与磨料磨具工程,2007,6:19-22
    [35]黄辉,张国青,徐西鹏.钎焊金刚石磨粒磨损性能研究.福州大学学报,2005,33(3):313-317
    [36]张凤林,周玉梅,王成勇.钎焊法制造单层金刚石取孔钻及其界面微观结构.焊接学报,2007,28(3):21-24
    [37]张凤林,周玉梅,付凯旋等.Cr、Ti金属粉改善Ag-Cu-Zn合金对金刚石的钎焊性能研究.金刚石与磨料磨具工程,2007,3:22-25
    [38]周玉梅,张凤林,王成勇.添加Cr粉改善Ag-Cu-Zn合金钎焊金刚石性能及其界面微观结构.中国机械工程,2008,19(3):354-357
    [39]孟卫如,徐可为,杨吉军等.金刚石工具真空钎焊钎料的适应性.焊接学报,2004,25(1):80-83
    [40]丁文锋.镍基高温合金高效磨削用单层金刚石立方氮化硼砂轮的研制:[南京航空航天大学博士学位论文].南京:南京航空航天大学,2003
    [41]Huang S F, Hsien L T, Lin S T. Effects of brazing route and brazing alloy on the interfacial structure between diamond and bonding matrix. Materials Chemistry and Physics,2004,84:251-258
    [42]傅玉灿,徐鸿钧.从电镀到钎焊-国外单层超硬磨粒砂轮制造技术新发展.工具技术,1998(8):4-8
    [43]谢国治,左敦稳,王珉.单层钎焊砂盘磨粒分布有序性研究.南京航空航天大学学报,2002,3:283-286
    [44]Chattopadhyay A K, Chollet L, Hintermann H E. On performance of chemically bonded single-layer CBN grinding wheel. Annals of the CIRP,1990,39 (1): 309-312
    [45]Yamaguchi K, Horaguchi I, Sato Y. Grinding with directionally aligned SiC whisker wheel-loading-free grinding. Precision Engineering,1998,22(2):59-65
    [46]Yamaguchi K, Kikuzawa K, Wei Y Q, et al. Grinding characteristics of directionally aligned SiC whisker wheel (comparison with Al2O3 fiber wheel), Transactions of the Japan Society of Mechanical Engineers (Series C) (in Japanese),1999,638(65):342-347
    [47]魏源迁,刘平安,山口胜美等.Al2O3纤维砂轮的开发及其磨削特性.金刚石与磨料磨具工程,2004,140:1-4
    [48]魏源迁,伍良生,王新华等.SiC晶须砂轮的开发及其磨削特性.金刚石与磨料磨具工程,2003,137(5):8-11
    [49]May P W, Rego C A, Thomas R M, et al. Preparation of solid and hollow diamond fibers and the potential for diamond fiber metal matrix composites. Journal of Materials Science Letter,1994,13:247-249
    [50]May P W, Rego C A, Thomas R M, et al. CVD diamond wires and tubes. Diamond and Related Materials,1994,3:810-813
    [51]Smith N P, Smith D J, Pearce T R, et al. The ductile grinding of glass using diamond fibres oriented radially in a grinding wheel. Proceedings of the Institution of Mechanical Engineers, Part B. Journal of Engineering Manufacture, 2003,217:387-396
    [52]Yamaguchi K, Wei Y Q, Horaguchi I. Development of diamond-like carbon fibre wheel. Precision Engineering,2004,28(4):419-425
    [53]何贤昶,沈荷生.CVD金刚石涂层丝与涂层纤维.机械工程材料,2001,25(9):1-4
    [54]张高峰.有序化微刃刀具设计及基础研究:[湖南大学博士学位论文].长沙:湖南大学,2008
    [55]Nguyen T, Zhang L C. Modelling of the mist formation in segmented grinding wheel system. International Journal of Machine Tools and Manufacture,2005, 45(1):21-28
    [56]Nguyen T, Zhang L C. The coolant penetration in grinding with a segmented wheel-Part 1:mechanism and comparison with conventional wheels. International Journal of Machine Tools and Manufacture,2005,45:1412-1420
    [57]Nguyen T, Zhang L C. The coolant penetration in grinding with a segmented wheel-Part 2:Quantitative analysis. International Journal of Machine Tools and Manufacture,2006,46:114-121
    [58]Kim J D, Kang Y H, Xie D, et al. Development of discontinuous grinding wheel with multi-porous grooves. International Journal of Machine Tools and Manufacture,1997,37(11):1611-1624
    [59]傅玉灿,徐鸿钧.高效磨削用砂轮地貌的优化设计研究.应用科学学报,2001,19(1):48-52
    [60]傅玉灿,徐鸿钧.开槽砂轮缓进给深切磨削时工件表层温度场解析.中国机械工程,2002,4(13):541-544
