用户名: 密码: 验证码:
基于螳螂前足结构特征的仿生切茬刀片设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在中国北方地区,农民习惯把残留在地表的作物根茬挖掘出来并就地焚烧,这种根茬处理方式不但费时费力,而且严重污染环境。因此,研究设计一种简单高效的根茬切割工具不仅能够提高农业生产的作业效率也满足了保护生态环境方面的需求。本文基于对螳螂前足结构特征的研究,设计了几种仿生切茬刀片,并利用有限元建模方法和实际试验测量来分析其切茬性能。
     长期以来,土壤耕作作为农业工程领域中的热点,一直备受专家学者的关注。实质上,任何一个耕种的操作过程都可以视为工件切削和粉碎土壤的过程,而耕作阻力的大小主要取决于耕作部件的形状、土壤质地与作业方式。在实际研究中,几乎所有用于田间作业的土壤切削工具的设计和改良都是依靠大量的田间试验经反复摸索得到的。解决合理化建模的问题即可减少甚至取代繁琐耗时、花费高昂的田间试验。而有限元分析方法在建模分析这一方面展现出了显著的优势,只要能够选择出一个合适的本构关系来描述土壤材料,并对某一耕作工具的形状和非线性接触关系建立计算机模型,就可以对该耕作部件的作业过程进行动态仿真模拟。本工作建立了一个计算机预测模型,通过有限元分析方法计算分析旋耕作业中常用的切土部件—L型直刀的工作阻力。将旋转速度和旋转方式对刀片工作阻力的影响作为对比分析的主要因素,考察三种不同旋转速度(220r/min,300r/min,388r/min)与两种旋转方式(逆转旋切、正转旋切)条件下,L刀的工作阻力情况。并在土槽试验室内构建了一套切削阻力测试装置以测量L刀的切土阻力。通过有限元模型预测与实际土槽测量的对比,得到了预测值与真实值近似的结论,进而证实了有限元仿真模型的可靠性与合理性。因此,本工作中的有限元模型可作为一个简单可靠的预测工具,在农业耕种模式及作业工具的设计研发中发挥一定作用。
     螳螂是昆虫界最优秀的捕食者之一,它的前足胫节与腿节布满了极为锋利的锯齿状的刺,且能够准确迅猛地向猎物发起进攻,牢牢钳住猎物,这种锐利的齿状结构与排列方式对于实现切割刀具的减阻降耗的仿生设计具有重要意义。本工作中通过使用体视显微镜对螳螂前足的表面形态进行分析,提取了螳螂前足轮廓形状的相关几何参数,为切割刀片的仿生设计提供了参考信息。并且,提出了模糊相似的概念与相似度的判断和计算方法。同时,利用扫描电子显微镜对前足端爪、胫节、腿节表面及其体刺表面进行微观分析。除形态分析外,本工作中亦使用显微硬度仪和纳米力学测试系统分别测量以上部位的硬度和强度,探讨螳螂前足的力学性能。综合对螳螂胫节、腿节及端爪的形貌分析、显微硬度和纳米力学性能的测量,发现螳螂前足的似镰刀形状能很好的钳住猎物完成捕食动作,而紧密排列的鳞片形结构单元和棱条形结构单元,为其提供了卓越的机械性能,从而打造了一对强韧有力、迅猛锐利的捕食工具。
     基于对螳螂前足的形态研究,本工作借鉴螳螂胫节和腿节上的齿刺形状与排列形式,并参考薯类等地下作物收获机械的工作方式,设计出几种仿生根茬切割刀具及试验配套机具。并利用有限元预测模型与田间试验测量的方式比较几种刀片的切土性能。结果表明切茬刀片的刃口形状对切土阻力有较大的影响,无仿生元素的参考刀片所产生的切削阻力与切土功耗均高于3种仿生齿形刀片的切土阻力和功耗。而刀片的前进速度对切土阻力、切土功耗影响不大。
In north China, people usually use handy soil-digging tools to remove soil fromstubbles and then burn them. This process is rather slow and not cost effective, and moreseriously, directly burning stubbles in the field pollutes the air. So it is both economicallyimportant and friendly environmental required to research, design and develop astubble-cutting tool. Base on the study of the foreleg of praying mantis, a series of bionicstubble-cutting blades were designed in this work. Finite element method and fieldmeasurement were used to examine the working performance of these bionic blades.
