用户名: 密码: 验证码:
面向泵车的故障诊断技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土泵车是工程机械中技术含量高、维护难度大、价格较昂贵的复杂装备之一。利用先进的物联网技术和人工智能故障诊断技术对泵车进行实时、远程、在线故障诊断,对于保障重点行业大型装备运营的技术安全,实现节能降耗和绿色环保,提高制造业的可持续发展能力具有重要的意义。
     本文针对目前泵车液压系统中的故障诊断问题,给出了基于物联网的泵车液压故障诊断系统方案;在综合考虑提高系统实时性、可靠性以及降低系统成本的情况下,完成了面向物联网体系结构的安全车载终端系统的搭建,并以智能故障诊断技术为理论基础,研究了适合该研究背景的智能诊断算法,将人工神经网络、微粒群优化算法、D-S证据理论、多传感信息融合理论、模糊向量机等智能信息处理方法引入泵车液压系统的故障诊断中,分别对液压系统中液压机控制子系统和动力子系统关键部位进行故障诊断。
     本文的主要创新点如下:
     (1)给出了一种基于物联网的泵车液压故障诊断系统方案,从终端平台安全方面考虑,将TPM芯片加入到车载终端中,使得车载终端具有更高的安全性。
     (2)提出了一种基于PSO-Elman神经网络的故障诊断方法。通过对PSO算法的惯性权重和学习因子进行改进,应用于Elman神经网络的训练学习中,使得网络在训练时间、收敛率和诊断精度方面得到提高;给出了基于PSO-H-BP神经网络的故障诊断方法,将PSO与Hopfield神经网络和BP神经网络相结合,利用PSO算法优化Hopfield网络的权值矩阵,对BP网络的输入数据进行预处理,获得稳定的网络结构,再利用BP神经网络进行故障诊断,提高网络的收敛速度和诊断准确度。最后通过实验验证了算法的有效性。
     (3)提出了一种基于双层FSVM模型结构的故障诊断方法,并将其应用于液压系统电磁换向阀故障诊断中,取得了良好效果;同时对模糊支持向量机的训练算法和参数选取方法进行了优化,实验结果表明,采用优化后的参数可明显提高支持向量机的学习性能。
     (4)提出了一种基于三级多源信息融合的故障诊断方法,采用多并行的PSO-BP和MPSO-RBF神经网络组成振动子网和温度子网进行局部诊断;给出了基于修正的D-S证据理论的多传感器时空域信息融合方法,针对本文研究背景提出了基于pl&bl的决策方法;最后,将三级多源信息融合故障诊断方法应用于液压系统动力子系统关键部位液压泵的故障诊断中进行验证。
Concrete pump truck is one of the complex equipment which is high technical content、huge difficult maintenance and more expensive in engineering machinery. It has important significance to diagnose the pump fault with real-time、remote and online through using the advanced things technology and artificial intelligence fault diagnostic technology in ensuring the technical security of the key industries large equipment operatoring, achieving the energy saving and environmental protection, and improving the manufacturing ability of the sustainable development.
     In this paper, in consideration of the current pump hydraulic system fault diagnostic problem, the pump hydraulic fault diagnostic system based on Internet of Things is proposed; In the case of considering to improve the real-time and reliability of the system and reduce cost of the system comprehensively, the paper completes the establishing of the security vehicle terminal system which is facing to the Internet of Things structures, what's more,the paper studies the intelligent diagnostic algorithm which are suitable for the paper background and uses the intelligent diagnostic technology as the theoretical basis, the intelligent information processing method include artificial neural networks, particle swarm optimization algorithm, D-S evidence theory, multi-sensor information fusion theory and fuzzy vector machines are introduced into the pump hydraulic system fault diagnosis. The control subsystem and power subsystem key parts of the hydraulic system of the pump are respectively diagnosed. The main innovations of this paper are as follows:
     (1) The paper proposes a fault diagnostic system solutions of hydraulic system of the pump based on Internet of things, taking the terminal platform security into considered, the TPM chip is added to the vehicle terminal in order to make the vehicle terminal have higher security.