    [61]傅玉灿,孙方宏,徐鸿钧.缓进给断续磨削时射流冲击强化磨削弧区换热的实验研究.南京航空航天大学学报,1999,2:151-155
    [62]傅玉灿,徐鸿钧.开槽砂轮缓磨时射流冲击强化换热的研究.航空学报,2001,5:222-226
    [63]肖冰,徐鸿钧,傅玉灿等.采用径向射流冲击与钎焊砂轮解决磨削烧伤的研究.机械工程学报,2002,38(1):91-94
    [64]孙方宏,傅玉灿,徐鸿钧.磨削弧区射流冲击强化换热机理及其潜力初探.金刚石与磨粒磨具工程,1999,1:16-18
    [65]高航,陆颖,张振伟.断续带状移动热源温度场的积分解.工程热物理学报,1997,18(3):350-354
    [66]高航,屈力刚,兰雄侯.断续磨削温度场的计算机模拟.东北大学学报,2002,5:466-469
    [67]Bzymekzm. Design of flexible grinding wheel with variable hub thickness. Transactions of the ASME,1994,117(5):260-262
    [68]Wang X. Study on grinding of amorphous tape with throw-away CBN wheels. JSPE,1992,58(9):1551-1554
    [69]Bzymek Z K. Design of flexible grinding wheel with variable hub thickness. Journal of Enigineering for Industry, ASME,1994,116(5):260-263
    [70]郭隐彪,杨正书,梁锡昌等.基于高效磨削的新型柔性砂轮研究.重庆大学学报,2000,23:9-11
    [71]郭隐彪,黄元庆,梁锡昌.免修整柔性金刚石砂轮的磨削性能研究.中国机械工程,1999,7(12):775-778
    [72]郭隐彪,梁锡昌,庄司克雄.金属基柔性砂轮对陶瓷基板的磨削性能研究[J].制造技术与机床,2000,9:32-34
    [73]郭隐彪,杨继东,梁锡昌.免修整型柔性砂轮对硬脆材料的磨削性能.机械制造与机床,2000,2:35-36
    [74]侯玉霞(译).新型大气孔CBN砂轮.磨料磨具通讯,1998,3:7-8
    [75]贾英伦.俄罗斯磨具新产品.磨料磨具通讯,2003,8:14
    [76]耿直.第八届CIMT(2003)磨料磨具评述.世界制造技术与装备市场,2003,5:40-44
    [77]http:www.manufacturingtalk.com/news
    [78]Tanaka T. New development of metal bonded diamond wheel with pore by the growth of bonding bridge. Japan Soc. Precision Engineering,1992,26(1):27-32
    [79]Truong S H, Isono Y, Tanaka T. Scanning electron microscopic study and mechanical property examination of a bond bridge:Development of a porous metal bonded diamond wheel. Journal of Materials Processing Technology,1999, 89:385-391
    [80]Tomino H, Kondo Y, Tojyo T. Pulse electric current sintering behavior of atomized cast-iron diamond composite powder.Journal of the Society of Materials Science,1999,48(6):585-591
    [81]Tomino H, Kondo Y, Katsumura M, et al. Pulse electric current sintering behavior of atomized cast-iron powder of Fe-C system containing hypoeutectic carbon(Ⅰ)- porosity control and microstructure. Journal of the Japan Society of Powder and Powder Metallurgy,1998,45(8):703-708
    [82]Tomino H, Kondo Y, Katsumura M, et al. Pulse electric current sintering behavior of atomized cast-iron powder of Fe-C system containing hypoeutectic carbon(Ⅱ)- Young's modulus of atomized cast-iron porous sintered body. Journal of the Japan Society of Powder and Powder Metallurgy,1998,45(8):709-714
    [83]Tomino H, Kondo Y, Katsumura M, et al. Pulse electric current sintering behavior of atomized cast-iron powder of Fe-C system containing hypoeutectic carbon(Ⅲ)- mechanical properties of atomized cast-iron porous sintered body. Journal of the Japan Society of Powder and Powder Metallurgy,1998,45(8): 715-720
    [84]Tomino H. Influence of porosity on grinding performance of porous cast-iron bonded diamond grinding wheel made by pulse current sintering method. Journal of the Japan Society of Powder and Powder Metallurgy,1999,46(3):257-261
    [85]Onishi H, Kobayashi M, Takata A, et al. Fabrication of new porous metal bonded grinding wheels y HIP method and machining electronic ceramics. Journal of Porous Materials,1997,4:187-198.