     Soil tillage has always been a research focus in agricultural engineering. As any tillageoperation is a process of cutting and breaking soil, tillage force mainly depends upon theblade shape, soil property, and operating conditions. Actually, almost allthe soil cutting toolsused in farming have been developed by field experiments and by trial and error. Accuratemodeling of soil material and soil-implement interaction is the basic key to this optimizationand may reduce the need for numerous expensive field tests. Finite element method (FEM)shows some advantages in this aspect, since any implement structure and non-linearbehavior of tillage interaction can be modeled if a proper constitutive law is chosen. In thiswork, a3D dynamic simulation model using FEM of the soil-cutting blade was establishedto predict the working effect of soil-cutting tool-blade L and to compare and analyze theeffects of different rotational speeds(220r/min,300r/min,388r/min) and rotational forms(up-cut rotation and down-cut rotation). In order to measure the cutting force of blade L,a specialized test device was designed in an soil bin laboratory. A relatively good generalcorrelation was obtained between the finite element simulation and the experimental results.Hence, it is proven that the finite element model in this work is a general and useful tool and it would play an important role in the design and development of tillage forms and tools.
     As an excellent predator in insect world, the praying mantis has a pair of powerful tools,two sharp and strong forelegs, and the femur and tibia are both armed with a double row ofstrong spines along their posterior borders. They can be flexed on each other so that anyobject is firmly grasped between these spines. The shape and arrangement of these sharpspines are valuable to the bionic design of energy-saving and drag-reduction cutting tools. Inthis work, detailed investigations which can supply reference information to the bionicdesign of cutting tools based on the morphologies of the forelegs in the prayingmantis(Mantis religiosa Linnaeus) were carried out by microscopy. Moreover, a conceptionof Fuzzy Similarity was introduced, and an effective mathematical method was put forwardto identify the extent of morphology similarity between two creatures and quantitativelyanalyze the similitude degree. Besides, scanning electron microscopy was used to obtaininformation of the surface microstructure of the tibia, femur and the spines. The mechanicalproperties of these parts were investigated by nanoindenter and Vickers hardness testerrespectively. From these analysis results, it can be found that shape of the foreleg of prayingmantis highly serves the prey action,and the dense, well-aligned squamous cell and arrisfibers offer excellent mechanical properties to this powerful capture tool—tibia and femur.
     According to the morphologial analysis of praying mantis’s forelegs, the shape andarrangement of the spines in femur and tibia were imitated in this work. The cuttingequipments of subterranean crops (such as potatoes) harvest machines were taken as areference.The bionic design of cutting blades was conducted. Finite element model and fieldtests were conducted to analyze and compare the working performance of the bionic cuttingblades in this work. The results show that cutting edge shape has a great influence on thesoil-cutting force. The reference blade without bionic design element has more cutting forceand cutting work than the blades by bionic design. The working velocity of cutting bladeshas little influence on the cutting force and cutting work.
引文
[1]陈琳.农作物秸秆综合利用的战略研究[D].南京林业大学,2007.
    [2] Blanco-Canqui Humberto, Lal R. Corn Stover Removal for Expanded Uses ReducesSoil Fertility and Structural Stability [J]. Soil Science Society ofAmerica,2009,73(2):418-426.
    [3]相俊红.农作物秸秆综合利用机械化技术推广研究[D].中国农业大学,2005.
    [4] Liu H, Jiang G M, Zhuang H Y, Wang K J. Distribution, utilization structure andpotential of biomass resources in rural China: With special references of crop residues[J]. Renewable and Sustainable Energy Reviews,2008,12(5):1402-1418.