     (2) This paper presents a fault diagnosis method based on PSO-Elman neural network.Through improving the inertia weight and learning factors of PSO algorithm and applying it to the training learning of Elman neural network, the Elman neural network gets better in terms of training time, the convergence rate and diagnostic accuracy; this paper puts forward a fault diagnosis method based on PSO-H-BP neural network, the method combinate the method of PSO algorithm、 Hopfield neural network and BP neural network. First, using the PSO algorithm to optimize the Hopfield network to obtain the stable network structure, and then using the Hopfield network to preprocess the input data of BP network, finally, using the BP neural network to diagnose the fault, this method has improved the speed of convergence and diagnostic accuracy of the network. Finally, the effectiveness of the algorithm is verified by experiments.
     (3) The paper presents a fault diagnosis method based on double-layer FSVM model structure, and the method is applied to the hydraulic system solenoid valve fault diagnosis, it achieves good results; Additionally,in this method, the training algorithms and parameters selection method of fuzzy support vector machine are optimized, the experimental results show that learning performance of the support vector machine can significantly improve by using the optimized parameters.
     (4) The paper puts forward a fault diagnosis method based on the information fusion model with three fusion levels,it adopts multiple PSO-BP and MPSO-RBF neural network to compose the vibration subnet and temperature subnet which is make used of local diagnosis; According to the study background the multi-sensor information fusion method based on the modified D-S evidence theory is proposed and the paper puts forward a decisions method based the pl&bl; finally, the three levels multi-source information fusion fault diagnostic method is used in the key parts of the hydraulic system power subsystem, this study has been verified.
引文
[1]王永奇.履带式智能全液压推土机关键技术研究[D].西安:长安大学,2008.
    [2]丁国强,周志立.工程机械技术现状与智能化信息化趋势[J].矿山机械,2004,32(8):14-16.
    [3]饶泓.基于多源信息融合与Rough集理论的液压机故障诊断方法研究[D].南昌:南昌大学,2009.
    [4]江源源.多模复合制导信息融合技术研究[D].哈尔滨:哈尔滨工程大学,2007.
    [5]唐萍.基于虚拟仪器的液压设备多源诊断信息实验系统开发[D].西安:长安大学,2010.
    [6]何友,王国宏,陆大金等.多传感器信息融合及应用[M].电子工业出版社,2000.
    [7]周汝胜,焦宗夏,王少萍.液压系统故障诊断技术的研究现状与发展趋势[J].机械工程学报,2006,42(9):6-14.
    [8]吴今培.智能故障诊断技术的发展和展望[J].震动﹑测试与诊断,1999,19(2):130-147.
    [9]杨光琴.多传感器航空液压系统信息融合故障诊断研究[D].北京:北京航空航天大学,2003.
    [10]马昌训.混凝土泵车泵送液压系统故障仿真研究[D].长沙:中南大学,2011.
    [11]罗存刚.基于神经网络的船舶柴油机远程故障诊断研究[D].大连:大连海事大学,2009.
    [12]王世明.工程机械液压系统故障监测诊断技术的现状和发展趋势[J].机床与液压,2009,37(2):175-180.
    [13]晓光,林桂兴等.液压系统故障诊断方法研究[J].测控技术,2010,29:195-200.
    [14]范士娟,杨超.液压系统故障诊断方法综述[J].机床与液压,2009,37(5):188-192.
    [15]石红,王科俊,李国斌.液压系统故障诊断的知识获取与推理研究[J].机床与液压,2000(3):89-90,84.
    [16]刘泽华,陆清,谷立臣.基于包络-灰色理论的液压系统故障诊断方法研究[J]. 液压与气动,2008(1):77-80.
    [17]范振武.液压传动及其修理[M].北京:中国建筑工业出版社,1988.
    [18]Sriyananda H., Towill D. R. Fault diagnosis using time domain measurements. Radio and Electronic Engineer,1973,43(9):523-533.
    [19]杨林建.液压系统故障诊断技术探讨[J].流体传动与控制,2007(5):37-39.
    [20]Isermenn R. Process fault detection based on modeling and estimation methods-A survey. Automatic,1984,20(4):387-404.