    [86]贾英伦(译).多气孔金刚石砂轮.磨料磨具通讯,2003,5:3-4
    [87]廖翠娇,戴秋莲,骆灿彬.金属结合剂金刚石多孔砂轮的试验研究(Ⅰ)-造孔剂添加量的优化设计.金刚石磨料磨具工程,2006,3(4):21-25
    [88]戴秋莲,骆灿彬,尤芳怡.合金化改善多孔砂轮磨削性能的研究.福州大学学报,2009,37(1):80-85
    [89]冯更新.大气孔宽砂轮磨削.磨床磨削,2000,3:65-71
    [90]苏宏华.新型金属结合剂工具技术的基础研究:[南京航空航天大学博士学位论文].南京:南京航空航天大学,2007
    [91]苏宏华,徐鸿钧,傅玉灿.多孔金属结合剂金刚石砂轮研究综述.机械科学与技术,2003,7:11-13
    [92]Sung C M. Brazed diamond grid:a revolution design for diamond saws. Didmond and Related Materials,1999,8:1540-1543
    [93]Hintermann H E, Chattopadhyay A K. On performance of brazed single layer CBN wheel. Annals of the CIRP,1994,43(1):313-317
    [94]Aurich J C, Braun O, Warnecke G, et al. Development of a super-abrasive grinding wheel with defined grain structure using kinematic simulation. Annals of the CIRP,2003,52(1):275-280
    [95]Aurich J C, Herzenstiel P, Sudermann H, et al. High Performance dry grinding using a grinding wheel with a defined grain pattern. Annals of the CIRP,2008, 57(1):357-362
    [96]Pinto F W, Vargas G E, Wegener K. Simulation for optimizing grain pattern on engineered grinding tools[J]. CIRP Annals,2008,57:353-356
    [97]Sung C M. Brazed diamond tools by infiltration. U.S.Patent.6039641, 2000-06-15
    [98]Toshiyuki O, Yoshiki N.The development of the diamond CMP conditioner.The 1st international industrial diamond conference, Barcelona, Spain,2005:20-21
    [99]肖冰,徐鸿均,武志斌.钎焊单层金刚石砂轮关键问题的研究.中国机械工程,2002,13(13):1147-1149
    [100]徐鸿钧,傅玉灿,肖冰等.具有优化地貌的单层钎焊金刚石固结磨粒工具的工艺方法.中国专利.2003101060707,2003-10-15
    [101]Fu Y C, Xiao B, Xu H J, et al. Machining performance of monolayer brazed diamond tools. Key Engineering Materials,2003,259-260:73-77
    [102]Wiand R C. Abrasive sheet and method. US.5208881,1993-10-09
    [103]Richard G. Desiger abrasive diamond surfaces. Wear,1999,2:387-394
    [104]Peter T D, Naum N T. Abrasive tool and method for making. US.4925457, 1990-05-15
    [105]Rickard G, Henrik B J, Pelle R, et al. Designed abrasive diamond surfaces. Wear, 1999,233-235:387- 394
    [106]Huang S F, Tsai H L, Lin S T. Laser brazing of diamond grits using a Cu-15Ti-10Sn brazing alloy. Materials Transactions,2002,43:2604-2608
    [107]Mark M. ARIX a major adwance in diamond segment design. IDR,2005,2: 40-42
    [108]Yuan H P, Gao H. On the control and optimization of abrasive distribution pattern on grinding tool surfaces. International Journal of Materials and Product Technology,2008,31:82-104
    [109]高航,袁和平,郭东明等.一种磨粒三维多层可控优化排布电镀工具制作方 法.中国专利.200710010921.6.2007-04-06
    [110]Supati R, Loh N H, Khor K A, et al. Mixing and characterization of feedstock for powder injection molding. Materials Letters,2000,46:109-114
    [111]郑洲顺,曲选辉,雷长明.PIM充填流动过程中粘度的变化与缺陷形成.金属学报,2007,43(2):187-193
