用户名: 密码: 验证码:
冻融作用对重金属污染土壤中黑麦草发芽和幼苗生长特征的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冻融作用是作用于土壤的非生物应力,属于自然界中最为普通的过程。由于土壤中水—冰相变及其伴生现象使土壤经历一系列物理、化学和生物过程,使本来就不稳定的土水系统变得更加复杂。这些变化对土壤性质和重金属化学形态具有重要影响,进而会影响冻融期植物种子发芽和幼苗生长及其对重金属富集和迁移能力,甚至会影响植物品质和生物量。季节性冻融是我国东北黑土区主要的气候特征,尤其是在全球气候剧烈变化的今天,开展此项目研究具有重要的理论价值和现实意义。
     本论文采用室内模拟实验,研究冻融作用下黑麦草发芽特征、幼苗生长特征、黑麦草体内重金属的分布、黑麦草对重金属的富集和迁移等内容。考察不同冻融条件(冻融频次、土壤含水率和冻结温度)对上述内容的影响及其原因。通过对冻融前后土壤性质和重金属化学形态变化的观察结果进行初步分析,结果发现,在冻融作用下,溶解性有机质成为影响黑麦草发芽、幼苗生长及其对重金属富集和迁移能力影响的重要因素。在此基础上,开展冻融作用对溶解性有机质吸附和降解作用的影响研究。为优化作物栽培、治理土壤重金属污染,更好地为社会生产服务,提供新的科学依据和理论支撑。
Freezing and thawing actions is the biotic stress acting on the soil (Marumoto etal.,1982),the phenomenon of Water-ice Phase Changes and its accompanyingphenomenon would complicate the unstable soil and water system. The changeswould have significant influence on the soil properties and the chemical speciation ofheavy metals, plant seeds germination and seeding growth, plants on the absorption,enrichment and migration ability of element, moreover, impact the quality andbiomass of the plants. Seasonal freeze-thaw is the main climate characteristics of theBlack soil area in North-east China. On the background of the severe changes inglobal climate, The great theoretical and practical significance of the development ofthe research is to reveal the plant seed germination in the freeze-thaw period and themigration transformation rules of the heavy metals in the Soil-Plant system, guide thecrop cultivation and control of the soil pollution from the heavy metal.
     Investigated by laboratory simulation method,we study the characteristics ofperennial ryegrass germination Under the action of freeze-thaw,seeding growthcharacteristics、heavy metal distribution in the body of perennial ryegrass、andenrichment and migration ability to the of heavy metals by ryegrass. Besides, weresearch on the influence on the process mentioned above and the effect in differentthawing situation, as freeze-thaw frequency、soil moisture content and freezingtemperature. Meanwhile, compared by the non-freezing and thawing situation, wecould analyze the preliminary reason of it. Conclude that in the Freeze-thaw situation,adding the outer organic matter could greatly influence the the characteristics ofperennial ryegrass germination, seeding growth characteristics)、 heavy metaldistribution in the body of perennial ryegrass, ryegrass on the enrichment andmigration ability of heavy metals element in the soil pollution from the heavy metal.DOM is one key element influencing the phenomenon and process above. Accordingto the analysis and the situation above, my dissertation is a research on the DOMenvironmental behavior in the freeze-thaw cycle and could conclude as followed:
     The freezing and thawing actions influence the characteristics of perennial ryegrass germination and related to the heavy metal properties. In the soil polluted byPb, the freezing and thawing actions increase the germination rate and index ofryegrass, as long as the inhibitory effect by Cd,Compared by the blanked soilpolluted by the heavy metal, Adding the straw increase the germination rate, thegermination index and potential, contrary to adding the sludge. Thawing situation isalso the key element influenced by the characteristics of perennial ryegrassgermination. which lead by the freeze-thawing actions As the mutual effect andrelation of soil properties and heavy metal form cover the influence by chemical formof heavy metal to the characteristics of perennial ryegrass germination rate, some soilproperties such as DOM, Ph, Eh could be the key element influencing the perennialryegrass germination characteristics. In addition, the freeze-thawing actions arose thedetail changes between soil properties and the perennial ryegrass germinationcharacteristics parameters.
     The freeze-thawing actions prompt the growth of the dry weight of root, stem andthe root length and the stem length, decrease the root-shoot ratio, But the changeinfluenced much by Pb and Cd properties. Freeze-thaw frequency、soil moisturecontent and freezing temperature could influence the perennial ryegrass seedinggrowth, which differs by the changes of the Pb and Cd properties. The reason of thephenomenon above is that the freeze-thawing actions influence much the soilproperties and the heavy metal chemical situation, which influence more complicat-edly to the characteristics of the perennial ryegrass seeding growth.DOM, is the keyparameter, Ec、CEC、CaCO3、Microbial amount of carbon, Cellulose enzyme activityis the key parameters influence the perennial ryegrass seeding growth, soil aggregateis the in dependent parameter. After the freeze-thawing, the heavy metal propertieschanges in the soil, therefore, the influence to the perennial ryegrass seeding growthchanges.
