用户名: 密码: 验证码:
铜在土壤上的吸附行为及共存污染物对其吸附的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤重金属污染已经成为东北老工业基地备受关注的环境问题。吸附是影响重金属污染物在土壤中迁移转化、生物有效性、生物累积性和归宿的主要因素。开展重金属污染物的吸附行为及其在复合污染条件下共存污染物对其吸附的影响,将有助于深入了解和预测该地区真实情况下无机污染物的环境行为和生态风险,并对其污染控制和治理提供科学依据。
     本文在研究Pb2+、Zn2+和Cu2+在土壤-水界面的吸附行为和主要影响因素的基础上,探讨了土壤中固相组成和有机质对Cu2+吸附的贡献和作用。开展了Pb2+和Cu2+在复合污染中的竞争吸附机理研究。重点考察阿特拉津、噻吩璜隆和2,4-D对Cu2+在土壤上的吸附行为的影响。论文取得了以下的研究成果:
     (1)采用静态批实验的方法研究了Pb2+、Zn2+和Cu2+在土壤上的吸附性能和主要影响因素。结果表明:Freundlich方程很好地描述了土壤对Pb2+、Zn2+和Cu2+的吸附等温线,重金属在土壤上的吸附系数与土壤pH、有机碳含量、阳离子交换量(CEC)和游离氧化铁(Fed)的含量有关。溶液的pH和离子强度是影响金属吸附的主要因素,随着pH的上升和离子强度的下降,土壤对金属的吸附量和KF值都增大。Cu2+,Zn2+和Pb2+的吸附是一个自发的放热过程。
     (2)对比研究脱除有机质前后土壤对铜的吸附行为的变化发现,脱除有机质后土壤的理化性质发生了明显变化,有机质是铜在土壤上吸附的主要来源,溶解性有机碳会提高铜的移动性,脱除有机质后的土壤对铜的吸附能力明显下降。Freundlich和Langmuir方程都能很好地描述铜在脱除有机质前后土壤上的吸附等温线。对吸附等温方程的参数与土壤理化性质进行相关分析表明:原状土中pHH2O对KF与贡献率达到84.5%,CEC和有机质(OC)对n的贡献率达到96.1%以上;而脱除有机质后的土壤,KF和土壤性质的相关性发生了明显变化,CEC对n的贡献率只有65.4%。原状土中Qmax与OC、Ald、CEC都相关,而脱除有机质后的土壤Qmax只与CEC呈显著地正相关。
     (3)研究在单一吸附体系和二元金属共存体系中Cu2+和Pb2+的竞争吸附和解吸行为。结果发现,Cu2+和Pb2+的解吸等温线和吸附等温线类似,都可以用Freundlich方程描述(R2>0.96)。土壤的理化性质影响金属的吸附能力,在单一体系和二元金属体系中,土壤对Pb2+的吸附能力都大于Cu2+。在两种金属共存的体系中,共存金属离子的存在影响两种金属的吸附总量,表现为金属离子之间的竞争吸附作用。红外光谱分析表明,土壤表面的羧基、羟基和羰基都能与金属离子发生键合作用。
     (4)研究了噻吩璜隆、2,4-D和阿特拉津影响土壤铜的吸附行为及作用机理。结果发现:铜在土壤上的吸附量随着噻吩璜隆和2,4-D浓度的增加而下降,原因在于噻吩璜隆和2,4-D的出现,土壤表面的Zeta电位和溶液pH下降,DOC溶出增加,同时噻吩璜隆、2,4-D和DOC与铜在溶液中形成的络合物与土壤表面的亲和力下降。然而,阿特拉津与铜共存,土壤溶液pH上升、DOC溶出下降和吸附态的阿特拉津以“桥”键增加了铜的吸附位点,导致了土壤对铜的吸附能力随着阿特拉津浓度的增大而显著提高。
     以上的研究数据和结果有助于了解和预测东北地区土壤中重金属污染物的生态风险和环境安全,为探讨复合污染中污染物之间的吸附规律及其在农药污染地区其它无机污染物的归趋和迁移转化提供科学依据。
Soil contamination of heavy metals has become an increasingly important environmental issue in Northeast of China. Investigation of sorption phenomena of heavy metals and potential effects by other coexistence pollutants in combined pollution is of great importance, because these processes are associated with the mobility, bioavailability, bioaccumulation, and finally the fate of heavy metal pollutants in the soil environment. The further understanding of the interaction mechanism between other coexistent organic compound and heavy metals will help us to apprehend and evaluate the complex behaviors and ecological risks of heavy metals in the actual environment, and will offer scientific basis for regulation, control, and remediation of inorganic pollutants in the Northeast of China where heavy metals often co-exist with other pollutants.
     Based on the sorption of Pb2+, Cu2+and Zn2+to soil-water interface, the sorption mechanisms of Pb+and Cu2+in combined pollution environment were discussed detailedly, including many factors which influence the sorption process. In addition, Sorption behavior of Cu2+was attributed to mineral composition and organic matter in soil. Besides, the sorption processes and interaction effects of Cu2+in other co-exiting pesticides were investigated. The main conclusions of this dissertation are as follows:
     (1) Batch experiments were conducted to investigate the sorption characteristics of Pb2+, Cu2+and Zn2+by soil and main factors influendcing sorption effect were examined.The sorption isotherms of three metals were well reproduced using the Freundlich model. Sorption coefficients for heavy metals were depended on soil pH content, organic carbon, cation-exchange capacity (CEC) and free iron oxide (Ald). The pH and ionic strength of soil solution were two primary parameters for influence on sorption of heavy metals. Sorption amount of metal and sorption coefficients (KF) increased with the increase of pH and the decrease of ionic strength. The sorption of Pb2+, Cu2+, and Zn2+on soil was exothermic and spontaneous.
     (2) The behavior of Cu2+in untreated samples and soil samples treated with hydrogen peroxide to remove organic matter in the soil was compared. The results showed that there were obvious changes in the physico-chemical properties of the soil which was removed of organic matter. Soil organic matter was response to the sorption of Cu2+on soil and dissolved organic carbon could facilitate the mobility of the metal, and the Cu2+sorption of the samples treated depressed. The adsorption data were fitted well by the Freundlich equation and the Langmuir equation. Multiple regression analyses of the sorption isotherm parameters and soil physico-chemical properties suggested that pH2O accounted for about84.5%of the variance in the Freundlich pre-exponential parameter (XF) of original soil, and CEC and organic carbon (OC) accounted for65.4%of the variance in the Freundlich exponent(n); KF of treated soil was independent of soil properties and CEC accounted for only65.4%of n of treated soil; the Langmuir coefficient (Qmax) of original soil was linear with OC, Ald and CEC, but after soil treated, Qmax was remarkably dependent of CEC.