    [112]Aparecido C G. Metallic powder injection molding using low pressure. Journal of Materials Processing Technology,2001,118:193-198
    [113]Cheng J G, Wan L, Cai Y B, et al. Fabrication of W-20%wt.%Cu alloys by powder injection molding. Journal of Materials Processing Technology,2001, 210:137-142
    [114]Samanta S K, Chattopadhyay H, Pustal B, et al. A numerical study of solidification in powder injection molding process. International Journal of Heat and Mass Transer,2008,51:672-682
    [115]Zauner R. Micro powder injection moulding. Microelectronic Engineering, 2006,83:1442-1444
    [116]臧建兵,王艳辉,王明智.Ti、Mo、W、Cr及其合金镀层与超硬磨料之间结合性能的研究.金刚石与磨料磨具工程,1997,98(2):6-9
    [117]刘雄飞,陈梵,吕海波.金刚石镀膜对金刚石强度以及与胎体结合性能的影响.粉末冶金技术,1997,15(3):182-185
    [118]朱永伟,张新明,谢光灼.金刚石表面镀钛对金刚石锯片性能的影响.中国有色金属学报,2001,11(2):258-263
    [119]王艳辉,臧建兵,王明智.复合镀覆Ti-Ni金刚石的钎焊应用.金刚石与磨料磨具工程,2001,1:6-7
    [120]王艳辉,王明智,臧建兵.镀Ti金刚石在金属烧结工具中的应用.工业金刚石,2002,6:9-15
    [121]王艳辉.金刚石磨粒表面镀钛层的制备、结构、性能及应用:[燕山大学博士学位论文].秦皇岛:燕山大学,2002
    [122]Wang Y H, Zang J B, Wang M Z, et al. Properties and applications of Ti coated diamond grits. Jouranl of Material Processing Technology,2002,129,369-372
    [123]钟建平,王明智,王艳辉.复合镀钛-镍金刚石的钎焊工艺.金刚石与磨料磨具工程,2001,5:31-33
    [124]张启运,庄鸿寿.钎焊手册.北京:机械工业出版社,1998
    [125]姚正军,徐鸿钧,肖冰等.Ni-Cr合金Ar气保护炉中钎焊金刚石砂轮的研究.中国机械工程,2001,12(8):956-958
    [126]Wang C Y, Zhou Y M, Xu Z C. Interfacial microstructure and performance of brazed diamond grites with Ni-Cr-P alloy. Journal of alloys and compounds, 2009,476(1-2):884-888
    [127]卢金斌,徐九华.Ag-Cu-Ti钎料钎焊金刚石的界面微观组织分析.焊接学报,2007,8(28):29-32
    [128]Sun F L, Feng J C, Li D. Bonding of CVD diamond thick films using an Ag-Cu-Ti brazing alloy. Journal of materials processing technology,2001, 115(3):333-338
    [129]Yang C Y, Xu J H, Ding W F, et al. Effect of cerium on microstructure, wetting and mechanical properties of Ag-Cu-Ti filler alloy. Journal of Rare Eaths,2009, 27(6):1051-1055
    [130]Sung J C, Sung M. The brazing of diamond. Journal of Refractory Metals & Hard Material,2009,27:382-393
    [131]陈燕,徐鸿钧,傅玉灿等.Ni-Cr合金真空钎焊金刚石的表面石墨化.焊接学报,2009,30(9):21-24
    [132]王毅,卢广林,殷世强等.Cu-Ni-Sn-Ti活性钎料成分设计与优化.吉林大学学报,2009,3(39):615-618
    [133]孙凤莲,冯吉才,刘会杰等.Ag-Cu-Ti钎料中Ti元素在金刚石界面的特征.中国有色金属学报,2001,11(1):103-106
    [134]赵宁,袁洁,南俊马等.Cu-32Mn-8Ti预合金粉末与金刚石颗粒的界面反应.人工晶体学报,2008,37(1):1 24-128
    [135]Thibault S H, Allibert C H. New phases in the ternary Cu-Ti-Sn system. Journal of Alloys and Compounds,2001,317-318:363-366
    [136]Ding W F, Xu J H, Shen M, et al. Joining of CBN abrasive grains to medium carbon steel with Ag-Cu/Ti powder mixture as active brazing alloy. Materials Science and Engineering,2006,430:301-306