     The distribution of the heavy metal in the body of the perennial ryegrass isinfluenced by the freeze-thawing action,which decrease the content of the heavymetal in the plants stem, increasing the content of Cd in the body and the root.Compared by the blanket soil polluted by the heavy soil, Adding the straw and increase the dry weight of root and the root length, adding the sewage sludge decreasethe dry weight of root and the root length. Thawing situation is also the key elementinfluenced by the heavy metal distribution in the body of the perennial ryegrass. Thereason of the phenomenon above is freeze-thawing actions have significant influenceto the soil properties and the chemical speciation of heavy metals. After thefreeze-thawing, the properties and the chemical speciation of the soil polluted byheavy metal influence more complicatedly. Not only change the relation between theinfluential element and the parameters of the perennial ryegrass seeding growth,which turns out to be the key element impacting the characteristics. Some soilproperties and the form of the heavy metal differs much in the means of thedistribution of the heavy metal in the body of the perennial ryegrass and therelativities of the enrichment and migration ability of heavy metals element beforeand after the freeze-thawing action.
     In the range of the balance concentration in the dissertation, in most of the cases,DOM can not be absorbed and contrarily prompt the desorption release of the blacksoil organic matter. Freeze-thawing action increase the desorption release by theDOM to the black soil organic matter and increase the desorption release system pHand Ec. The effect of DOM to the black soil organic matter increase as the increasingof the pH value and the decrease of the lonic strength. Freezing conditions is the keyelement effecting the absorption of the DOM by the soil. DOM obtained by differentfreeze-thawing condition has the desorption release role and the role perform thesimilar laws as the change of the freezing temperature and the change of the moisturecontent.
     The degradation of the DOM in the straw and sewage sludge can be sorted asquick and slow phase, which conform to the Level one Reaction kinetics equation.Compared by the non-freeze thawing action, freezing thawing action decrease thedegradation rate and velocity, accompany by the decrease of the Ph and the Ec, theincrease of the large molecules and hydrophobic components, which affect greatly bythe lonic strength and the lon type. In the neutral condition, the constant of thedegradation rate in the straw and sewage sludge reaches maximum, and the half-life period reaches minimum. Although in the same degrade period, the rate of the degradeof the sewage sludge differs from the lonic strength, the relation between the lonicstrength, the constant of DOM degrade rate and the half-life period. Compared by theDOM degrade of the sewage sludge, except that the lonic type NaNO3,the degrade ofthe straw DOM needs much longer. The influence of the straw and the sewage sludgeby freeze-thaw frequency、soil moisture content and freezing temperature showscomplicity and validity, which related much to the great diversity by composition andthe nature of the DOM released by the straw and the sewage sludge in differentfreeze-thawing situation.
引文
[1]江永红,宇振荣,马永良.秸秆还田对农田生态系统及作物生长的影响[J].土壤通报,2001,32(5):209-213.
    [2]杜彩艳,祖艳群,李元. pH和有机质对土壤中镉和锌生物有效性影响研究[J].云南农业大学学报,2005,20(4):539–543.
    [3] Staglini W M, doelman P, Salomons W,et al.Chemical time bombs:predicting the unpredictable[J].Environment,1991,33:4-30.
    [4] Konstern C JM. Summary of the workshop on delayed effects of chemicalin soils and sediments(chemical time bombs) with emphasis theScandinavian region[J].Applied Geochemistry,1993,12:295-299.
    [5]符超峰,安芷生,强小科,等.全球变化研究进展和面临的挑战及应对策略[J].干旱区研究,2006,23(1):1-7.
    [6] IMPELLITTERI C A,SAXE J K, COCHRAN M, et al. Predicting thebioavaill-ability of copper and zinc in soils: Modeling thepartitioning of potential bilavailable copper and zinc from solidto soil solution [J].Environmental Toxicology and Chemistry,2003,22(6):1380-1386.
    [7] FERNANDEZ A J, TERNERO M, BARRAGAN F J, et al. An approach tocharacterization of sources of urban airborne particles throughheavy metal speciation[J].Chemosphere-Global Change Science,2000,(2):123-136.
    [8] SASTRE J,HERNANDEZ E,RODRIGUEZ R,et al.Use of sorption andextraction tests to predict the dynamics of the interaction of traceelements in agricultural soils contaminated by a mine tailingaccident [J].Science of the Total Environment,2004,329:261-281.
