用户名: 密码: 验证码:
抽灌井群地下水运移能量传输及其传热研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下水源热泵是地源热泵的一个分支,是一种新兴的、可持续的浅层地温能开发利用方式。它以地下水作为热源,水的比热较大,传热性能较好,且水温不受四季温度的影响,同时该系统运行稳定,节能环保效果明显。因此,地下水源热泵系统近些年在我国得到了十分迅猛的发展,其应用范围越来越广泛。
     含水层温度场变化是决定地下水源热泵空调机组运行功效的主要因素,复杂抽灌运行条件下,含水层热量运移规律研究是其工程论证及可持续良好运行的前提保障。目前,国内外已开始逐步关注此方面的研究,特别是数值计算研究发展较快。然而这些模拟研究大都集中在同井及对井抽灌系统,涉及到井群抽灌的研究较少,特别是抽灌井群的大规模应用问题相对滞后。对于井群抽灌系统,井群附近的热量运移和水动力循环更加活跃,含水层热流变也更加复杂,因此需要开展更加深入的研究工作。此外,受限于地下过程实验的困难程度和可视化问题,国内外关于抽灌井群系统含水层热量运移的现场及室内模型实验并不多见,缺乏实验测试数据。因此,相关的实验研究工作也亟待开展,解决数值模拟计算的过多盲目性和缺少更广阔的验证性。
     本研究结合国家自然科学基金项目,以异井回灌地下水源热泵抽灌井群地下水运移能量传输及其传热为研究重点,通过实验研究与模拟计算分析相结合的方法,研究各种影响因素对抽灌井群区域含水层温度场的影响,同时对水位场和速度场进行对比分析,揭示地下水源热泵系统长期运行过程中含水层热流场的发展,演变和作用机理,拓展和完善抽灌井群地下水运移能量传输和传热控制理论,为进一步拓展应用提供理论指导依据。
     研究工作主要包括:
     利用相似理论,建立了静态含水层(无含水层自然横流流动)抽灌井群砂槽渗流模拟实验系统,再现井群抽灌含水层渗流动态和过程。实验分别从抽灌总量变化、抽灌量分配变动性和含水层构造形式三个影响因素入手,对不同影响因素与井群区域含水层温度场之间的演化关系进行研究,同时对水力坡度分布和渗流速度变化进行了对比分析,并依此探求井群抽灌过程含水层热流场的主动控制机制和模式,实现可控地下传热过程,最大限度的避免和减轻热贯通现象及热交互影响。
     自然横流流动是产生含水层热量运移特征差异的主要原因,亦是热贯通发生的关键。本文建立了可模拟含水层自然横流的抽灌井群砂槽渗流模拟实验系统,研究不同含水层自然横流条件下,抽灌井群区域含水层热流场方向变动和能量传输特性,并着重分析了不同流向和流速对抽水井出水温度、含水层温度场、水位场以及热贯通和热交互特性的影响,从而为地下水源热泵抽灌井群系统的设计提供依据。
     地下水源热泵地上热泵空调系统与地下含水层间存在水流和热量两部分循环过程,构成了反映渗流场和热能势场的两场相互耦合问题。本文通过对抽灌井群含水层热量运移及其主要传热过程进行分析,建立了基于Fluent的含水层热流动模型,同时对算例几何模型、边界条件、网格划分以及基本参数设置做了详细介绍。此外,按照井群抽灌系统含水层热流变实验的条件对模型进行了验证,包括抽水井出水温度的验证和井场区域含水层温度场的验证两部分,综合分析表明:该模型可以用于分析和预测实际井群抽灌系统中含水层温度的变化,能够提供较为准确的数值模拟数据。
     在静态含水层抽灌井群热量运移模型的基础上,对实际应用构造尺度下的地下水源热泵抽灌井群系统进行多周期、长时间的运行模拟计算研究,以突破实验室条件的限制。文中分别从系统运行模式、置井方式和抽灌温差影响三个主要因素出发,研究不同影响因素对抽灌井群含水层温度场的影响,并根据相应的抽水井出水温度、热交互和热贯通影响特性来评价热泵系统的工作效果,同时提出合理的井群布置方案和系统运行模式,为完善和建立地下采能热传输主动控制机制提供理论指导。
     在自然横流含水层抽灌井群热量运移模型的基础上,开展了抽、灌渗流与含水层自然横流的叠加动力场的热量传输规律研究,对实际应用构造尺度下的地下水源热泵系统进行多周期、长时间的运行模拟计算分析,研究自然横流不同流向和流速条件下含水层温度场热扩散促进、抑制和偏移特性,揭示地下水源热泵系统长期运行过程中含水层热流场的发展,演变和作用机理,为相关的实际工程应用提供理论参考依据。
Ground water heat pump (GWHP) is a branch of ground source heat pump (GSHP),which is an emerging and sustainable development mode of shallow layer geothermal energy.It takes groundwater as heat source and water temperature is not affect by four seasonstemperature, meanwhile, specific heat is big and heat transfer performance is good of thewater, in addition, this system runs stably, energy saving and environmental protection.Therefore, GWHP gets a very rapid development in China, and application scope is moreand more widely in recent years.
     Temperature field change of the aquifer is an important factor to decide the efficacy ofheat pump units, and heat transport rule study of the aquifer is the basic prerequisite for thesustainable running and engineering appraisal. Now, more and more scholars at home andabroad began to pay attention to this research, and the related research work of GWHPsystem develop rapidly in recent years, especially in model analysis and numerical research.However, these simulation researches are mostly focus on the groundwater heat pump withpumping&recharging in the same well or doublet well system, and