    [21]Abbott Kathy H., Schutte Paul C., Palmer, Michael T. et al.FAULTFINDER: A diagnostic expert system with graceful degradation for onbobard aircraft applications. Mitteilung-Deutsche Forschungs-und Versuchsanstalt fuer Luft-und Raumfahrt,1988:353-370.
    [22]Hogan Paul, Burrows Clifford R. Development of a knowledge based system for the diagnosis of faults in hydraulic circuits. American Society of Mechanical Engineers,1990.
    [23]Watton J., Lucca-Negro O., Stewart J. C. On-line approach to fault diagnosis of fluid power cylinder drive systems. Proceedings of the Institution of Mechanical Engineers. Part I Journal of Systems&Control Engineering,1994,208(14):249-262.
    [24]Yu D., Shields D. N. Bilinear fault detection observer. Automatica,1996,32(11):1597-1602.
    [25]GADDOUNA B O. Fault diagnosis in a hydraulic process using unknown input observes[C]. Proceedings of the IEEE International Conference on Control Applications, Harford, CT,1997(1):490-495.
    [26]Crowther W. J., Edge K. A., Burrows C. R. et al. Fault diagnosis of a hydraulic actuator circuit using neural networks-an output vector space classification approach. Proceedings of the Institution of Mechanical Engineers. Part I Journal of Systems&Control Engineering,1998,212(1):57-68.
    [27]周敏,湛从昌.液压泵故障诊断专家系统研究[J].武汉钢铁学院学报,1993,16(1):113-117.
    [28]江丽,甄少华.基于BP神经网络的液压系统故障诊断专家系统[J].机床与液压,2002(4):169-170,225.
    [29]LINARIC D, KOROMAN V. Fault diagnosis of a hydraulic actuator using neural network[C]. IEEE International Conference on Industrial Technology, Maribor, Slovenia,2003(1):108-111.
    [30]AN L, SEPEHRI N, Hydraulic actuaror circuit fault detection using extended kalman filter[C]. Proceedings of the American Control Conference. Denver, Colorado,2003(5):4261-4266.
    [31]Pollmeier K., Burrows, C. R., Edge K. A. Condition monitoring of an electrohydraulic position control system using artificial neural networks. American Society of Mechanical Engineers, The Fluid Power and Systems Technology Division, Proceedings of the ASME Fluid Power Systems and Technology Division,2004,11:137-146.
    [32]Vachkov Gancho. Recognition of different operating states in complex systems by use of growing neural models. Proceedings of the2006. International Symposium on Evolving Fuzzy Systems, EFS'06,2006:80-85.
    [33]张若青,裘丽华.基于动态神经网络的液压伺服系统故障检测[J].机械工程学报,2002,38(3):46-49.
    [34]鲁艳曼,方康玲,曾永龙.轧机AGC液系统故障诊断[J].液压与气动,2010(11):39-43.
    [35]熊宇飞,陆元章.液压位置系统及其噪声模型的辨识[J].机械工程学报,1989,28(2):55-60.
    [36]邱泽鳞,陈兆能,陆元章.柱塞泵配流冲击分析与实验研究[J].上海交通大学学报,1992(4).
    [37]王少萍.液压泵计算机辅助测试及故障诊断研究[D].北京:北京航空航天大学,1994.
    [38]董选民.鲁棒故障诊断及其在液压系统中的应用研究[D].北京:北京航空航天大学,1997.
    [39]黄志坚.轧机液压故障诊断与监测研究[D].北京:北京航空航天大学,2003.
    [40]张若青.基于动态神经网络的液压余度舵机系统故障诊断[D].北京:北京航空航天大学,2003.
    [41]陈章位,路甬祥.液压设备状态监测和故障诊断技术[J].液压与气动,1995,2:3-7.
    [42]董选明,裘丽华,王占林.故障诊断神经网络系统的专家知识表达方法[J].北京航空航天大学学报,1996,22(1):27-32.
    [43]张建华,王占林.基于模糊神经网络的故障诊断方法的研究[J].北京航空航天大学学报,1997,23(4):502-506.
    [44]方志宏,傅周东,陈章位.基于BP神经网络的液压系统泄漏故障诊断[J].机械科学与技术,1998,17(4):636-638.