    [9]韩春梅,王林山,巩宗强等.土壤中重金属形态分析及其环境学意义[J].生态学杂志,2005,24(12):1499-1502.
    [10] Tu C,Zheng C R,Chen H M.Effect of applying chemical fertilizers onforms of lead and cadmium in redsoil [J]. Chemosphere,2000,41:133-138.
    [11] EDWARDS L M. The effect of alternate freezing and thawing on aggregatestability and aggregate size distribution of some prince EdwardIsland soil[J].Journal of Soil Science,1991,42:193-204.
    [12] LEHRSCH GA. Freeze-thaw increase near-surfac eaggregate stability[J].Soil Science,1998,163:63-70.
    [13] HANSSON K, LIMUNEKJ, MIZOGUCHIM, et al.Water flow and heat transportin frozen soil.Numerical solution and freeze-thaw applications[J].VadoseZone Journal,2004,3(2):693-704.
    [14] WOOD P M. Autotrophic and heterotrophic mechanisms for ammoniao-xidation[J].Soil Use and Management,1990,6(1):78-79.
    [15] BURTON D L, BEAUCHAMP E G. Profile nitrous oxide and carbon dioxideconcentrations in a soil subject to freezing[J].Soil Science Societyof America Journal1994,58(1):115-122.
    [16]魏丽红.冻融作用对土壤理化及生物学性质的影响综述[J].安徽农业科学,2009,37(11):5054-5057.
    [17] Lehrsch G A. Freeze-thaw cycles increase near-surface ag-gregatestability[J]. Journal of Soil Science,1998,163:63-70.
    [18] Taskin O, Ferhan F. Effect of freezing and thawing processes on soilaggregate stability[J].CATENA,2003,,52:1-8.
    [19] Janzen HH,Campbell CA,and Ellert BH,et al. Soil organic matterdynamics and their relationship to soil quality.In:Gregorich EG andCarter MR eds.Soil Quality for Crop Production and Ecosystem Health.[J].Development in Soil Science,1997,25:277-291.
    [20] Kononova MM. Soil organic matter,its nature,its role in soilformation and in fertility[M].2nded.London:Pergamon Press.1964:5-20.
    [21] Brandy NC,and Well RR. The Nature and Properties of Soils[M].20thed.New Jersey:Prentice Hall.1999:446-489.
    [22] Christensen BT.Physical fractionation of soil and organic matter inprimary particle size and density separates[J].Adv Soil Sci,1992,20:2-90.
    [23] Gregorich EG,Carter MR,and Angers DA,et al. Towards a minimum dataset to assess soil organic matter quality in agriculturalsoils[J].Can JSoil Sci,1994,74:367-385.
    [24] Gregorich EG,Carter MR, Doran JW,et al. Biological attributers ofsoil quality.In:Gregorich EG and Carter MR eds.Soil Quality for CropProduction and Ecosystem Health[J].Development in Soil Science.1997,25:81-113.
    [25]中国科学院南京土壤研究所主编.中国土壤[M].北京:科学出版社,1978:45-47.
    [26]蒋端生.南岳森林土壤有机质的研究[J].湖南农业科学,2001,2:26-29.
    [27]周存宇.凋落物在森林生态系统中的作用及其研究进展[J].湖北农学院学报,2003,23(2):140-145.
    [28]李叔南,夏建国,周建新,等.碧峰峡森林土壤性状研究[J].四川林业科技,1995,16(4):13-19.
    [29]张学利,杨树军,刘亚萍,等.章古台固沙林主要树种根际土壤性质研究[J].中国沙漠,2004,24(1):72-76.
    [30] ARJA H. VUORINEN,MARITT A H. SAHARINEN. Effects of soil organicmatter extracted from soil on acid phosphomonoesterase[J].SoilBiol.Biochem.,1996,28:1477-1481.
    [31]贾陈忠,孔淑琼,张彩香.溶解性有机物的特征及对环境污染物的影响[J].广州化工,2012,40(3):98-100.
    [32] TEMMINGHOFF EJ M,VANDERZEE S E M. Copper mobility in a copper-Contaminated sandy soil as affected by pH and solid and dissolvedorganicmatter[J].Environ Sci Techno,1997,31:1109-1115.
    [33] AMYT KAN,MASON B TOMSON.Groundwater transportationof hydrophobicOrganic compounds inthepresenceof dissolvedorganicmatter[J].Environmental Toxicology and Chemistry,1990,9(3):253-263.
    [34] EMMA S KRITZBERG,SIL KE LANGENHEDER. Influence of dissolvedorganicmatter source on lake bacteria plankton structure and function[J].Microbiology Ecology,2006,56(3):406-417.
    [35]成卫,李忠佩,刘丽,等.溶解性有机质在红壤水稻土碳氮转化中的作用[J].生态环境,2006,15(6):1300-1304.