     (3) The competitive sorption and desorption of Pb2+and Cu2+in soil were investigated using single and binary metal solutions. The desorption isotherms of Cu2+and Pb2+were similar to the sorption isotherms, with well fit of Freundlich equation (R2>0.96). The results showed that the soils had greater sorption capacity for Pb2+than Cu2+in single and binary metal solutions, which was affected strongly by the soil characteristics. In the binary metal solution containing Pb2+and Cu2+(1:1molar ratio), the amout of Pb2+and Cu2+sorption was affected by the simultaneous presence of the two metals, indicating the competition between the two metals. The results of Fourier transform infrared (FT-IR) spectroscopy revealed that the carboxyl, hydroxyl and carbonyl groups were the main binding sites of metal ions.
     (4) The effects of thifensulfuron (TS),2,4-dichlorophenoxyacetic acid (2,4-D), and atrazine (AT) on the sorption of Cu2+on soil were investigated. The results indicated that thifensulfuron and2,4-D markedly diminished the sorption of Cu2+Mechanisms of the suppression effects of thifensulfuron and2,4-D on the Cu2+sorption included the following:the degrease of equilibrium solutionl pH and soil zeta potential simultaneity occurred in the presence of thifensulfuron and2,4-D, the increase of equilibrium solutionl DOC, the DOC-Cu, TS-Cu and2,4-D-Cu complexes had the weaker affinity than Cu2+ion itself, hence decreased the sorption of Cu2+. The presence of AT significantly increased Cu2+sorption, which could be due to increasing Cu2+sorption via the atrazine bridge, or due to the increase of equilibrium solutionl pH and the decrease of equilibrium solutionl DOC.
     The above results provide data to predict and model the environmrntal health and ecological risk of heavy metals, improve the understanding of sorption mechanisms of pulltants in combined contamination, and offer a theoretical gist for the sorption of inorganic pollutants in pesticide-contaminated soil.
引文
[1]陈怀满.土壤-植物系统中的中金属污染[M].北京:科学出版社.1996:168-194.
    [2]薛艳,沈振国,周东美.蔬菜对土壤重金属吸收的差异与机理[J].土壤,2005,37(1):32-36.
    [3]弗斯特纳U,维特曼G T W.水环境的金属污染[M].王忠玉,姚重华译.北京:海洋出版社,1987:7-13.
    [4]Elrashidi M. A., O'Connor G. A. Influence of solution composition on sorption of zinc by soils [J]. Soil Science Society of America Journal,1982,46(6):1153-1158.
    [5]Zhou L. X., Wong J.W. C. Effect of dissolved organic matter from sludge and sludge compost on soil copper sorption [J]. Journal of Environmental Quality,2001,30:878-883.
    [6]Naidul R., Sumner M. E., Harter R. D. Sorption of heavy metals in strongly weathered soils: An overview [J]. Environmental Geochemistry and Health,1998,20:5-9.
    [7]陈芳,董元华,安琼,钦绳武.长期肥料定位试验条件下土壤中重金属的含量变化[J].土壤,2005,37(3):308-311.
    [8]朱立禄,阎百兴,王莉霞.第二松花江下游稻田土壤重金属含量特征及来源分析[J].应用生态学报,2010,21(11):2965-2970.
    [9]郑喜珅,鲁安怀,高翔,赵谨,郑德圣.土壤中重金属污染现状与防治方法[J].土壤与环境,2002,11(1):79-84.
    [10]朱宇恩,赵烨,李强,陈志凡,乔捷娟,吉艳琴.北京城郊污灌土壤—小麦体系重金属潜在健康风险评价[J].农业环境科学学报,2011,30(2):263-270.
    [11]Jung M.C., Thornton I. Heavy metal contamination of soils and plants in the vicinity of a lead-zinc mine in Korea [J]. Applied Geochemistry,1996,11(1-2):53-59.
    [12]王莹,赵全利,胡莹,杜心,葛伟,刘文菊.上虞某铅锌矿区周边土壤植物重金属含量及其污染评价[J].环境化学,2011,30(7):1354-1360.
    [13]李仙粉,周玉松,任福民,吕志敏.上海城市污泥成分特性及分析方法研究[J].中国环境监测,2006,22(6):48-50.
    [14]Huang C.P., Stumm W. Specific adsorption of cations onto hydrous y-A12O3 surface [J]. Journal of Colloid and Interface Science,1973,43(2):409-420.
    [15]Hohl H.. Stumm W. Interaction of Pb2+ with Hydrous γ-Al2O3 [J]. Journal of Colloid and Interface Science,1976,55(2):281-288.
    [16]Anderson M.A., Ferguson J.F., Gavis J. Arsenate adsorption on amorphous aluminum hydroxide [J]. Journal of Colloid and Interface Science,1976,54(3):391-399.
    [17]Osthols E., Manceau A., Farges F., et al.Adsorption of thorium on amorphous silica:an EXAFS study [J]. Journal of Colloid and Interface Science,1997,194(1):10-21.
    [18]Papelis C., Brown Jr.G.E., Parks G. A. et al. X-ray absorption spectroscopic studies of cadmium and selenite adsorption on aluminum oxides [J]. Langmuir,1995,11(6): 2041-2048.
    [19]Scheidegger A. M., Lamble G. M., Sparks D. L. Spectroscopic evidence for the formation of mixed-cation hydroxide phases upon metal sorption on clays and aluminum oxides [J]. Journal of Colloid and Interface Science,1997,186:118-128.
    [20]Scheidegger A.M., Strawn D.G., Lamble G.M. et al. The kinetics of mixed Ni-Al hydroxideformation on clay and aluminumoxide minerals:a time-resolved XAFS study [J].Geochimica et Cosmochimica Acta,1998,62(13):2233-2245.
    [21]Langmuir I. The constitution and fundamental properties of solids and liquids. Part I solids [J]. Journal of the American Chemical Society,1916,38(11):2267-2295.
    [22]Merdy P., Gharbi L. T., Lucas Y. Pb, Cu and Cr interactions with soil:Sorption experiments and modeling [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2009, 347(1-3):192-199.
    [23]Brunauer S., Emmett P. H., Teller E. Adsorption of gases in multimolecular layers [J]. Journal of the American Chemical Society,1938,60(2):309-319.
    [24]Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum [J]. Journal of the American Chemical Society,1918,40(9):1361-1403.
    [25]Elprince A.M., Sposito G. Thermodynamic derivation of equations of the Langmuir type for ion equilibria in soils [J]. Soil Science Society of America Journal,1981,45(2):277-282.
    [26]Sposito G. On the use of the Langmuir equation in the interpretation of "adsorption" phenomena:Ⅱ. The "two-surface" Langmuir equation [J]. Soil Science Society of America Journal,1982,46(6):1147-1152.
    [27]Lutzenkirchen J. Encyclopedia of Surface and Colloid Science [M], New York:Marcel Dekker,2002:5028.
    [28]Boily F. Encyclopedia of Surface and Colloid Science [M], New York:Marcel Dekker,2002: 3223.
    [29]Goldberg S. Structure and Surface Reactions of Soil Particles [M], New York:Wiley,1998: 377.