less on pumping andinjecting well groups, and the related basic scientific research is still far behind the practicalapplication. For pumping and injecting well groups system, heat transport and hydrodynamiccirculation are more active and thermorheologic of the aquifer is more complicated, whichneed to carry out more in-depth research. In addition, limited to the difficulty andvisualization problem of the underground experiments, systematic test study especially thekey mechanism characteristic experiment develop lag, and field experiment and laboratorytests of the water-heat transportation of the aquifer are rare, lack of relevant experimentaldata. Therefore, the basic heat transfer, process evolution and time-varying regularity, etc.are eager to carry out, to solve the blindness of numerical simulation and lack of a broaderconfirmation.
     This study integrates the National Natural Science Fund, and focuses on the energytransport and heat transfer on the groundwater motion of pumping and injecting well group.Through the experimental research and numerical simulation, to study the effect of variousinfluencing factors to the aquifer temperature field, water level field and velocity field inpumping and injecting well group area, to reveal the development, evolution and actionmechanism of heat flow field in long term running process of the GWHP, and also to expandthe energy transport and heat transfer control theory of the groundwater motion of pumpingand injecting well group, provide the theoretical guidance for further application.
     The main research works included in this paper are as follows:
     Establish the experimental system of sand tank seepage based on the principles ofsimilarity theory, to reproduce the aquifer seepage dynamic and process of the pumping andinjecting well group. The paper studied the development and evolution of heat flow field ofpumping and injecting well group under conditions of different aquifer structure, totalamount of pumping and injection. In addition, a contrastive analysis of hydraulic gradientdistribution and seepage velocity change are made, and according to this to explore theactive control mechanism and the pattern of aquifer heat flow field, achieve a controlledground heat transfer process and maximum avoid and alleviate the thermal breakthrough andthermal interaction.
     Nature cross flow is the main cause to produce the feature difference of aquifer heattransfer, and also the key of thermal breakthrough. The study established the experimentalsystem of sand tank seepage, which can simulate the nature cross flow, and studied thedirection change and energy transport properties of the heat-flow field under different naturecross flow conditions. In addition, this dissertation mainly analyzed the pumping watertemperature, aquifer temperature field, water-level field, thermal breakthrough and thermalinteraction, which can provide a basis for the design of pumping and injecting well groupsystem.