    [5] Aristidou Aristos, Penttil Merja. Metabolic engineering applications to renewableresource utilization [J]. Current Opinion in Biotechnology,2000,11,(2):187-198.
    [6] Pandey A, Soccol C R. Economic utilization of crop residues for value addition—afuturistic approach [J]. Journal of scientific&industrial research,2000,59(1):12-22.
    [7] http://www.sina.com.cn.
    [8]韩鲁佳,闫巧娟.中国农作物秸秆资源及利用现状[J].农业工程学报,2002,18(3):87-91.
    [9]孙立军.吉林省秸秆综合利用技术现状与发展前景[J].农业机械,2008,11(33):35.
    [10]郑铁志,刘波.吉林省玉米机械化收获技术发展途径探究[C].全国玉米收获保护性耕作机械化学术研讨会论文集,2006,18-23.
    [11]朴香兰.吉林省农作物秸秆资源的现状及综合利用[J].延边大学农学学报,2003,25(1):60-64.
    [12]安载学,穆楠,李万良.吉林省玉米秸秆资源量及综合利用[J].安徽农业科学,2012,40(2):937-938.
    [13]王延宏,张立才.推进作物秸秆综合利用的六点建议[J].农机质量与监督,2009,1:33-34.
    [14]管小冬.农作物秸秆资源利用浅析[J].农业工程学报,2006,22:104-106.
    [15] Sumner R, Doupnik B, Jr, Boosalis M G. Effects of Reduced Tillage and MultipleCropping on Plant Diseases [J]. Annual Review of Phytopathology,1981,19:167-187.
    [16] Maskina M S, Power J F, Doran J W, Wilhelm W. Residual Effects of No-Till CropResidues on Corn Yield and Nitrogen Uptake [J]. Soil Science Society of AmericaJournal,1993,57:1555-1560.
    [17] Bockus W W, Shroyer J P. The Impact of Reduced Tillage on Soilborne PlantPathogens [J]. Annual Review of Phytopathology,1998,36:485-500.
    [18] Wu S H, Gao J. Study on the Technics Principle for Stalk and Stubble Chopper Basedon No-Tillage Planter [J]. Advanced Materials Research,2011,230-232:1039-1044.
    [19] Gu S,Komatsuzaki M. Cover Crop Spices and Mowing Treatment Affect thePerformance of Rotary Tillage [J]. Japanese Journal of Farm Work Research,2002,37(1):13-23.
    [20] Hatfiled R, Fukushima R S. Can lignin be accurately measured?[J]. Crop Science,2005,45(3):832-839.
    [21] El Mansouri N E, Salvad′o J. Analytical methods for determining functional groupsin various technical lignins [J]. Industrial Crops and Products,2007,26(2):116-124.
    [22] Hongzhang C, Liying L. Unpolluted fractionation of wheat straw by steam explosionand ethanol extraction [J]. Bioresource Technology,2007,98(3):666-676.
    [23] hgrena K, Burab R Saddlerb J, Zacchia G. Effect of hemicellulose and ligninremoval on enzymatic hydrolysis of steam pretreated corn stover [J]. BioresourceTechnology,2007,98(13):2503-2510.
    [24] Bonini C, D’Auria M, Di Maggio P, Ferri R. Characterization and degradation oflignin from steam explosion of pine and corn stalk of lignin: The role of superoxideion and ozone [J]. Industrial Crops and Products,2008,27(2):182-188.
    [25] Buranov AU, Mazza G. Lignin in straw of herbaceous crops [J]. Industrial Crops andProducts,2008,28(3):237-259.
    [26]桑中天.农业机械学[M].北京:机械工业出版社,1988.
    [27]中国农业机械化科学研究院.农业机械设计手册[M].北京:中国农业科学技术出版社,2007.
    [28]胡少兴,马旭,马成林.根茬粉碎还田机除茬刀滚功耗模型的建立[J].农业机械学报,2000,31(3):35-38.