    [36]王良梅,周立祥.陆地生态系统中水溶性有机物的动态及其环境学意义[J].应用生态学报,2003,14(11):2019-2025.
    [37]李淑芬,俞元春,何展.土壤溶解有机碳的研究进展[J].土壤与环境,2002,1(4):422-429.
    [38]赵劲松,张旭东,袁星,等.土壤溶解性有机质的特性与环境意义[J].应用生态学报,2003,14(l):126-130.
    [39] KALBITZ K,SOLINGER S,PARK J H,et al.Controls on the dynamics ofdissolved organic matter in soils:A review[J].Soil Sci,2000,165:277-304.
    [40] William H.MeDowell.Dissolved organic matter in soils-futuredireetion and unanswered questions[J].Geoderma,2003,113(3):179-186.
    [41] Guggenberger G,Zech W.Composition and dynamics of dissolved organiccarbohydrates andlignin-degeneration produets in two coniferousforests,N.E,Bavaria Germany [J]. Soil Bio-logy and Biochemistry,1994,26:19-27.
    [42] GRASSO D, CHIN Y P, WEBER W J J.Structural and behavioral charac-teristics of a comercial humic acid and natural dissolved aquaticorganic matter[J].Chemosphere,1990,21(10-11):1181-1198.
    [43] HOMANN P S, GRIGAO D F. Molecular weight distribution of solubleorganics from laboratory-manipulated surface soils[J]. Soil Sci SocAm,1992,56:1305-1310.
    [44] Leenheer J A,Huffman Jr E W D.Classification of organic solutes inwater by using macroparticular resins[J].J Res US Geol Surey,1976,4(6):737-751.
    [45]李睿,屈明.土壤溶解性有机质的生态环境效应[J].生态环境,2004,13(2):271-275.
    [46] RAINERMWAMON, RONALDBENNER.Bacterial utilization of different sizeclasses of dissolved organic matter[J].Limnology and Oceanography,1996,41(1):41-51.
    [47] KARSTENKALBITZ, DAVIDSCHWESIG. Changes inproperties of soil deriveddissolved organic matter inducedbybiodegradation[J].Soil Biolog-yand Biochemistry,2003,35(8):1129-1142.
    [48] MYNENI SCB, BROWN JT,MARTINEZ GA, et al. Imagingof humicsubstancemacro-molecular structuresinwater andsoils[J].Science,1999,286:1335-1337.
    [49] Ling W T, Xu J M, Gao YZ. Dissolved organicmatter enhances thesorption of atrazine by soil[J].Biol1Fertil1Soils,2006,10:1007-1014.
    [50] Davis AD. Adsorption of natural dissolved organicmatter at theoxide/water interface [J]. Geochim1Cosmochim1Acta,1882,46:2381-2393.
    [51] KARSTEN KALBIT, DAVID SCHWESIG,JANET RETHEMEYER.Stabilization ofdissolved organic matter by sorption to the mineral soil[J].SoilBiologyand Biochemistry,2005,37(7):1319-1331.
    [52]韩成卫,李忠佩.溶解性有机碳在红壤水稻土中的吸附及其影响因素[J].生态学报,2008,28(1):445-451.
    [53]段雷,周益,杨永森,等.酸化及化学修复剂对森林土壤有机物淋溶的影响[J].环境科学,2008,29(2):440-445.
    [54] ASHWORTH DJ,ALLOWAYA B J.Soil mobility of sewage sludge-deriveddissolved organic matter, copper, nickel and zinc[J]. EnvironmentalPollution,2004,127(1):137-144.
    [55]夏利亚,来俊卿.土壤重金属污染及防治对策[J].能源环境保护.2011,25(4):54-58.
    [56]韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展[J].生态学报,2001,1(7):1197-1203.
    [57]曹仁林.关于我国农业环境和农产品污染问题的思考.香山会议第162次学术讨论会筹备组(编).经济快速地区环境质量演变及持续发展[C].北京:香山,2000:44-46.
    [58]刘清,王子健,汤鸿霄.重金属形态与生物毒性及生物有效性关系的研究进展[J].环境科学,1996,17(1):89-92.
    [59] Allen H E, Hall R H, Brisbin T D.Metal speciation effects on aquatictoxicity[J].Environ.Sci.Technol,1980,14:441-443.
    [60]王学锋,杨艳琴.土壤-植物系统重金属形态分析和生物有效性研究进展[J].化工环保,2004,24(1):24-28.
    [61] Tessier A. Sequential extraction procedure for the speciation ofparticulate,trace metals[J].Anal.Chem.,1979,51(7):844-851.
    [62]钟晓兰,周生路,黄明丽,等.土壤重金属的形态分布特征及其影响因素[J].生态环境学报,2009,18(4):1266-1273.