     It exists two-part cyclical process of water and heat between air conditioning system ofheat pump on the ground and underground aquifers, which form two field coupling problems of the seepage field and thermal potential field. This study analyzed the groundwater motionand its main heat transfer process, and established the model of aquifer heat flow by usingthe computational fluid dynamics (CFD) commercial software FLUENT, meanwhile,geometrical model, boundary conditions, grid division and basic parameters setting areintroduced in details. In addition, verified the model according to the heat flow variableexperiment, which include pumping water temperature validation and aquifer temperaturefield validation. Analysis indicated that this model can be used to analyze and predict theaquifer temperature change of the actual project, which can provide accurate simulation data.
     The paper carry out the simulation research for multicycle, long time running ofpumping and injecting well group under practical application structure scale condition, tobreak through the limitations of laboratory conditions. The study from running mode, wellgroup arrangement and variable condition control three factors to analyze the water heattransport process of the aquifer in well group area, and according to the pumping watertemperature, thermal breakthrough and thermal interaction to evaluate the work efficiency ofheat pump system. Meanwhile, put forward reasonable layout of well group and systemrunning mode, which can provide the theoretical guidance for further establish and perfectthe heat transfer control mechanism of underground energy mining systems.
     For nature cross flow aquifer, the paper studied the effect of water direction andvelocity to the temperature field and velocity field of the aquifer, and comprehensivelyelaborated the characteristics of thermal diffusion promote, inhibit and offset under differentwater direction and velocity conditions, to reveal the development, evolution and actionmechanism of heat flow field of the aquifer in long term running process, which can providetheoretical reference and a basis for the practical engineering applications.
引文
[1]卢予北.可再生能源的新成员-浅层地温能[J].探矿工程(岩土钻掘工程),2008,4:1-3.
    [2]国土资源部数据:中国地热资源相当于860万亿吨煤[N].京华时报,2012-10-10.
    [3] ASHRAE. Commercial/Institutional ground-source heat pump engineering manual[M].Atlanta: ASHRAE,1995.
    [4] S. P. Kavanaugh, K. Raffery. Ground-source heat pump-Design of geothermal systemsfor commercial and institutional buildings [M]. Atlanta: ASHRAE,1997.
    [5]张远东,万育生.我国地下水源热泵应用现状和监管措施探讨[J].水资源管理,2009,21:39-40.
    [6] Q. Gao, M. Li, M. Yu, et al. Review of development from GSHP to UTES in China andother countries[J]. Renewable and Sustainable Energy Reviews,2009,13(6-7):1383-1394.
    [7] L. R. Stefano, V. C. Massimo. Open-loop groundwater heat pumps development forlarge buildings: A case study [J]. Geothermics,2009,38(3):335-345.
    [8] N. Aksoy, C. im ek, O. Gunduz. Groundwater contamination mechanism in ageothermal field: A case study of Balcova, Turkey[J]. Journal of ContaminantHydrology,2009,103(1-2):13-28.
    [9]高青.地下水地源热泵的客观、理性和科学发展[J].暖通空调,2009,39,Sup:403-407.
    [10]周学志,高青,于鸣,赵晓文,朱天奎.含水层构造对抽灌水温变特性的影响[J].吉林大学学报(工学版),2013,43(1):57-60.
    [11]刘立才,张霓,王理许.北京平原区浅层地下水热泵系统承载能力评价[J].水利学报,2009,40(12):1473-1480.
    [12]王宏.沈阳地区应用地源热泵系统的技术问题探讨与展望[J].地下水,2009,31(6):154-156.
    [13]牛俊强,桂承新,李嵘.武汉市地下水资源及其在地下水源热泵系统中的应用[J].资源环境与工程,2009,32(4):480-483.
    [14]李世君,刘文臣,辛宝东.北京地区地下水源热泵利用现状及存在问题[J].城市地质,2006,1(1):16-20.
    [15]李宇,张远东,魏加华.利用水源热泵开采浅层地热能若干问题的探讨[J].城市地质,2007,2(3):11-16.