    [30]Schindler P.W., Kamber H. R. Die aciditat von silanolgruppen.Vorlaufige mitteillung [J]. Helvetica Chimica Acta Helv,1968,51(7):1781-1786.
    [31]Schindler P.W., Gamsjager H. Acid-base reactions of the TiO2 (Anatase)-water interface and the point of zero charge of TiO2 suspensions [J]. Colloid and Polymer Science,1972, 250(7):759-763.
    [32]Hohl H., Stumm W. Interaction of Pb2+with hydrous y-A12O3 [J]. Journal of Colloid and Interface Science,1976,55(2):281-288.
    [33]Schindler P. W., Liechti P., Westall J. C. Adsorption of copper, cadmium and lead from aqueous solution to the kaolinite/water interface [J]. Netherlands Journal of Agricultural Science,1987,35(3):219-230.
    [35]Papini M. P., Majone M. Encyclopedia of Surface and Colloid Science [M], New York: Marcel Dekker,2000:3483.
    [34]Stumm W., Huang C.P., Jenkins S. R. Specific chemical interaction affecting the stability of dispersed systems [J]. Croatica Chemica Acta,1970,42:223-245.
    [35]Dzombak D. A., Morel F. M.M. Surface Complexation Modelling [M], New York:Wiley, 1990.
    [36]Davies J.A., James R. O., Leckie J. O. Surface ionization and complexation at the oxide/water interface:I. Computation of electrical double layer properties in simple electrolytes [J]. Journal of Colloid and Interface Science.1978,63(3):480-499.
    [37]Hayes K. F., Leckie J. O. Modeling ionic strength effects on cation adsorption at hydrous oxide/solution interfaces [J]. Journal of Colloid and Interface Science,1987,115(2): 564-572.
    [38]Van Riemsdijk W.H., Bolt G. H.. Koopal L. K. et al. Electrolyte adsorption on heterogeneous surfaces:adsorption models [J]. Journal of Colloid and Interface Science. 1986,109(1):219-228.
    [39]Bolt G.H., Van Riemsdijk W.H. Soil Chemistry. Part B:Physicochemical Methods [M], Elsevier, Amsterdam,1982:459.
    [40]Van Riemsdijk W. H., De Wit J.C. M., Koopal L. K. et al. Metal ion adsorption on heterogeneous surfaces:Adsorption models [J]. Journal of Colloid and Interface Science, 1987,116(2):511-522.
    [41]Sparks D. L., Scheidegger A.M., Strawn D.G. et al. Mineral-Water Interfacial Reactions: Kinetics and Mechanisms, in:ACS Symposium Series[C], American Chemical Society, Washington DC,1999:108.
    [42]Lee S.Z. Predicting Soil-water Partition Coefficients for Cadmium [J]. Environmental Science and Technology,1996,30 (12):3418-3424
    [43]McBride M. B. Environmental Chemistry of Soils [M], New York:Oxford University Press, 1994:416.
    [44]Reed B. E.. Cline S. R. Retention and release of lead by a very fine sandy loam. I. Isotherm modeling [J]. Separation Science and Technology,1994,29(12):1529-1551.
    [45]Schindler P.W., Furst B., Dick R. et al. Ligand properties of surface silanol groups.I. surface complex formation with Fe3+, Cu2+. Cd2+, and Pb2+[J]. Journal of Colloid and Interface Science,1976,55(2):469-475.
    [46]Reed B.E.. Matsumoto M. R. Modeling cadmium Adsorption in Single and Binary Adsorbent (PAC) Systems [J]. Journal of Environmental Engineering,1993,119(2):332-348.
    [47]Farley K.J., Dzombak D.A., Morel F. M. M. A surface precipitation model for the sorption of cations on metal oxides [J]. Journal of Colloid and Interface Science,1985,106(1): 226-242.
    [48]Robertson A. P., Leckie J.O. Cation Binding Predictions of Surface Complexation Models: Effects of pH. Ionic Strength. Cation Loading. Surface Complex, and Model Fit [J]. Journal of Colloid and Interface Science,1997,188(2):444-472.
    [49]Naveau A., Monteil-Rivera F., Guillon E. et al. XPS and XAS studies of copper(Ⅱ) sorbed onto a synthetic pyrite surface [J]. Journal of Colloid and Interface Science,2006. 303(l):25-31.
    [50]Aly A. E., Koji W. Adsorption of lead, copper zinc, cobalt, and cadmium by soils that differ in cation-exchange materials [J]. Journal of Soil Science,1981,32(2):271-283.
    [51]徐明岗.土壤离子吸附:2.主要阴阳离子的吸附特性[J].土壤肥料.1997,6:3-7.
    [52]Sposito G. Geochemical Processesat Mineral Surfaces, in:ACS Symposium Series [C], American Chemical Society, Washington D C,1986:217.
    [53]Sposito G. Distinguishing adsorption from surface precipitation [J]. Geochemical Processes at Mineral Surfaces,1986,323:217-228.
    [54]Davis J.A., Kent D.B. Surface complexation modeling in aqueous geochemistry [J]. Reviews in Mineralogy,1990,23:177-260.
    [55]Stumn W., Huang C. P., Jenkins S. R. Specific chemical interaction affecting the stability of dispersed systems [J]. Journal of Colloid and Interface Science,1970,42:223-226.
    [56]魏俊峰,吴大清,彭金莲,刁桂仪.铜(II)在高岭石表面的吸附[J].矿物岩石,2000,20(3):19-22.
    [57]陆雅海,黄昌勇,袁可能,朱祖祥.砖红壤及其矿物表面对重金属离子的专性吸附研究[J].土壤学报,1995,32(4):370-376.
    [58]Sajidu S.M. I., Persson I., Masamba W. R.L. et al. Mechanisms of heavy metal sorption on alkaline claysfrom Tundulu in Malawi as determined by EXAFS [J]. Journal of Hazardous Materials,2008,158(2-3):401-409.
    [59]Temminghoff E. J.M., Van der Zee S. E.A.T.M., De Haan F. A. M. Copper mobility in a copper-contaminated sandy soil as affected by pH and solid and dissolved organic matter [J]. Environmental Science and Technology,1997,31(4):1109-1115.
    [60]Nordin J., Persson P., Laiti E., Sjoberg S. Adsorption of o-Phthalate at the Water-Boehmite (γ-AlOOH) Interface:Evidence for Two Coordination Modes [J]. Langmuir,1997,13(15): 4085-4093.
    [61]Strawn D. G., Sparks D. L. The use of XAFS to distinguish between inner-and outer-sphere lead adsorption complexes on montmorillonite [J]. Journal of Colloid and Interface Science, 1999,216(2):257-269.
    [62]Benjamin M. M., Leckie J. O. Conceptual model for metal-ligand-surface interactions during adsorption [J]. Environmental Science and Technology,1981,15(9):1050-1057.
    [63]Schindler P. W. Co-adsorption of metal ions and organic ligands:Formation of ternary surface complexes [J]. Reviews in Mineralogy,1990,23:281-307.