    [63]张亚丽,沈其荣,谢学俭,等.猪粪和稻草对镉污染黄泥土生物活性的影响[J].应用生态学报,2003,14(1):1997-2000.
    [64]郭平.长春市土壤重金属污染机理与防治对策研究[D].长春:吉林大学,2005.
    [65]陈守莉,孙波,王平祖,等.污染水稻土中重金属的形态分布及其影响因素[J].土壤,2007,39(3):375-380.
    [66]刘霞,刘树庆,王胜爱,等.河北主要土壤中Cd和Pb的形态分布及其影响因素[J].土壤学报,2003,40(3):393-401.
    [67] Tu C, Zheng C R, Chen HM. Effect of applying chemical fertilizerson formsof lead and cadmium in red soil[J].Chemosphere,2000,41:133-138.
    [68] Sloan J J,Dowdy R H,Dola n M S,et al. Long-term effects of biosolidson heavy metal bioavailabilty in a gricultural soils[J].Journal ofEnvironment Quality,1997,26:966-974.
    [69] Brown Sally L,Chaney Rufus L,Angle J Scott,et al. The phytoa-vailability of cadmium to lettue in long-term biosolids–amendedsoils[J].Journal of Environment Quality,1998,27:1071-1078.
    [70]王果,李建超,杨佩玉,等.有机物料影响下土壤溶液中镉形态及其有效性研究[J].环境科学学报,2000,20(5):621-626.
    [71] Li Z,Shuman L M.Mobility of Zn,Cd and Pb in soils as affected bypoultry litter extract-Ⅱ.Redistribution among soil fractions [J].Environmental Pollution,1997,95(2):227-234.
    [72]李剑超,王果.外源铜镉及添加有机物对土壤溶液性质影响研究[J].武汉科技学院学报,2003,16(2):64-67.
    [73] L C Tan,V Choa,J H Tay.The influence of pH on heavy metals frommunicipal solid waste incinerator flyash[J].Environmenta Monitor-ing and Assessment,1997,44:275-284.
    [74]王果.三种有机肥水溶性分解产物对铜、镉吸附的影响[J].土壤学报,1999,36(2):179-188.
    [75]陈志军,白厚义,陈佩琼,等.溶解性有机质对镉在蔬菜中累积的影响[J].广西农业大学学报,1997,16(2):129-132.
    [76]孙敬亮,武文钧,赵瑞雪,等.重金属土壤污染及植物修复技术[J].长春理工大学学报,2003,4(12):46-48.
    [77]廖敏,黄昌勇,谢正苗.pH对镉在土水系统中的迁移和形态的影响[J].环境科学学报,1999,9(10):81-86.
    [78]刘俊华,王文华,彭安.土壤性质对土壤中汞赋存形态的影响[J].环境化学,2000,19(5):475-477.
    [79]杨志军,张志国,曹金勇,等.土壤与蔬菜重金属含量相关性的初步研究[JI.淮阴工学院学报,2003,12(3):85-88.
    [80]武淑华,朱伊君,顾亚中.小麦重金属含量与土壤质量之间关系研究[J].黑龙江环境通报,2002,26(3):97-10.
    [81]冯绍元,邵洪波,黄冠华.重金属在小麦蔬菜体中残留特征的田间试验研究[J].农业工程学报,2002,18(4):113-11.
    [82]多立安,高玉葆,赵树兰.重金属递进胁迫对黑麦草初期生长的影响[J].植物研究,2006,26(1):117-122.
    [83]王彦梅,张玉秀,柴团耀,等.重金属对小麦和黑麦种子萌发及幼苗生长的影响[J].中国生态农业学报,2008,16(3):802-804.
    [84]朱嬿婉,沈壬水,钱钦文.土壤中金属元素的五个组分的连续提取法[J].土壤,1989,10(5):163-166.
    [85] Hamon R E,Lorenz S E,Christensen T H,et al.Changes in trace metalspeeies and other Components of the thizosphere during growth ofradish[J].Plant,Cell and Environ,1995,18:749-756.
    [86] Pierzynski G M,Schwab A P.Bioavailibility of zine,cadmium and leadin a metal-contamined alluvial soil[J].J Environ.Qual.1993,22:247-254.
    [87]章明奎,王美清.杭州市城市土壤重金属的潜在可淋洗性研究[J].土壤学报,2003,40(6):915-920.
    [88]刘帅,于贵瑞,浅沼顺,等.蒙古高原中部草地土壤冻融过程及土壤含水量分布[J].土壤学报,2009,46(1):46-51.
    [89]王风,韩晓增,李良皓,等.冻融过程对黑土水稳性团聚体含量影响[J].冰川冻土,2009,31(5):915-919.