    [16]Q. Gao, X. Z. Zhou, Y. Jiang, et al. Numerical Simulation of the Thermal Interactionbetween Pumping and Injecting Well Groups[J]. Applied Thermal Engineering,2013,51(1-2):10-19.
    [17]高青.地下水源热利用可持续发展及其面临的问题[J].地温资源与地源热泵技术应用论文集(第四集).济南,2011,69-73.
    [18]孙艺伟.地热资源的利用及其面临的若干问题[J].探矿工程,2010,37(10):44-46.
    [19]Ni L, Jiang Y Q, Yao Y, et al. Groundwater Heat Pump with Pumping and Recharging inthe Same Well in China[C]. Proceedings of the Sixth International Conference forEnhanced Building Operations,2006.
    [20]S. XU, L. RYBACH. Utilization of Shallow Resources Performance of Direct UseSystem in Beijng [J]. Geothermal Resource Council Transactions,2003,(27):115-118.
    [21]REES S J, SPITLER J D, DENG Z, et al. A Study of Geothermal Heat Pump andStanding Column Well Performance[C]. ASHRAE Trans.2004,110(1):3-13.
    [22]ORIO C D, JOHNSON C N, REES S J, et al. A Survey of Standing Column WellInstallations in North America[C]. ASHRAE Trans.2005,111(2):109-121.
    [23]陈焰华.地下水地源热泵空调系统设计与运行工况分析[C].2008铁路暖通空调学术年会论文集.江苏,2008:159-160.
    [24]汤志远,丁国良,胡海涛.我国地源热泵技术研究进展和产业发展探讨[J].制冷技术,2009,(3):11-12.
    [25]李元普,王晔华.地源热泵:国内市场推广方兴未艾[N].中国建设报,2009-03-24(7).
    [26]王新娟,路明,姜媛等.北京平原区水源热泵适宜性区划评价方法的研究[C].地温资源与地源热泵技术应用论文集(第三集),2009,28-30.
    [27]吴锦,侯忠江.沈阳地源热泵应用居全国前列[N].科技日报,2009-08-14(10).
    [28]周强,祝贺.河南完成重点城市浅层地热能评价[N].中国国土资源报,2009-12-02.
    [29]刘自强.河北省地源热泵发展现状[J].中国建设信息供热制冷,2010,4:54-56.
    [30]吕悦,杨立平,周沫等.国内地源热泵应用情况调查报告[J].工程建设与设计,2005,(6):5-6.
    [31]臧海洋.沈阳城区地下水源热泵适宜性评价及应用[D].硕士研究生学位论文,沈阳建筑大学.2011.
    [32]张远东,万育生.我国地下水源热泵应用现状和监管措施探讨[J].中国水利,2009,21:39-40.
    [33]地下水源热泵:大面积推广应该慎重对待.慧聪网.2009-02-11.
    [34]徐伟.中国地源热泵发展研究报告[M].北京:中国建筑工业出版社,2008.
    [35]龚宇烈,赵军,李新国等.地源热泵在美国工程应用及其发展[C].2001年全国热泵和空调技术交流会议论文集,2001,249-253.
    [36]M. J. Hatten. Groundwater heat pumping: lessons learned in43years at one building [J].ASHRAE Transactions,1992,98(1):1031-1037.
    [37]E. C. Knipc, K. D. Raffcry. Corrosion in low temperature geothermal application[J].ASHRAE Transactions,1985,91(2B-1):81-91.
    [38]P. J. Hughes. Survey of water-source heat pump system configurations in currentpractice [J]. ASHRAE Transactions,1990,96(1):1021-1028.
    [39]Curtis R, Lund J, Sanner B, et al. Ground source heat pumps geothermal energy foranyone[C]. Proceedings of the world geothermal congress,2005,1-9.
    [40]B. Sanner. Ground heat sources for heat pumps (classification, characteristics,advantages)[C]. In: International summer school on direct implication geothermalenergy,1997,1-8.