    [64]Hoins U., Charlet L., Sticher H. Ligand effect on the adsorption of heavy metals:The sulfate-Cadmium-Goethite case [J]. Water Air and Soil Pollution,1993,68(1-2):241-255.
    [65]Nordquist K. R., Benjamin M. M., Ferguson J.F. Effects of cyanide and polyphosphates on adsorption of metals from simulated and real mixed-metal plating wastes [J]. Water Research, 1988,22(7):837-846.
    [66]Davis J.A., Leckie J. O. Effect of adsorbed complexing ligands on trace metal uptake by hydrous oxides [J]. Environmental Science and Technology,1978,12(12):1309-1315.
    [67]Collins C. R., Ragnarsdottir K.V., Sherman D.M. Effect of inorganic and organic ligands on the mechanism of cadmium soiption to goethite [J]. Geochimica et Cosmochimica Acta, 1999,63(19-20):2989-3002.
    [68]Schlautman M. A., Morgan J. J. Adsorption of aquatic humic substances on colloidal-size aluminum oxide particles:Influence of solution chemistry [J]. Geochimica et Cosmochimica Acta,1994,58(20):4293-4303.
    [69]Davis A.P., Bhatnagar V. Adsorption of cadmium and humic acid onto hematite [J]. Chemosphere,1995,30(2):243-256.
    [70]Fein J.B., Delea D. Experimental study of the effect of EDTA on Cd adsorption by Bacillus subtilis:a test of the chemical equilibrium approach [J]. Chemical Geology,1999,161(4): 375-383.
    [71]Bowers A. R., Huang C. P. Adsorption characteristics of metal-EDTA complexes onto hydrous oxides [J]. Journal of Colloid and Interface Science,1986,110(2):575-590.
    [72]Nowack B., Sigg L. Adsorption of EDTA and Metal-EDTA Complexes onto Goethite [J]. Journal of Colloid and Interface Science,1996,177(1):106-121.
    [73]Murali V., Aylmore L. A. G. Competitive adsorption during solute transport in soils:3. a review of experimental evidence of competitive adsorption and an evaluation of simple competition models [J]. Soil Science,1983,136(5):279-290.
    [74]Gutierrez M., Fuentes H.R. Competitive adsorption of cesium, cobalt and strontium in conditioned clayed soil suspensions [J]. Journal of Environmental Radioactivity,1991,13(4): 271-282.
    [75]El-Bayaa A. A., Badawy N.A., AlKhalik E.A. Effect of ionic strength on the adsorption of copper and chromium ions by vermiculite pure clay mineral [J]. Journal of Hazardous Materials,2009,170(1-3):1204-1209.
    [76]Echeverria J. C., Zarranz I., Estella J. et al. Simultaneous effect of pH, temperature, ionic strength, and initial concentration on the retention of lead on illite [J]. Applied Clay Science, 2005,30(2):103-115.
    [77]杨亚提,张平.离子强度对恒电荷土壤胶体吸附Cu2+和Pb2-的影响IJ].环境化学,2001,20(6):566-570.
    [78]邹献中,徐建民,赵安珍,等.离子强度和pH对可变电荷十壤与铜离子相互作用的影响[J].土壤学报,2003,40(6):845-851.
    [79]孙卫玲,倪晋仁.泥沙吸附重金属研究中的若干关键问题[J].泥沙研究,2002,(6):53-59.
    [80]胡宁静,黄朋.骆永明,等XAFS研究不同pH下土壤对Pb的吸附[J].光谱学与光谱分析,2010,30(12):3425-3429.
    [81]Chang P. P., Wang X.K., Yu S. M., Wu W.S. Sorption of Ni(II) on Na-rectorite from aqueous solution:Effect of pH, ionic strength and temperature [J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2007,302:75-81.
    [82]虞锁富.土壤对重金属的竞争吸附作用[J].土壤学报,1991,28(1):50-57.
    [83]Mustafa G., Singh B., Kookana R.S. Cadmium adsorption and desorption behaviour on goethite at low equilibrium concentrations-effects of pH and index cations [J]. Chemosphere, 2004,57(10):1325-1333.
    [84]胡宁静,骆永明,宋静,等.长江三角洲地区典型土壤对铅的吸附及其与有机质、pH和温度的关系[J].土壤学报,2010,47(2):246-251.
    [85]胡宁静,骆永明,宋静.长江三角洲地区典型土壤对镉的吸附及其与有机质、pH和温度的关系[J].土壤学报,2007,44(3):437-443.
    [86]王胜利,张俊华,刘金鹏,南忠仁.土壤吸附铜离子的研究进展[J].土壤,2007,39(2):209-215.
    [87]Echeverria J.C., Morera M.T., Mazkiaran C. et al. Competitive sorption of heavy metal by soils, isotherms and fractional factorial experiments [J]. Environmental pollution,1998, 101(2):275-284.
    [88]杨亚提,张一平.陪伴离子对土壤胶体吸附铜离子和铅离子的影响[J].土壤学报,2003,40(2):218-223.
    [89]熊毅,陈家坊,等.土壤胶体(第三册),土壤胶体的性质[M].北京:科学出版社,1990:487-513.
    [90]Cao X.D., Ma L. Q., Rhue D.R. et al. Mechanisms of lead, copper, and zinc retention by phosphate rock [J]. Environmental pollution,2004,131(3):435-444.
    [91]Chang T. W., Wang M. K., Jang L.Y. An extended X-ray absorption spectroscopy study of copper(Ⅱ) sorption by oxides [J]. Geoderma,2005,129 (3-4):211-218.
    [92]Celis R., HermosIn M. C., Cornejo J. Heavy metal adsorption by functionalized clays [J]. Environmental Science & Technology,2000,34(21):4593-4399.
    [93]Unnithan M.R., Anirudhan T.S. The Kinetics and Thermodynamics of Sorption of Chromium(Ⅵ) onto the Iron(Ⅲ) Complex of a Carboxylated Polyacrylamide-Grafted Sawdust [J]. Industrial and Engineering Chemistry Research,2001,40(12):2693-2701.
    [94]Sipos P., Nemeth T., Kis V. K. et al. Sorption of copper, zinc and lead on soil mineral phases [J]. Chemosphere,2008,73(4):461-469.
    [95]Farrah H., Hatton D., Pickering W. F. The affinity of metal ions for clay surfaces [J]. Chemical Geology,1980,28:55-68.
    [96]Aualiitia T.U., Pickering W. F. The specific sorption of trace amounts of Cu, Pb, and Cd by inorganic particulates [J]. Water, Air, and Soil Pollution,1987,35(1-2):171-185.
    [97]Adediran S. A., Kramer J. R. Copper adsorption on clay, iron-manganese oxide and organic fractions along a salinitygradient [J]. Applied Geochemistry,1987,2(2):213-216.
    [98]徐明岗,季国亮.恒电荷土壤及可变电荷土壤与离子间相互作用的研究:II.Cu2+和Zn2+的吸附特征[J].土壤学报,2005,42(2):225-231.