    [45]潘宏,傅周东,陈章位.基于小波分析的液压系统泄漏检测[J].机械科学与技术,1998,17(1):116-118.
    [46]姜万录,王益群,孔祥东,等.液压系统故障检测与诊断技术的新进展[J].中国机械工程,1998,9(9):58-60.
    [47]许益民.基于两级BP网络伺服阀故障诊断专家系统的研究与应用[J].中国机械工程,1999,10(5):545-548.
    [48]高英杰.轧机AGC液压系统故障诊断技术的研究:[博士学位论文].秦皇岛:燕山大学.2000.
    [49]黄志坚,裘丽华.液压故障智能诊断逻辑方法的研究[J].中国机械工程,2002,13(15):1298-1301.
    [50]姜万录,李冲祥.神经网络和证据理论融合的故障诊断方法研究[J].中国机械工程,2004,15(9):760-763.
    [51]湛从昌,李芳,付连东,等.液压故障的模糊诊断原则与方法[J].中国机械工程,2004,15(22):1983-1985.
    [52]潘兵,熊静琪.多传感器信息融合在液压系统智能故障诊断中的应用[J].机床与液压,2006,5:190-192.
    [53]周汝胜,焦宗夏,王少萍,赵延.基于专家系统的导弹发射车液压系统故障诊断[J].航空学报,2008,29(1):197-203.
    [54]陈家,陈章位.液压系统故障诊断技术的现状与发展趋势[J].机床与液压,2008,36(10):187-189.
    [55]徐同乐,韩士杰.专家系统在液压故障诊断中的应用[J].机床与液压,2009,37(3):182-184.
    [56]谢建,何德虎,李良.基于观测器和神经网络的液压系统故障诊断方法研究[J].机床与液压,2011,39(1):135-137.
    [57]ZHAO Rui, HE Jianjun. Technology of multisensor information fusion[J]. Computer Measurement&Control,2007,15(9):124-127.
    [58]史贤俊,张文广,张艳,等.PSO-RBF神经网络在舵机系统故障诊断中的应用[J].海军航空工程学院学报,2011,26(2):131-135.
    [59]付陪肿,尹怡欣.基于PSO-RBF的神经网络及其应用研究[J].仪器仪表学报,2007,28(8):13-15.
    [60]http://baike.baidu.com/view/1136308.htm.
    [61]胡向东,物联网研究与发展综述[J].数字通信,2010,4:14-21.
    [62]长启明.PF-85B型混凝土泵车主液压系统故障分析[J].设备管理与维修技术,2008(1):78-80.
    [63]刘玉民.混凝土泵车换向冲击故障及技术改进[J].建筑机械化,2004(3):34-35.
    [64]杨拥民,陈仲生.基于B/S模式的远程故障诊断系统[J].机电一体化,2006,20(6):35-37.
    [65]MAH,YING FW.Investigation on compatible remote fault diagnosis system for power electronic equipments[C]. In Proc. IEEE Conf. Power Electronics and Drive Systems,2003,29(1):630-635.
    [66]张启君,张忠海,张宏,等.对混凝土泵现状与市场需求及关键技术的探讨[J].建设机械与管理,2003(4):37-39.
    [67]姜涛.混凝土泵车的虚拟样机技术应用研究[D].南京:南京工业大学,2005:1-2.
    [68]樊祥宁,毕光国.第三代移动通信系统无线传输技术的新进展[J].南京邮电学院学报(自然科学版),1999,19(1):21-25.
    [69]许俊杰.GPRS网络数据传输速率影响因素的研究[D].天津:天津大学,2004.
    [70]薛庆吉,周国运.基于GSM/GPRS网络远程无线控制系统应用研究[J].福建电脑报,2008第三期.
    [71]黎洪生,何岭松,史铁林.基于B/S的远程故障诊断专家系统研究[J].武汉工业大学学报.1999,21(4).
    [72]于鹏.通用分组无线业务(GPRS)技术及其应用[J].中国数据通讯网络,2000,1:18-22.
    [73]Trusted Computing Group.TCG Specification architecture overview (Versionl. 2)[EB/OL]. https://www.Trusted computing group.org,2004.