    [137]Yang C Y, Xu J H, Ding W F, et al. Effect of cerium on microstructure, wetting and mechanical properties of Ag-Cu-Ti filler alloy. Journal of Rare Earths,2009, 27(6):1051-1055
    [138]欧阳鸿武,陈欣,余文焘等.气雾化制粉技术发展历程及展望.粉末冶金技术,2007,25(1):53-58
    [139]刘素红.TiHH2粉末注射成型技术研究:[湖南大学硕士学位论文].长沙:湖南大学,2009
    [140]Liu Z Y, Loh N H, Tor S B, et al. Characterization of powder injection molding feedstock. Materials Characterization,2003,49:313-320
    [141]Binet C, Heaney D F, Spina R, et al. Experimental and numerical analysis of metal injection molded products. Journal of Materials Processing Technology, 2005,164-165:1160-1166
    [142]李益民,李云平.金属注射成型原理与应用.长沙:中南大学出版社,2004
    [143]Moballegh L, Morshedian J, Esfandeh M. Copper injection molding using a thermoplastic binder based on paraffin wax. Materials Letters,2005,59: 2832-2837
    [144]Dobrzanski L A, Matula G, Herranz G, et al. Metal injection moulding of HS12-1-5-5 high-speed steel using a PW-HDPE based binder. Journal of Materials Processing Technology,2006,175:173-178
    [145]祝宝军.硬质合金注射成型工艺研究:[中南大学博士学位论文].长沙:中南大学,2002
    [146]Li Y M, Liu X Q, Luo F H, et al. Effects of surfantant on properties of MIM feedstock. Trans.Nonferrous Met.Soc.China,2007,17:1-8
    [147]R. M. German著,曲选辉译.粉末注射成型.长沙:中南大学出版社,2001
    [148]陈魁.实验设计与分析.北京:清华大学出版社,1996
    [149]李和胜,李木森.真空微蒸发镀钛对金刚石晶体形貌及性能的影响.金属热处理,2008,33(9):33-35
    [150]Wang Y H, Zang J B, Wang M Z, et al. Relationship of interface microstructure and adhesion strength between Ti coating and diamond. Key Engineering Materials,2003,250:41-45
    [151]Wang Y H, Zang J B, Wang M Z, et al. Effects of Ti coating on wear stages of diamond in tools. Key Engineering Materials,2001,202-203:199-202
    [152]Wang Y H, Zang J B, Wang M Z, et al. Properties and applications of Ti-coated diamond grits. Journal of Materials Processing Technology,2002,129:369-372
    [153]邹文俊.有机磨具制造.北京:中国标准出版社,2001
    [154]陈建林.精密磨削用树脂CBN砂轮的研究及磨削实验:[湖南大学硕士学位论文].长沙:湖南大学,2006
    [155]谢桂芝.工程陶瓷高速深磨机理及热现象研究:[湖南大学博士学位论文].长沙:湖南大学,2009
    [156]Liao T W, Li K, Mcspadde S B, et al. Wear of diamond wheels in creep-feed grinding of ceramic materials. Wear,1997,211(1):94-103
    [157]李伯民,赵波,李清.磨料、磨具与磨削技术.北京:化学工业出版社,2009
    [158]汪哲能.有序化PDC刀具的制备及其切削性能研究:[湖南大学硕士学位论文].长沙:湖南大学,2009
    [159]邓朝晖,伍俏平,张高峰等.新型砂轮研究进展及其展望.中国机械工程,2010,21(21):2631-2638
    [160]邓福铭,陈启武.PDC刀具复合材料及其应用.北京:化学工业出版社,2003
    [161]Chen F, Xu G, Ma C D, et al. Thermal residual stress of polycrystalline diamond compacts. Trans.Nonferrous Met.Soc.China,2010,20:227-232
    [162]徐西鹏,沈剑云,黄辉.锯切花岗岩过程中金刚石节块磨损特征及影响因素分析.摩擦学学报,1998,18(2):162-166

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700