    [99]Vega F. A., Andrade M. L., Covelo E. F. Influence of soil properties on the sorption and retention of cadmium, copper and lead, separately and together, by 20 soil horizons: Comparison of linear regression and tree regression analyses [J]. Journal of Hazardous Materials,2010,174(1-3):522-533.
    [100]Koopal L. K., Van Riemskijk W. H., Kinniburgh D. G. Humic matter and contaminants, general aspects and modeling metal ion binding [J]. Pure and Applied Chemistry,2001, 73(12):2005-2016.
    [101]Abollino O., Aceto M., Malandrino M. et al.Adsorption of heavy metals on Na-montmorillonite.Effect of pH and organic substances [J]. Water Research,2003,37(7): 1619-1627.
    [102]Vasiliev A. N., Golovko L.V., Trachevsky V.V. et al. Adsorption of heavy metal cations by organic ligands grafted on porous materials [J]. Microporous and Mesoporous Materials, 2009,118(1-3):251-257.
    [103]Qin F., Wen B., Shan X. Q. et al. Mechanisms of competitive adsorption of Pb, Cu, and Cd on peat [J]. Environmental pollution,2006,144(2):669-680.
    [104]李兴菊,王定勇.叶展.水溶性有机质对镉在土壤中吸附行为的影响[J].水土保持学报,2007,21(2):159-162.
    [105]陈同斌,黄泽春,陈煌.废弃物中水溶性有机质对土壤吸附Cd的影响及其机制[J].环境科学学报,2002.22(2):150-155.
    [106]Gao Y.Z., He J. Z., Ling W. T. et al. Effects of organic acids on copper and cadmium desorption from contaminated soils [J]. Environment International,2003,29(5):613-618.
    [107]Zhang M.K., Zhang H. M. Co-transport of dissolved organic matter and heavy metals in soils induced by excessive phosphorus applications [J]. Journal of Environmental Sciences, 2010,22(4):598-606.
    [108]章明奎,郑顺安,王丽平.土壤中颗粒状有机质对重金属的吸附作用[J].土壤通报,2007,38(6):1100-1104.
    [109]余贵芬,蒋新,和文祥,何志光.腐殖酸对红壤中铅镉赋存形态及活性的影响.2002,22(4):508-513
    [110]Ma L., Xu R., Jiang J. Adsorption and desorption of Cu(II) and Pb(II) in paddy soils cultivated forvarious years in the subtropical China [J]. Journal of Environmental Sciences, 2010,22(5):689-695.
    [111]Ruth E.V., Kumpiene J., Gunneriussonc L. et al. Changes in soil organic matter composition and quantitywith distance to a nickel smelter-a case study on the Kola Peninsula, NW Russia [J]. Geoderma,2005,127 (3-4):216-226.
    [112]焦文涛,蒋新,余贵芬,等.土壤有机质对镉在土壤中吸附-解吸行为的影响[J].环境化学,2005,24(5):545-549.
    [113]Lv L., Hor M.P., Su F.B. et al. Competitive adsorption of Pb2+, Cu2+, and Cd2+ ions on microporous titanosilicate ETS-10 [J]. Journal of Colloid and Interface Science,2005,287(1): 178-184.
    [114]Pehlivana E., Ozkan A.M., Dinc S. et al. Adsorption of Cu2+ and Pb2+ ion on dolomite powder[J]. Journal of Hazardous Materials,2009,167(1-3):1044-1049.
    [115]王维君,邵宗臣,何群.红壤粘粒对Co、Cu、Pb和Zn吸附亲和力的研究[J].土壤学报,1995,32(2):167-177.
    [116]Papini M.P., Saurini T., Bianchi A. et al. Modeling the competitive adsorption of Pb, Cu, Cd, and Ni onto a natural heterogeneous sorbent material (Italian "red soil") [J]. Industrial and Engineering Chemistry Research,2004,43(17):5032-5041.
    [117]张孝飞,林玉锁,俞飞,李波.城市典型工业区土壤重金属污染状况研究[J].长江流域资源与环境,2005,14(4):512-515.
    [118]吴学丽,杨永亮,徐清,等.沈阳地区河流灌渠沿岸农田表层土壤中重金属的污染现状评价[J].农业环境科学学报,2011,30(2):282-288.
    [119]刘俐,宋存义,熊代群,等.渤海湾表层沉积物重金属在不同粒级有机-矿质复合体中的分布[J].环境科学研究,2006,19(1):75-79.
    [120]Lin S.H., Lai S.L., Leu H. Removal of heavy metals from aqueous solution by chelating resin in a multistage adsorption process [J]. Journal of Hazardous Materials,2000,76(1): 139-153.
    [121]Pehlivan E., Gode F. Batch sorption of divalent metal ions onto brown coal [J]. Energy Sources Part A,2006,28(16):1493-1508.
    [122]Unlii N., Ersoz M. Adsorption characteristics of heavy metal ions onto a low cost biopolymeric sorbent from aqueous solutions [J]. Journal of Hazardous Materials,2006, 136(2):272-280.
    [123]许超,夏北成,秦建桥,等.广东大宝山矿山下游地区稻田土壤的重金属污染状况的分析与评价[J].农业环境科学学报,2007,26(增):549-553.
    [124]凌其聪,严森,鲍征宇.大型冶炼厂重金属环境污染特征及其生态效应[J].中国环境科学,2006,26(5):603-608.
    [125]Lotfi M., Djoudi M., Didier R. et al. Batch studies for the investigation of the sorption of the heavy metals Pb2+ and Zn2+onto Amizour soil (Algeria) [J]. Geoderma,2009,154:30-35.
    [126]Wang F., Pan G.X., Li L. Q. Effects of free iron oxyhydrates and soil organic matter on copper sorption-desorption behavior by size fractions of aggregates from two paddy soils [J]. Journal of Environmental Sciences,2009,21(5):618-624.
    [127]Yang J. Y., Yang X. E., He Z. L. et al. Effects of pH, organic acids, and inorganic ions on lead desorption from soils [J]. Environmental Pollution,2006,143(1):9-15.
    [128]梁晶,徐仁扣,赵安珍,谭文峰.温度和砷酸根对砖红壤中Cd(II)吸附动力学的影响[J].生态环境2007,16(5):1433-1435.
    [129]鲁如坤.土壤农业化学分析方法[M].中国农业科技出版社:北京,2000.
    [130]Guerra D. L., A, Batista A. C., Correa da costa P.C., et al. Adsorption of arsenic ions on Brazilian sepiolite:Effect of contact time, pH, concentration, and calorimetric investigation [J]. Journal of Colloid and Interface Science,2010,346(1):178-187.
    [131]Coles C. A., Yong R. N. Aspects of kaolinite characterization and retention of Pb and Cd [J]. Applied Clay Science,2002,22(1-2):39-45.
    [132]Appel C., Ma L. Q., Rhue R.D.,et al. Sequential sorption of lead and cadmium in three tropical soils [J]. Environmental Pollution,2008,155(1):132-140.