    [90] Mostaghimi S,Young R A,Wilts A R,et al.Effects of frost actionon soil aggregate stability[J]. American Society of AgriculturalEngineers,1988,31:435-439.
    [91] Qztas T,Fayetorbay F.Effect of freezing and thawing processes onsoil aggregate stability[J].Catena,2002,52:1-8.
    [92]温美丽,刘宝元,魏欣,等.冻融作用对东北黑土容重的影响[J].土壤通报,2009,40(3):492-495.
    [93]樊贵盛,郑秀清,贾宏骥.季节性冻融土壤的冻融特点和减渗特性的研究[J].土壤学报,2000,37(1):24-32.
    [94]于晓菲,王国平,吕宪国,等.冻融交替处理下湿地土壤可溶性铁的动态变化研究[J].环境科学,2010,31(5):1387-1394.
    [95]李忠佩,张桃林.可溶性有机碳的含量动态及其与土壤有机碳矿化的关系[J].土壤学报,2004,41(4):544-552.
    [96] Larsen K S,Jonasson S,Michelsen A.Repeated freeze-thaw cycles andtheir effects on biological processes in two arctic ecosystemtypes[J].Applied Soil Eclogy,2002,21:187-95.
    [97]党秀丽,张玉玲,等.冻融作用对土壤中重金属镉赋存形态的影响[J].土壤通报,2008,39(4):826-830.
    [98]汪洋,刘景双,王国平,等.冻融频次与含水量对黑土中镉赋存形态的影响[J].中国环境科学,2007,27(5):693-697.
    [99]王晨,王海燕,赵琨,胡文.硅对镉、锌、铅复合污染土壤中黑麦草生理生化性质的影响[J].生态环境,2008,17(6):2240-2245.
    [100] Novak J M,Bertsch P M,Mills G L.Carbon-13nuclear magnetic resonancespectra of soil water-soluble organic carbon[J].Environ Qual,1992,21:537-539.
    [101]王瑾.根系分泌物对有机污染物PCP溶解性影响研究[D].长春:吉林大学,2008.
    [102]占新华,周立祥,黄焕忠.城市污泥对非过程中水溶性有机物的理化特性变化[J].中国环境科学,2003,23(4):390-394.
    [103]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999.
    [104]宋杨.冻融作用下外源有机质对东北耕地土壤中重金属Pb和Cd赋存形态的影响[D].长春:吉林大学,2012.
    [105] Tessier A, Campbell P, Bissoin M.Sequential Extraction Procedure for the Spe-ciation of Particulate Trace Metals[J].Analalytical Chemistry,1979,51(7):844-850.
    [106]张福平.植物生长调节剂对跳舞草种子发芽与幼苗生长的影响[J].安徽农业科学,2006,34(12):2644-2645,2647.
    [107] Neergaadhe B,Petersen L. Influence of arbuscular my corrhizal fungion soil structure and aggregate stability of vertison[J].Plant andSoil,2000,218:173-183.
    [108] Tisdall J M.Possible role of soil microorganisms in aggregation insoils[J].Plant and Soil,1994,159:115-121.
    [109]汪太明,香宝,孙强,等.交替冻融对松花江流域典型土壤可溶性有机碳的影响[J].土壤通报,2012,4(3):685-689.
    [110] Staricka J A,Benoit G R. Freeze-drying effects on wet and dry soilaggregate stability[J].Soil Science Society of America,1995,599:218-223.
    [111] Herrmann A,Witter E. Sources of C and N contributing to the flushin mineralization upon freeze-thaw cycles in soils[J].Soil Biologyand Biochemistry,2002,34:1495-1505.
    [112] Larsen K S, Jonasson S, Michelsen A.Repeated freeze-thaw cycles andtheir effects on biological processes in two arctic ecosystem types[J].Applied Soil Ecology,2002,21:187-195.
    [113]李忠佩,张桃林,陈碧云.可溶性有机碳的含量动态及其与土壤有机碳矿化的关系[J].土壤学报,2004,41(4):544-552.
    [114]马红媛,梁正伟.不同pH值土壤及其浸提液对羊草种子萌发和幼苗生长的影响[J].植物学通报,2007,24(2):181-188.
    [115] Bie Z,Ito T,Shinohara Y. Effects of sodium sulfate and sodiumbicarbonate on the growth, gas exchange and mineral composition oflettuce[J].Sci Hortic,2004,99:215-224.
    [116] Shi D C,Yin S J,Yang G H,Zhao K F.Citric acid accumulation inan alkali-tolerant plant Puccinellia tenuiflora under alkalinestress [J].Acta Bot Sin,2002,44:537-540.
    [117] Rivard PG,Woodard PM.Light,ash,and pH effects on the germinationand seeding growth of Typha latifolia(cattail)[J].Can J Bot,1989,67:2783-2787.