    [74]TPM Main Part1Design Principles[Z]. The Trusted Computing Group,2003-10:11.
    [75]王震宇,刘鑫杰,任杰,刘海雷,吴杰.嵌入式终端可信计算环境的关键技术[J].计算机工程,2008,11:239-244.
    [76]黄天戍,汪汝宁,袁学文.TCP/IP协议栈在嵌入式异构网络互联中的应用[J].单片机与嵌入式系统应用,2004,9:30-33.
    [77]毛江华.三大难题阻碍可信计算走下神坛[N].计算机世界报,2005:10-24.
    [78]Joe Grand. Practical secure hardware design for embedded systems[C]. Proceedings of the Embedded System Conference. San Francisco:CMP Media.2004.
    [79]林小茶,李光.基于嵌入式技术的信任根研究[J].计算机工程与应用,2007,43(16):165-168.
    [80]刘晶晶.基于ARM-Linux嵌入式系统引导程序的设计[J].微计算机信息,2006,22(2-2):123-125.
    [81]TQ035TSCM_V0.1_54P DATASHEET.广州天嵌计算机科技有限公司.bbs.embedsky.net.
    [82]曾凌.嵌入式移动信息查询系统研究及应用[D].天津:河海大学,2006.
    [83]兰高志.YA32.200型万能液压机故障诊断系统[J].渝州大学学报(自然科学版).1997,14(4):25-29
    [84]饶泓,夏叶娟,李梅竹.基于分辨矩阵和属性重要度的分类规则提取算法[J].计算机工程与应用2008,44(23):163-165.
    [85]杨福平,白振兴.BP神经网络和D-S证据理论的目标识别[J].火力与指挥控制,2006,31(10):88-91.
    [86]叶清,吴晓平,刘玲艳.基于BP神经网络的D-S证据理论及其应用[J].海军工程大学学报,2007,19(2):63-67.
    [87]丁文飞,黄子俊,曾剑新,等.基于改进BP神经网络和D-S证据理论的装备故障诊断[J].舰船电子对抗,2010,33(3):106-111.
    [88]张琦,邵立福.基于Elman神经网络的液压泵故障诊断模型研究[J].机床与液压,2004,10:274-275.
    [89]冯良祥,段志善,滕维淑.BP神经网络在矿山机械液压系统故障诊断中的应用[J].大众科技,2010,5(129).
    [90]Hopfield J J. Neural networks and physical systems with emergent collective computational abilities[J]. In:Proc. National Academy Science, USA,1982April;79(8):2554-2558.
    [91]纪震,廖惠连,吴青华.粒子群算法及应用[M],科学出版社,2010.
    [92]杨维,李歧强.粒子群优化算法综述[J].中国工程科学,2004,6(5):87-92.
    [93]潘青飞.带自身最好位置权重的粒子群算法[J].数学杂志,2008,5:537-540.
    [94]Parsopoulos K E, Vrahatim N. On the computation of all global minizers through particle swarm optimization[J]. IEEE Trans on Evolutionary Computation,2004,8(3):211-114.
    [95]雷秀娟,付阿利,孙晶晶.改进PSO算法的性能分析与研究[J].计算机应用研究,2010,27(2):453-458.
    [96]张海,浦健,张啸澄.基于粒子群优化算法的Elman神经网络凝汽器真空模型[J].热力发电,2010,39(4):7-11.
    [97]Kenedy J. Stereotyping:Improving particle swarm performance with cluster analysis[A]. Proceedings of the Congress on Evolutionary Computing[C]. Piscataway, NJ:IEEE Service Center,2000:1507-1512.
    [98]Shi Yuhui, Eberhart R C.A modified particle optimizer[C]. Proc. of the IEEE Conf. on Evolutionary Computation,1998:69-74.
    [99]M. Richards, D. Ventura. Choosing a starting configuration for particle swarm optimization[A]. in Proc. IEEE Int. Joint. Conf. Neural Network.[C]. Jul.2004, vol.3, pp.2309-2312.
    [100]凌海峰,高亚鹏,韩军,等.工程车辆液压系统检测仪的关键技术及实现[J].液压与气动,2006,5(2):24-25.