    [133]Villalobos M., Trotz M.A., Leckie J.O. Surface Complexation Modeling of Carbonate Effects on the Adsorption of Cr(Ⅵ), Pb(Ⅱ), and U(Ⅵ) on Goethite [J]. Environmental Science and Technology,2001,35(19):3849-3856.
    [134]Martinez C. E., McBride M. B. Solubility of Cd2+, Cu2+, Pb2+, and Zn2+ in aged coprecipitates with amorphous iron hydroxides [J]. Environmental Science and Technology, 1998,32(6):743-748.
    [135]Karapinar N., Donat R.. Adsorption behaviour of Cu2+ and Cd2+ onto natural bentonite [J]. Desalination,2009,249(1):123-129.
    [136]Ngah W. S. W., Fatinathan S. Adsorption characterization of Pb(Ⅱ) and Cu(Ⅱ) ions ontoChitosan-tripolyphosphate beads:Kinetic, equilibrium and thermodynamic studies [J]. Journal of Environmental Management,2010,91(4):958-969.
    [137]Hizal J., Apak R. Modeling of copper(Ⅱ) and lead(Ⅱ) adsorption on kaolinite-based clay minerals individually and in the presence of humic acid [J]. Journal of Colloid and Interface Science,2006,295(1):1-13.
    [138]Wua C. H., Lin C. F., Ma H.W., et al. Effect of fulvic acid on the sorption of Cu and Pb onto g-Al2O3 [J]. Water Research,2003,37:743-752.
    [139]Li Y., Wang X.L., Guo S. H.,et al. Cu and Zn adsorption onto non-residual and residual components in the natural surface coatings samples (NSCSs) in the Songhua River, China [J]. Environmental Pollution,2006,143(2):221-227.
    [140]徐明岗,曾希柏,李菊梅.pH对砖红壤和黄棕壤Cu2+吸附与解吸的影响[J].土壤通报,2005,36(3):349-351.
    [141]Uslu G., Tanyol M. Equilibrium and thermodynamic parameters of single and binary mixture biosorption of lead (Ⅱ) and copper (Ⅱ) ions onto Pseudomonas putida:Effect of temperature [J]. Journal of Hazardous Materials,2006,135(1-3):87-93.
    [142]Fernandez-Calvino D., Novoa-Munoz J.C., Lopez-Periago E., et al. Changes in copper content and distribution in young, old and abandoned vineyard acid soils due to land use changes [J]. Land Degradation and Development,2008,19(2):165-177.
    [143]Senesi N., Sposito G., Holtzclaw K. M., Bradford G.R. Chemical properties of Metal-Humic acid fractions of a sewage sludge-amended aridisol [J]. Journal of Environmental Quality,1989,8(2):186-194.
    [144]Fernandez-Calvino D., Soler-Rovira P., Polo A., et al. Influence of humified organic matter on copper behavior in acid polluted soils [J]. Environmental pollution,2010, 158(12):3634-3641.
    [145]Chang Chien S.W., Wang M.C., Huang C.C., et al. Characterization of Humic Substances Derived from Swine Manure-Based Compost and Correlation of Their Characteristics with Reactivities with Heavy Metals [J]. Journal of Agricutural Food Chemistry,2007,55(12): 4820-4827.
    [146]Lee Y. J., Elzinga E. J., Reeder R.J. Cu(Ⅱ) adsorption at the calcite-water interface in the presence of natural organic matter:kinetic studies and molecular-scale characterization [J]. Geochimica et Cosmochimica Acta,2005.69(1):49-61.
    [147]王胜利,张俊华,刘金鹏,等.土壤吸附铜离子的研究进展[J].土壤,2007,39(2):209-215.
    [148]冯军,孟凯,崔晓阳,徐金忠.农田黑土铜、锌吸附解吸特性分析[J].东北林业大学学报,2009,37(10):60-62.
    [149]胡宁静,骆永明,宋静.长江三角洲地区典型土壤对镉的吸附及其与有机质、pH和温度的关系[J].土壤学报,2007,44(3):437-443.
    [150]胡宁静,骆永明,宋静,等.长江三角洲地区典型土壤对铅的吸附及其与有机质、pH和温度的关系[J].土壤学报,2010,47(2):246-252.
    [151]焦文涛,蒋新,余贵芬,等.土壤有机质对镉在土壤中吸附-解吸行为的影响[J].环境化学,2005,24(5):545-549.
    [152]孙丽蓉,王旭刚,高翔.有机质和铁氧化物对水稻土吸附Cd2+的贡献[J].河南农业业科学,2010,4:57-61.
    [153]龙新宪,倪吾钟,杨肖娥.菜园土壤铜吸附-解吸特性的研究[J].农村生态环境,2000,16(3):39-41,
    [154]孙卫玲,倪晋仁.兰格缪尔等温式的适用性分析以黄土吸持铜离子为例[J].环境化学,2002,21(1):37-44.
    [155]窦春英,徐温新,叶正钱,张圆圆,姚芳,吕家珑.6种典型农田土壤的锌吸附-解吸特性[J].浙江林学院学报,2010,27(1):8-14.
    [156]于颖,周启星.重金属铜在黑土和棕壤中解吸行为的比较[J].环境科学,2004,25(1):128-131.
    [157]Huang G.X., Zhang Y., Sun J.C.,et al. Effects of different conditions on Pb2+ adsorption from soil by irrigation of sewage in South China [J]. Journal of Central South University of Technology,2012,19(1):213-221.
    [158]Arias M., Perez-Novo C., Osorio F., et al. Adsorption and desorption of copper and zinc in the surface layer of acid soils [J]. Journal of Colloid and Interface Science,2005,288(1): 21-29.
    [159]乔冬梅,齐学斌,庞鸿宾,等.不同pH值条件下重金属Pb2+的吸附解吸研究[J].土壤通报,2011,42(1):38-41.
    [160]Kalbitz K., Wennrich R. Mobilization of heavy metals and arsenic in polluted wetland soils and its dependence on dissolved organic matter [J]. The Science of the Total Environment, 1998,209(1):27-39.
    [161]王艮梅,周立祥,黄焕忠.水溶性有机物在土壤中的吸附及对Cu沉淀的抑制作用[J].环境科学,2006,27(4):754-758.
    [162]McLaren R.G., Willians J.G., Swift R.S. The adsorption of copper by soil samples from Scotland at low equilibrium solution concentrations [J]. Geoderma,1983,31(2):97-106.
    [163]McBride M., Martinez C. E., Sauve S. Copper (II) Activity in Aged Suspensions of Goethite and Organic Matter [J]. Soil Science Society of America Journal,1998,62(6):1542-1548.
    [164]Schwertmann U., Kodama H., Fischer W. R. Interactions of Soil Minerals with Natural Organics and Microbes [J]. Soil Science Society of America Journal,1986,17:223-229.