    [41]孙凤岭.地下水源热泵空调系统在北京地区的应用研究[D].硕士研究生学位论文,北京工业大学,2007.
    [42]B. Sanner, C.Karytsas, D.Mendrinos, et al. Current Status of Ground Source HeatPumps and Uderground Thermal Energy Storage in Europe[J]. Geothermics,2003,32:579-588.
    [43]L. Rybach, B. Sanner. Ground-source heat pump systems, the European experience[J].GHC BULLETIN,2000,(3):16-26.
    [44]石文.地源热泵系统地埋换热器热短路问题的研究[D].硕士研究生学位论文,武汉科技大学,2010.
    [45]张超,刘寅,周光辉.地源热泵的应用对环境的影响分析[J].低温与超导,2008,36(4):35-37.
    [46]Anner, C. Karytsas, D. Mendrinos, et al. Current status of ground source heat pumps andunderground thermal energy storage in Europe[J]. Geothermics,2003,3(2):579-588.
    [47]M. Badruk. Environmental problems in geothermal energy applications[C]. Proceedingsof the Geothermal Energy Seminar-TESKON, Izmir, Turkey,2003,345-358.
    [48]Y. J. Nam, R. Ooka. Numerical simulation of ground heat and water transfer forgroundwater heat pump system based on real-scale experiment[J]. Energy and Buildings,2010,42(1):69-75.
    [49]Y. J. Nam, R. Ooka, Y. Shiba. Development of dual-source hybrid heat pump systemusing groundwater and air[J]. Energy and Buildings,2010,42(6):909-916.
    [50]Y. Fujimitsu, K. Fukuoka, S. Ehara, et al. Evaluation of subsurface thermalenvironmental change caused by a ground-coupled heat pump system[J]. CurrentApplied Physics,2010,10(2):113-116.
    [51]S. Haehnlein, P. Bayer, P. Blum. International legal status of the use of shallowgeothermal energy[J]. Renewable and Sustainable Energy Reviews,2010,14(9):2611-2625.
    [52]D. E. Kalz, J. Pfafferott, S. Herkel, et al. Energy and efficiency analysis ofenvironmental heat sources and sinks: In-use performance[J]. Renewable Energy,2011,36(3):916-929.
    [53]C. M. Epstein. Hydrogeology of the Stockton College Geothermal Well Field. InMonitoring and analysis of the Geothermal Heat Pump Installation at Stockton College(NJ), edited by L. Stiles,1994Report to Atlantic Electric, EPRI, SNL, and SJTA,1994,1-24.
    [54]C. M. Epstein. Temperature Changes in the Geothermal Well Field. In Monitoring andAnalysis of the Geothermal Heat Pump Installation at Stockton College (NJ). edited byL. Stiles,1995Report to Atlantic Electric, EPRI, SNL, and SJTA,1995,1-10.
    [55]C. M. Epstein. Impact of Groundwater Flow on the Stockton Geothermal Well Field [J].Underground thermal Storage&Utilization,1998,1.
    [56]C. M. Epstein, L. S. Sowers. The Continued Warming of the Stockton Geothermal WellField[C]. The10th international Conference on Thermal Energy Storage-Ecostock,Pomona, New Jersey, USA,2006.
    [57]K. Woods, A. Ortega. The thermal response of an infinite line of open loop wells forground coupled heat pump systems[J]. International Journal of Heat and Mass Transfer,2011,54(25):5574-5587.
    [58]F. Garnier, S. B. Courtade, H. Lesueur, et al. Investigation of Thermal, Geochemical andBiological Impacts Induced by Groundwater Heat Pumps[J]. Stanford GeothermalWorkshop,2012.
    [59]L. R. Stefano, G. Taddia, G. Baccino, et al. Different design scenarios related to an openloop groundwater heat pump in a large building: Impact on subsurface and primaryenergy consumption[J]. Energy and Buildings,2011,43(2):347-357.