    [118] Arts GHP,van der Heijden RAJM.Germination ecology of Littorellauniflora(L)[J].Aschers Aquat Bot,1990,37:139-151.
    [119] Stubbendleck J.Effect of pH on germination of three grass species[J].J Range Manage,1974,27:78-79.
    [120] Tisdall J M. Possible role of soil microorganisms in aggregationin soils[J].Plant and Soil,1994,159:115-121.
    [121] Neergaadhe B, Petersen L.Influence of arbuscular my corrhizal fungion soil structure and aggregate stability of vertison[J].Plant andSoil,2000,218:173-183.
    [122]冯志红,闫立英,王久兴,等.连作栽培中自毒物质对黄瓜种子萌发和幼苗生长的影响[J].种子,2005,2(6):41-44.
    [123]王美丽,李军,朱兆洲,等.土壤溶解性有机质的研究进展[J].矿物岩石地球化学通报.2010,29(3):34-308.
    [124]姜培坤,徐秋芳,杨芳.雷竹土壤水溶性有机碳及其与重金属的关系[J].浙江林学院学报.2003,20(1):8-11.
    [125]陈玉玲,曹敏.腐植酸对植物生长的促进作用及影响因素[J].腐植酸,1999(2),40-41.
    [126]胡霭堂.植物营养学[M].北京:北京农业大学出版社,1995.
    [127] Fageria N K, Zimmermann F J P. Interaction among P,Zn,and lime inuplang rice.R.Bras.Ci.Solo.,1979,3:88-92.
    [128]宋日,刘利,吴春胜,等.土壤团聚体大小对豆出苗和幼苗生长的影响[J].中国油料作物学报,2009,31(2):223-227.
    [129] Song X H,Wang K,Guo L L,Zhao F Y. Effects of Catalase andAscorbate Peroxidase on the Root Growth of Rice under CadmiumStress[J].Agricultural Basic Science and Technology,2011,12(9):1256-1259.
    [130]张晓燕,刘广千,赵佳,等.过氧化氢对拟南芥根生长的影响[J].现代农业科技,2010,23:20-21.
    [131] Sharma S,Szele Z,Schilling R,Munch J C,Schloter M.Influence offreeze-thaw stress on the structure and function of microbialcommunities and denitrifying population in soil[J].Applied andEnvironmental Microbiology,2006,72(3):2148-2159.
    [132] Oztas T, Fayetorbay F.Effect of freezing and thawing processes onsoil aggregate stability[J].Catena,2003,52:1-8.
    [133] Mahsa Haei,Johannes Rousk, Ulrik Ilstedt, Mats quist,Erland B th,Hjalmar Laudon.Effects of soil frost on growth,composition andrespiration of the soil microbial decomposer community[J].SoilBiology&Biochemistry,2011,43:2069-2077.
    [134] Guggenberger G.Microbial Contributions to the aggregation ofaccultivated grassland Soi amended with starch[J].Soil Bio.Bioehern.,1999,31:407-419.
    [135]任平,刘成更,阮祥稳.纤维素酶对油松种子发芽及幼苗生长的影响[J].西北林学院学报,2005,20(1):78-79.
    [136]韩玮.还田秸秆配施外源酶效应研究[D].泰安:山东农业大学,2006.
    [137]张良运,李恋卿,潘根兴,等.重金属污染可能改变稻田土壤团聚体组成及其重金属分配[J].应用生态学报,2009,20(11):2806-2812.
    [138] Von Wandruszka R. Phosphorus retention in calcareous soils and theeffect of organic matter on its mobility[J].Geochem Trans,2006,7:6.
    [139] Tunesi S,Poggi V, Gessa C.Phosphate adsorption and precipitationin calcareous soils: The role of calcium ions in solution andcarbonate minerals[J].Nutr Cycl Agroecosyst,1999,53:219-227.
    [140] Cross A F,Schlesinger W H.Biological and geochemical controls onphosphorus fractions in semiarid soils[J].Biogeochemistry,2001,52:155-172.
    [141]卢瑛,龚子同,张甘霖.南京城市土壤中重金属的化学形态分布[J].环境化学,2003,22(2):131-136.
    [142]王小波,王艳,卢树昌,等.蛭石对镉污染土壤油菜和土壤中镉形态的影响[J].生态环境,2008,17(6):2246-2248.
    [143]国家环境保护总局.土壤环境监测技术规范[S].北京:中国环境出版社,2004.
    [144] Xu W H,Xiong Z T,Huang H. Effect of Zn stress on Zn accumulationand anti-oxidant enzymes activity in four varieties of Ryegrass[J].Wuhan University Journal of Natural Sciences,2005,10(6):1051-1056.