    [165]Paulson A.J. The transport and fate of Fe, Mn, Cu, Zn, Cd, Pb and SO4 in a groundwater plume and in downstream surface waters in the Coeurd'Alene Mining District, Idaho, U.S.A [J]. Applied Geochemistry,1997,12(4):447-464.
    [166]Chen K. P., Jiao J. J. Metal concentrations and mobility in marine sediment and groundwater in coastal reclamation areas:A case study in Shenzhen, China. Environmental Pollution,2008,151(3):576-584.
    [167]Vasudevand D., Cooper E. M., Exem O. L.V. Sorption-desorption of ionogenic compounds at the mineral-water interface:Study of metal oxide-rich soils and pure-phase minerals [J]. Environmental Science and Technology,2002,36(3):501-511.
    [168]Vega F. A., Covelo E. F., Andrade M.L. Competitive sorption and desorption of heavy metals in mine soils:Influence of mine soil characteristics [J]. Journal of Colloid and Interface Science,2006,298(2):582-592.
    [169]Scheinost A,C., Abend S., Pandya K. I.,et al. Kinetic Controls on Cu and Pb Sorption by Ferrihydrite [J]. Environmental Science and Technology,2001,35(6):1090-1096.
    [170]Trivedi P., Axe L. Predicting divalent metal sorption to hydrous Al, Fe, and Mn Oxides [J]. Environmental Science and Technology,2001,35(9):1779-1784.
    [171]Sengila A., Ozacar M. Competitive biosorption of Pb2+, Cu2+ and Zn2+ ions from aqueous solutions onto valonia tannin resin. Journal of Hazardous Materials,2009, 166(2-3):1488-1494.
    [172]Vasconcelos H.L., Guibal E., Laus R., et al. Competitive adsorption of Cu(Ⅱ) and Cd(Ⅱ) ions on spray-dried chitosan loaded with reactive orange 16 [J].Materials Science and Engineering,2009,29(2):613-618.
    [173]Konstantinou M, Pashalidis I. Competitive sorption of Cu(Ⅱ), Eu(Ⅲ) and U(Ⅵ) ions on TiO2 in aqueous solutions-A potentiometric study [J]. Colloids and Surfaces A:Physicochem Engineering Aspects.2008,324 (1-3):217-221.
    [174]路永正,阎百兴.重金属在松花江沉积物中的竞争吸附行为及pH的影响[J].环境科学研究,2010,23(1):20-25.
    [175]Vega F. A., Covelo E.F., Andrade M.L. Hysteresis in the individual and competitive sorption of cadmium, copper, and lead by various soil horizons [J]. Journal of Colloid and Interface Science,2009,331(2):312-317.
    [176]Yang J.Y., Yang X. E., He Z. L., et al. Effects of pH, organic acids, and inorganic ions on lead desorption from soils [J]. Environmental pollution,2006,143(1):9-15.
    [177]Arias M., Perez-Novo C., Lopez E.,et al. Competitive adsorption and desorption of copper and zinc in acid soils [J]. Geoderma,2006,133(3-4):151-159.
    [178]Pehlivana E., Ozkan A. M., Dinc S.,et al. Adsorption of Cu2+ and Pb2+ ion on dolomite powder [J]. Journal of Hazardous Materials,2009,167(1-3):1044-1049.
    [179]Futalan M. C., Kan C.C., Dalida M. L., et al. Comparative and competitive adsorption of copper, lead, and nickel using chitosan immobilized on bentonite [J]. Carbohydrate Polymers. 2011,83(2):528-536.
    [180]孙卫玲,倪晋仁.兰格缪尔等温式的适用性分析-以黄土吸持铜离子为例[J].环境化学,2002,21(1):37-44.
    [181]Trivedi P., Axe L., Dyer J. Adsorption of metal ions onto goethite:single-adsorbate and competitive systems [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2001,191(l-2):107-121.
    [182]Singh A., Kumar D., Gaur J.P. Copper (Ⅱ) and lead (Ⅱ) sorption from aqueous solution by non-living Spirogyra neglecta [J]. Bioresource Technology,2007,98(18):3622-3629.
    [183]Flogeac K., Guillon E., Aplincourt M. Competitive sorption of metal ions onto a north-eastern France soil Isotherms and XAFS studies. Geoderma,2007,139(1-2):180-189
    [184]Oh S., Kwak M. Y., Shin W. S. Competitive sorption of lead and cadmium onto sediments [J]. Chemical Engineering Journal,2009,152(2-3):376-388.
    [185]Ma L., Xu R. K., Jiang J. Adsorption and desorption of Cu (Ⅱ) and Pb (Ⅱ) in paddy soils cultivated for various years in the subtropical China [J]. Journal of Environmental Sciences, 2010,22(5):689-695.
    [186]Qiu W., Zheng Y. Removal of lead, copper, nickel, cobalt, and zinc from water by a cancrinite-type zeolite synthesized from fly ash [J]. Chemical Engineering Journal,2009, 145(3):483-488.
    [187]Arias M., Barral M.T., Mejuto J.C. Enhancement of copper and cadmium adsorption on kaolin by the presence of humic acids [J]. Chemosphere,2002,48(10):1081-1088.
    [188]Sposito G. The Surface Chemistry of Soils [M], Oxford University Press:New York,1984.
    [189]Wan Y., Bao Y. Y., Zhou Q.X. Simultaneous adsorption and desorption of cadmium and tetracycline on cinnamon soil [J]. Chemosphere,2010,80(7):807-812.
    [190]Lim S. F., Zheng Y. M, Zou S. W., et al. Characterization of copper adsorption onto an alginate encapsulated magnetic sorbent by a combined FT-IR, XPS, and mathematical modeling study [J]. Environmental Science and Technology,2008,42(7):2551-2556.
    [191]Iqbala M., Saeeda A., Zafarb S.I. FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste [J]. Journal of Hazardous Materials,2009,164: 161(1)161-171.
    [192]郭观林,周启星.中国东北北部黑土重金属污染趋势分析[J]中国科学院研究生院学报,2004,21(3):386-392.
    [193]王慎强,周东美,王玉军,陈怀满,郑春荣.邻苯二胺对铜在红壤和砂姜黑土中吸附和解吸的影响[J].土壤学报,2003,40(4):567-573.
    [194]Perez-Novo C., Fernandez-Calvino D., Bermudez-Couso A.,et al. Influence of phosphorus on Cu sorption kinetics:Stirred flow chamber experiments [J]. Journal of Hazardous Materials,2011,185:220-226.
    [195]司友斌,岳永德,曹德菊,陈怀满,周东美.苄嘧磺隆对Cu2+在粘土矿物上吸附-脱附的影响[J].环境科学学报,2001,21(5):587-591.
    [196]Schwa A. P., Zhu D.S., Banks M. K. Influence of organic acids on the transport of heavy metals in soil [J]. Chemosphere,2008,72:986-994.
    [197]Zhang Z. Y., Suna K., Gao B., et al. Adsorption of tetracycline on soil and sediment:Effects of pH and the presence of Cu (Ⅱ) [J]. Journal of Hazardous Materials,2011,190:856-862.