    [101]张海波,陈国军.液压系统压力数据采集装置的研制[J].液压与气动,2003,3(16):8-9.
    [102]Burbidge R, Trotter M, Buxton B, Holden S. Drug design by machine learning: support vector machines for pharmaceutical data analysis, Computer and Chemistry,2001,26(1):5-14.
    [103]Trotter M. W. B., Buxton, B. F., Holden, S. B. Support vector machines in combinatorial chemistry, Measurement and Control,2001,34(8):235-239.
    [104]V. Vapnik, Zhang Xuegong. The nature of statistical learning theory, Peking, Tsinghua University Press,2000.
    [105]Omar, M. F. Salam, R. A. Rashid, N. A. Abdullah, R. Multiple sequence alignment using genetic algorithm and simulated annealing.[J]. Information and Communication Technologies,2004,19(23):455-456.
    [106]王国鹏,翟永杰,王东风,等.模糊支持向量机在汽轮机故障诊断中的应用[J].华北电力大学学报,2003,30(4):47-50.
    [107]王文栋,钟智,元昌安.基于GEP的支持向量机参数优化[J].广西师范学院学报,2010,27(2):66-70.
    [108]Gandomkar, M., Vakilian, M., Ehsan, M. A combination of genetic algorithm and simulated annealing for optimal DG allocation in distribution networks.[J]. Electrical and Computer Engineering,2005,40(1):645-648.
    [109]T rotter M. W. B., Buxton, B. F., Holden, S. B.. Support vector machines in combinatorial chemistry, Measurement and Control,2001,34(8):235-239.
    [110]Van Gestel, T., Suykens, J. A. K., Baestaens, D. E., Lambrechts, A. Lanckriet, G., Vandaele, B., De Moor, B., Vandewalle, J.. Financial time series prediction using least squares support vector machines within the evidence framework, IEEE Transactions on Neural Networks,2001,12(4):809-821.
    [111]Platt J. C., Fast training of support vector machines using sequential minimal optimization, Microsoft Research, http://www.research.microsoft.com/~jplatt.
    [112]Ding Yimin, Chi Liang, Chen Nianyi.Computerized prediction and experimental confirmation of the phase diagram of CsF-CaF2System, Computer and Applied Chemistry,2002,19(6):87-91.
    [113]Bao Xinhua, Lu Wencong, Chen Nianyi. Support vector machine applied to intelligent database of phase diagrams of molten salt systems, Computer and Applied Chemistry,2002,19(6):45-48.
    [114]Chen Nianyi, Lu Wencong, Ye Chenzhou, Li Guozheng. Application of support vector machine and kernel function in chemometrics, Computer and Applied Chemistry,2002,19(6).
    [115]Riaz, M. T.,Nielsen, R. H., Gutierrez, J., Pedersen, J.M., Madsen, O.B. On Implementing choral ring structures using genetic algorithm and simulated annealing.[J]. International Symposium,2008,50(20):593-596.
    [116]Saha, I., Mukhopadhyay, A. Genetic algorithm and simulated annealing based approaches to categorical data clustering[J]. Industrial and Information Systems,2008,8(10):1-6.
    [117]陈洁,芮延年.基于模糊理论液压系统故障诊断方法的研究[J].机电工程,2003,20(6):67-70.
    [118]李立红,许元飞.深度优先搜索的支持向量机参数优化[J].计算机仿真,2011,28(77):216-218.
    [119]刘昌平,范明钰,王光卫等.基于梯度算法的支持向量机参数优化[J].控制与决策,2008,23(11):1291-1300.
    [120]刘月娥,何东健,李峥嵘.一种用于BP网络优化的并行模拟退火遗传算法[J].计算机应用,2006,26(1):204-206.
    [121]吕永卫,熊诗波,林选等.基于小波包与EMD处理的滚动轴承故障诊断[J].太原理工大学学报,2010,41(2):178-182.
    [122]陈家德,吴小俊.自适应模糊支持向量机算法研究[J].计算机工程与应用,2010,46(25):191-194.
    [123]俞新陆,杨津光.液压机的结构与控制[M].北京:机械工业出版社,1989.11.