    [145]龚仓,马玲玲,成杭新,等.典型农耕区黑土和沼泽土团聚体颗粒中重金属的分布特征解析[J].生态环境学报,2012,21(9):1635-1639.
    [146]王芳,李恋卿,董长勋,等.黄泥土和乌栅中不同粒径微团聚体对Cu2+的吸附与解吸[J].环境化学,2007,26(2):135-140.
    [147] Eriksson J E. The influence of pH, soil type and time on adsorptionand uptake by plants of Cd added to the soil[J].Water,Air and SoilPollut,1989,48:317-335.
    [148] He Q B, Singh B R. Crop uptake of cadmium from phosphorus fertilizers.I. Yield and cadmium content [J].Water, Air and Soil Pollut,1994,74:251-265.
    [149] Andersson A, Siman G.Levels of Cd and some other trace elements insoils and crops as influenced by lime and fertilizer levels[J].ActaAgric Scand,1991,41:3-11.
    [150] McLaughlin M J, Tiller KG, Naidu R, Stevens D P. Review: the behaviorand environmental impact of contaminants in fertilizers[J].Aust JSoil Res,1996,34:1-54.
    [151] Singh B R, Narwal R P, Jeng A S, Almaas A. Crop uptake andextractability of cadmium in soils naturally high in metals atdifferent pH levels [J].Commun.Soil Sci Plant Anal,1995,26:2133-2142.
    [152]李俊莉,宋华明.土壤理化性质对重金属行为的影响分析[J].环境科学动态,2003,1:2-26.
    [153] William H McDowell. Dissolved organic matter in soils-future direc-tions and unanswered questions[J].Geoderma,2003,113(3):179-186.
    [154] P. M.Jardine,J. F.McCarthy,N. L.Weber. Mechanisms of DissolvedOrganic Carbon Adsorption on Soil[J].Soil Sci.Soc.Am.J.,1989,53(5):1378-1385.
    [155] Wershaw R.L.,D.J.Pinckney.Isolation and characterization ofclayhumic complexes[J].Contaminants and sediments,1980,2:207-219.
    [156] Leenheer J A.Study of sorption of complex organic solute mixtureson sediments by dissolved organic carbon fractionation analysis [J].Contaminants and sediments: Analysis, chemistry, and biology,1980,2:267-278.
    [157]付美云.垃圾渗滤液中水溶性有机物在土壤中的行为及其环境影响[D].南京:南京农业大学,2005.
    [158] Wei Liangliang, Zhao Qingliang, Xue Shuang. Behavior andcharacteristics of DOM during a laboratory-scale horizontalsubsurface flow wetland treatment: Effect of DOM derived from leavesand roots[J]. Ecological Engineering,2009,35:1405-1414.
    [159] Davis J A. Adsorption of natural dissolved organic matter at theoxide/water interface[J]. Geochim.Cosmochim.Acta,1982,46:2381-2393.
    [160] Tipping E,Woof C,Rigg E,et al.Climatc influences on the leachingof dissolved organic matter from upland UK moorland soils,investigated by a field manipulation experiment[J].EnvironmentInternational,1999,25(1):83-95.
    [161] Shen Y H.Sorption of Natural Dissolved Organic Matter on Soil[J].Chemoshere,1999,38(7):1505-1515.
    [162] Riffaldi R, Levi-Minzi R, Saviozzi A, Benetti A. Adsorption on soilof dissolved organic carbon from farmyard manure[J].Agric.Ecosyst.Environ.,1998,69:113-119.
    [163] Don A, Kalbitz K.Amounts and degradability of dissolved organiccarbonfromfoliar litter at differentdecomposition stages[J].SoilBiol.Biochem.,2005,37:2171-2179.
    [164]周江敏,陈华林,唐东民,等.秸秆施用后土壤溶解性有机质的动态变化[J].植物营养与肥料学报,2008,14(4):678-684.
    [165] Han N Z,Thompson M L.Copper-binding ability of dissolved organicmatter derived fromanaerobicallydigested biosolids[J].J EnvironQual,1999,28:939-944.
    [166] Garcia C, Hernandez T, Costa F, et al. Humic substances in compostedsewage sludge[J].Waste management and research,1991,9:189-194.
    [167]占新华,周立祥,沈其荣,等.污泥堆肥过程中水溶性有机物光谱学变化特征[J].环境科学学报,2001,21(4):470-474.
    [168] Chen Y, Senesi N, Schnitzer M. Information provided on humic sub-stances by E4/E6ratio[J].Soil Sc Soc AmJ,1997,41:352-358.
    [169]张雪英,张宇峰.污泥堆肥前后水溶性有机物的性质变化研究[J].农业环境科学学报,2008,27(4):1667-1671.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700