    [198]Maqueda C., Morillo E., Undabeytia T., et al. Sorption of glyphosate and Cu(II) on a natural fulvic acid complex:mutual influence [J]. Chemosphere,1998,37(6):1063-1072.
    [199]Guo S. H., Li Y., Liu L.,et al. Adsorption of Pb and Cd on the natural surface coatings (NSCs) in the presence of organochlorine pesticides:A preliminary investigation [J]. Journal of Environmental Management,2008,88:147-153.
    [200]Elmanfe G., Stephan L., Olier R., et al. Enhanced metal adsorption on solid suspensions by organic molecules [J]. Journal of Colloid and Interface Science,2010,345:496-504.
    [201]刘新程,董元华,刘惠军.阳离子与金霉素在土壤中竞争吸附的研究[J].土壤学报,2010,47(4):781-785.
    [202]赵兴敏,王春玲,董德明,花修艺,任建锋,高明.重金属和有机氯农药在沈阳郊区农田土壤中的吸附和迁移[J].环境科学研究,2010,30(19):1880-1887.
    [203]Weishaar J.L., Aiken G. R., Bergamschi B.A., et al.Evaluation of specifific ultraviolet adsorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon [J]. Environmental Science and Technology,2003,379 (20):4702-4708.
    [204]Gup V. K., Rastogi A. Equilibrium and kinetic modeling of cadmium (Ⅱ) biosorption by nonliving algal biomass Oedogonium sp. from aqueous phase [J]. Journal of Hazardous Materials,2008,153:759-766.
    [205]Sheals J., Granstrom M., Sjoberg S., et al. Coadsorption of Cu (Ⅱ) and glyphosate at the water-goethite (alpha-FeOOH) interface:molecular structures from FTIR and EXAFS measurements [J]. Journal of Colloid and Interface Science,2003,262:38-47.
    [206]荚德安,王玉军,周东美,王慎强,王全英,朱浩文,陈金林.2,4-D对铜在乌栅土胶体和红壤胶体上吸附的影响[J].土壤,2008,40(6):945-948.
    [207]王果.三种农药对Cu2+在蒙脱石和δ-Al2O3L吸附的影响[J].土壤学报,1996,33(4):344-350.
    [208]Qin F., Shan X.Q. Adsorption of Cu2+ on Montmorillonite as Affected by 2, 4-Dichlorophenoxyacetic Acid (2,4-D) [J]. Bulletin of Environmental Contamination and Toxicology,2006,76:179-186.
    [209]王涛,刘廷凤,何忠,孙成.砂壤中铜的吸附行为及其影响因素研究[J].土壤学报.2007,44(1):84-89.[
    206]李程峰,刘云国,曾光明,徐卫华,汤春芳,李欣.pH值影响Cd在红壤中吸附行为的实验研究[J].农业环境科学学报,2005,24(1):84-88.
    [210]徐明岗,曾希柏,李菊梅.pH对砖红壤和黄棕壤Cu2+吸附与解吸的影响[J].2005,36(3):349-351.
    [211]Swallow K. C., Hume D.N., Morel F.M. M. Sorption of Copper and Lead by Hydrous Ferric Oxide [J]. Environmental Science and Technology,1980,14(11):1326-1331.
    [212]李鱼,李娟,高茜,王岙.共存镉/铜对沉积物(生物膜)中主要组分吸附阿特拉津的影响[J].吉林大学学报(地球科学版),2010,40(6):1435-1440,1455.
    [213]李鱼,王倩,高茜,王岙.基于BP神经网络的复合污染体系中沉积物吸附阿特拉津的规律[J].吉林大学学报(地球科学版),2011,41(增1):315-321.
    [214]陶庆会,汤鸿霄.两种染料与阿特拉律在沉积物上的竞争吸附[J].中国环境科学2004,24(2):129-133.
    [215]陶庆会,汤鸿霄.共存污染物刘阿特拉津在天然沉积物上吸附的影响[J].环境科学.2004,24(4):696-701.
    [216]Morillo E., Undabeytia T., Maqueda C. Adsorption of Glyphosate on the Clay Mineral Montmorillonite:Effectof Cu(Ⅱ) in Solution and Adsorbed on the Mineral [J]. Environmental Science and Technology,1997,31:3588-3592.
    [217]Morillo E., Maqueda T. U., Ramos C. A.The effect of dissolved glyphosate upon the sorption of copper by three selected soils [J]. Chemosphere,2002.47:747-752.
    [218]Morillo E., Undabeytia T., Maqueda C., et al. Glyphosate adsorption on soils of diferent characteristics:Influence of copper addition [J]. Chemosphere,2000,40:103-107.
    [219]Zhou D.M., Wang Y. J., Cang L.,et al. Adsorption and cosorption of cadmium and glyphosate on two soils with different characteristics [J]. Chemosphere,2004,57:1237-1244.
    [220]Pei Z.G., Shan X. Q., Wen B.,et al. Effect of copper on the adsorption of p-nitrophenol onto soils [J]. Environmental pollution,2006,139:541-549.
    [221]Wang S. Q., Zhou D. M., Wang Y. J., et al. Effect of o-phenylenediamine on Cu adsorption and desorption in red soil and its uptake by paddy rice (Oryza sativa) [J]. Chemosphere, 2003,51:77-83.
    [222]Wang Y. J., Jia D. A., Sun R. J., et al. Adsorption and Cosorption of Tetracycline and Copper(Ⅱ) on Montmorillonite as Affected by Solution pH [J]. Environmental Science and Technology,2008,42:3254-3259.
    [223]Jia D. A., Zhou D. M., Wang Y. J.,et al. Adsorption and cosorption of Cu(II) and tetracycline on two soils with different characteristics [J]. Geoderma,2008,146:224-230.
    [224]Pei Z.G., Shan X. Q., Liu T., et al. Effect of lead on the sorption of 2,4,6-trichJorophenol on soil and peat [J]. Environmental pollution,2007,147:764-770.
    [225]Chen G. C., Shan X. Q., Wang Y. S., et al. Adsorption of 2,4,6-trichlorophenol by multi-walled carbon nanotubes as affected by Cu (Ⅱ) [J]. Water Research,2009,43: 2409-2418.
    [226]Pei Z.G., Shan X. Q., Wen B., et al. Sorption of Anionic Metsulfuron-Methyl and Cationic Difenzoquat on Peat and Soil As Affected by Copper [J]. Environmental Science and Technology,2008,42:6849-6854.
    [227]Chang Chien S. W., Wang M. C, Huang C. C.,et al. Characterization of Humic Substances Derived from Swine Manure-Based Compost and Correlation of Their Characteristics with Reactivities with Heavy Metals [J]. Journal of Agricutural Food Chemistry,2007,55:4820-4827.
    [228]Undabeytia T., Morillo E., Maqueda C. FTIR Study of Glyphosate-Copper Complexes [J]. Journal of Agricutural Food Chemistry,2002,50:1918-1921.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700