    [124]李启龙.轴向柱塞泵故障诊断和预测方法研究与系统开发[D].广州:广东工业大学,2007.
    [125]王耀南,李树涛.多传感器信息融合及其应用综述[J].控制与决策,2001,16(5):518-522.
    [126]潘泉,于昕,程咏梅.信息融合理论的基本方法与进展[J].自动化学报,2003,29(4):599-615.
    [127]Mark Bedworth, Jane O'Brien Jernity. The omnibus model:A new model of data fusion[C]. Proceedings of1999International Conference on Information Fusion. California, USA:Sunnyvale.1999:337-345.
    [128]Venkatasubramanian V, et al. A review of process fault detection and diagnosis Part II:Qualitative models and search strategies[J]. Computers and Chemical Engineering,2003,27(3):313-320.
    [129]Chiang L. H, Russell E. L., R. D. Braatz. Fault detection and diagnosis in industrial systems. SpringerVerlag,London,2000.
    [130]BLASCH E P. Sensor cognition display of fused information[C]. National Sensor and Data Fusion Conference, San Antonio, TX,2006.
    [131]Paradis S, Roy J. An architecture and a facility for the integration of all levels of data fusion[C]. Proceedings of2000international conference on information fusion, France:Paris,2000:278-384.
    [132]阎平,张长水.人工神经网络与模拟进化计算[M].北京:清华大学出版社2000.
    [133]李勇刚,桂卫华,阳春华.一种改进的RPCL聚类算法及其在软测量中的应用[J].计算机工程与应用,2003,31:30-33.
    [134]G. Shafer. A mathematical theory of evidence[M]. Princeton University Press, Princeton, New Jersey,1976.
    [135]张冀.基于多源信息融合的传感器故障诊断方法研究[D].北京:华北电力大学,2008.
    [136]Yager R. On the Dempster-Shafer framework and new combination rules. Information Sciences,1987,41(2):93-138.
    [137]孙全,叶秀清,顾伟康.一种新的基于证据理论的合成公式[J].电子学报,2000.8:117-119.
    [138]潘巍,王阳生,杨宏戟Pignistic概率转换算法设计[J].计算机工程,2005,31(4):20-22.
    [139]潘巍,李晋川,王阳生等.一种基于”交并集”和Pignistic概率的证据冲突的改进方法[J].计算机科学,2007,34(1):148-152.
    [140]许培达,韩德强,邓勇.一种基本概率赋值转换为概率的最优化方法[J].电子学报,2011,39(3):121-125.
    [141]Smets P. The combination of evidence in the transfetable belief model. IEEE Trans on PaRem Analysis and Machine Inteli. gence,1990,6(4):447-458.
    [142]Lefevre E, Colot O, Vannoorenberghe P. Belief function combination and cordlict management.Information Fusion,2002,3(3):149-162.
    [143]Haenni R. Are alternatives to Dempster's rule of combination real alternatives Comments on"About the belief function combination and the conflict man agement problem"[J]. Information Fusion,2002,3(4):237-239.
    [144]Deng Yong, Shi Wenkang, Liu Qi. Combining belief functions based on distance function. Decision Support Systems,2004,38:489-493.
    [145]潘泉,张山鹰,程咏梅,等.证据理论鲁棒性研究[J].自动化学报,2001,6:798-805.
    [146]郭华伟,施文康,邓勇.证据冲突:丢弃,发现或化解?[J].系统工程与电子技术,2007,29(6):890-898.
    [147]Jousselme A L, Grenier D, Bosse E. A new distance berween two bodies of evidence. Information Fusion.2001,2(1):90-101.
    [148]陆景丽.基于小波神经网络的液压泵故障诊断方法及实验研究[D].秦皇岛:燕山大学,2007.
    [149]顾建.BY32-100四柱式万能液压机液压系统故障诊断[J].液压气动与密封,1996(2):62-65.
    [150]李宏坤.基于信息融合技术船舶柴油机故障诊断方法的研究与应用[D].大连:大连理工大学,2003.
    [151]郭堃.基于嵌入式系统的挖掘机液压系统状态监测与故障诊断研究[D].湖南:中南大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700