    [60]A. Vandenbohede, T. Hermans, F. Nguyen, et al. Hallow heat injection and storageexperiment: Heat transport simulation and sensitivity analysis[J]. Journal of Hydrology,2011,409(1):262-272.
    [61]J. Y. Lee, J. S. Hahn. Characterization of groundwater temperature obtained from theKorean national groundwater monitoring stations: Implications for heat pumps[J].Journal of Hydrology,2006,329(3-4):514-526.
    [62]孟宪军,林豹,王巍.渗透率和孔隙度对地下水源热泵地温场演化的影响[J].制冷,2010,4:66-69.
    [63]黄涛,袁东立.水源热泵地下水温度变化的模拟分析[C].第十七界全国暖通空调制冷学术年会论文集,2010,198.
    [64]马云东,姜秋耘,潘科.热渗耦合的地下水源热泵抽灌井传热数值模拟[J].水电能源科学,2010,28(12):39-41.
    [65]朱小波,李幽铮,周彦章.地源热泵系统冷负荷设计方案变化地下水热量运移模拟[J].勘察科学技术,2010,5:13-16.
    [66]傅志敏,向衍,高西望.井点布置对采能区地下水温度场的影响[J].华北水利水电学院学报,2010,31(6):35-37.
    [67]齐成伟.环形井群激发的渗流场之复分析[J].内蒙古石油化工,2010,2:32-35.
    [68]王松庆,张旭.地下水源热泵定压差取水方式对含水层渗透性的影响[J].中南大学学报(自然科学版),2011,42(6):1625-1628.
    [69]王松庆,张旭.地下水源热泵不同运行方式对含水层参数影响分析[J].湖南大学学报(自然科学版),2011,38(7):65-67.
    [70]王现国,葛雁,吴东民.地下水源热泵工程运行期间水热变化特征模拟分析[C].地温资源与地源热泵技术应用论文集(第四集),2011.91-94.
    [71]范建好,胡继华,张延军等.对井含水层储能系统渗流场模拟[J].人民黄河,2011,33(6):71-73.
    [72]倪龙,马最良.多层含水层同井回灌地下水源热泵特性分析[J].建筑热能通风空调,2005,24(3):10-13.
    [73]倪龙,马最良.热弥散对同井回灌地下水源热泵的影响[J].建筑热能通风空调,2005,24(4):7-10.
    [74]倪龙,马最良.含水层参数对同井回灌地下水源热泵的影响[J].天津大学学报,2006,39(2):229-234.
    [75]倪龙,马最良,孙丽颖.同井回灌地下水源热泵热力特性分析[J].哈尔滨工程大学学报,2006,27(2):195-199.
    [76]倪龙,马最良.井参数对同井回灌地下水源热泵的影响[J].流体机械,2006,34(3):65-69.
    [77]张远东,魏加华,李宇等.地下水源热泵采能的水-热耦合数值模拟[J].天津大学学报,2006,39(8):907-910.
    [78]张远东,魏加华,汪集旸.井对间距与含水层采能区温度场的演化关系[J].太阳能学报,2006,27(11):1163-116.
    [79]张远东,魏加华,王光谦.区域流场对含水层采能区地温场的影响[J].清华大学学报(自然科学版),2006,46(9):1518-1521.
    [80]王海龙.北京平原区地下水源热泵数值模拟研究[D].硕士研究生学位论文,中国地质大学.2009.
    [81]李旻,刁乃仁,方肇洪.单井回灌地源热泵地下传热数值模型研究[J].太阳能学报,2007,28(12):1394-1401.
    [82]何满潮,刘斌,姚磊华等.地下热水回灌过程中渗透系数研究[J].吉林大学学报,2002,32(4):374-377.
    [83]周彦章,陈耿.含水介质地下水热量运移研究综述[J].黑龙江水专学报,2008,35(2):125-126.
    [84]韩丽艳,施增宁.热电偶标定实验的动态演示[J].实验室研究与探索,1999,(6):61-63.
    [85]何裕盛.地下动态导体充电法探测概论[J].物探与化探,2000,24(1):62-65.
    [86]谷现平,聂新恕,周江等.利用高密度电法仪探测地下水流速流向[J].中国煤炭地质,2010,22:83-85.
    [87]鲍广富.运用水文物探方法测定地下水流速流向[J].西部探矿工程,2008,12:156-158.
    [88]H. O. Paksoy, O. Anderson, S. Abaci, et al. Heating and cooling of a hospital using solarenergy coupled with seasonal thermal energy storage in an aquifer[J].Renewable Energy,2000,19(1/2):117-122.
    [89]N. Tenma, K.Yasukawa, G. Zyvoloski. Model study of the thermal storage system byFEHM code[J]. Geothermics,2003,32(4/5/6):603-607.
    [90]辛长征,朱颖心.深井回灌式水源热泵井群运行的地下含水层传、蓄热性能模拟研究[C].2002年全国暧通空调制冷学术年会.珠海,2002,263-270.
    [91]胡桂秋.地下水源热泵系统应用条件分析[J].承德石油高等专科学校学报.2011,13(1):44-47.
    [92]张远东.单(多)井抽灌对潜部地温场的影响研究[D].硕士研究生学位论文,中国科学院研究生院,2003.
    [93]王锦国,周志芳,金忠青.地下水热量运移模拟的BEM-FAM耦合法[J].水利学报,2001,(5):71-76.
    [94]司广树,姜培学,李勐.单相流体在多孔介质中的流动和换热研究[J].承德石油高等专科学校学报,2000,2(4):4-9.
    [95]袁建伟.水源热泵地下含水层温度场的研究[D].硕士研究生学位论文.北京建筑工程学院.2008.
    [96]Y. Q. XUE, C. H. XIE, Q.F. LI. Aquifer thermal energy storage: a numerical simulationof field experiments in China[J].Water Resources Research,1990,26(10):2365-2375.
    [97]薛禹群,谢春红,张志辉等.三维非稳定流含水层储能的数值模拟研究[J].地质论评,1994,40(1):74-81.
    [98]朱学愚,谢春红.地下水运移模型[M].北京:中国建筑工业出版社,1990.
    [99]李元旦,魏先勋.水平埋地管埋地换热器夏季瞬态工况的实验及数值模拟[J].湖南大学学报,1999,26(2):220-225.
    [100]魏唐棣,胡鸣明,丁勇等.地源热泵冬季供暖测试及传热模型[J].暖通空调,2000,30(1):12-14.
    [101]胡继华.地下水源热泵水力学机理及其对地下温度场影响研究[D].硕士研究生学位论文.吉林大学.2009.
    [102]李义昌.地下水动力学[M].江苏:中国矿业大学出版社,1995.
    [103]陆麟.地下水源热泵系统井群优化与机组性能实验研究[D].硕士研究生学位论文,南华大学.2006.
    [104] R. L. Douglas Cane, S. Blair Clemes, A. Morrison. Operating Experiences withcommercial Gound-Source Heat Pump[J]. ASHRAE Transaction,1996,911-916.
    [105]江彦.地下能量传输及其传热控制研究[D].博士研究生学位论文.吉林大学.2010.
    [106]王福军.计算流体动力学分析[M].北京:清华大学出版社,2006.
    [107]李波. Fluent软件应用及算例分析[D].硕士研究生学位论文,宁夏大学.2009.
    [108]江帆,黄鹏. Fluent高级应用与实例分析[M].北京:清华大学出版社,2008.
    [109]王明育,马捷,郝振良.地下含水层储井位置选择和布置[J].成都理工大学学报(自然科学版).2005,32(1):12-15.
    [110]丛晓春,杨文斐.地下承压含水层水一热运移特性的模拟研究[J].太阳能学报,2008,29(11):1390-1394.
    [111]王大纯,张人权,史毅虹等.水文地质学基础[M].北京:地质出版社,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700