    [29] Kropp A, Heiserer D. Efficient Broadband Vibro-Acoustic Analysis of Passenger CarBodies Using an FE-Based Component Mode Synthesis Approach [J]. Journal ofComputational Acoustics,2003,11(2):139-157.
    [30] Marklund P O, Nilsson L. Optimization of a car body component subjected to sideimpact [J]. Structural and Multidisciplinary Optimization,2001,21(5):383-392.
    [31] Litvina F L, Vecchiatoa D, Yukishima K, Fuentes A, Gonzalez-Perezb I, Hayasakac K.Reduction of noise of loaded and unloaded misaligned gear drives [J]. ComputerMethods in Applied Mechanics and Engineering,2006,195(41–43):5523-5536.
    [32] Zhou J, Goodall R, Ren L, Zhang H. Influences of car body vertical flexibility on ridequality of passenger railway vehicles [J]. Journal of Rail and Rapid Transit,2009,223(5):461-471.
    [33] Sfakiotakis V G, Vaitsis J P, Anifantis N K. Numerical simulation of conjugate spurgear action [J]. Computers&Structures.2001,79(12):1153-1160.
    [34] Kumar V. Senthil, Muni D V, Muthuveerappan G. Optimization of asymmetric spurgear drives to improve the bending load capacity [J]. Mechanism and Machine Theory,2008,43,(7):829–858.
    [35] Barone S, Borgiannl L, Forte P. Evaluation of the effect of misalignment and profilemodification in face gear drive by a finite element meshing simulation [J]. Journal ofmechanical design,2004,126(5):916-924.
    [36] Hanganu A D, O atea E, BarbatAlex A H. A finite element methodology forlocal/global damage evaluation in civil engineering structures [J]. Computers&Structures,2002,80(20-21):1667-1687.
    [37] Miles S B, Ho C L. Applications and Issues of GIS as Tool for Civil EngineeringModeling [J]. Journal of Computing in Civil Engineering,1999,13(3):144-152.
    [38] Bazant Z P, Cedolin L. Blunt Crack Band Propagation in Finite Element Analysis [J].Journal of the Engineering Mechanics Division,1979,105(2):297-315.
    [39] Clough G W, Duncan J M. Finite Element Analyses of Retaining Wall Behavior [J].Journal of the Soil Mechanics and Foundations Division,1971,97(12):1657-1673.
    [40] Liaw J S, McCormick B H. Mapping biological structure by finite element analysis[C]. In proceeding of1st Conference of Visualization in Biomedical Computing,Atlanta, GA,1990:352-359.
    [41] Mendis K K, Stalnaker R L, Advani S H. A constitutive relationship for largedeformation finite element modeling of brain tissue [J]. Journal of BiomechanicalEngineering,1995,117(3):279-285.
    [42] Papavasiliou G, Kamposiora P, Bayne S C, Felton D A. Three-dimensional finiteelement analysis of stress-distribution around single tooth implants as a function ofbony support, prosthesis type, and loading during function [J]. The Journal ofProsthetic Dentistry,1996,76(6):633-640.
    [43] Geng J P, Tan K B, Liu G R. Application of finite element analysis in implantdentistry: A review of the literature [J]. The Journal of Prosthetic Dentistry,2001,85(6):585-598.
    [44] Contro R, Vena P. Computational models for biological tissues and biomedicalimplants [J]. Engineering Computations,2003,20(5/6):513-523.
    [45] Liu W K, Liu Y, Farrell D, Zhang L, Wang X S, Fukui Y, Patankal N, Zhang Y, BajajC, Lee J, Hong J, Chen X Y, Hsu H. Immersed finite element method and itsapplications to biological systems [J]. Computer Methods in Applied Mechanics andEngineering,2006,195(13-16):1722-1749.
    [46] Pe a E, Martínez M A, Calvo B. Doblaré M. Application of the natural elementmethod to finite deformation inelastic problems in isotropic and fiber-reinforcedbiological soft tissues [J]. Computer Methods in Applied Mechanics and Engineering,2008,197(21-24):1983-1996.
    [47] Dumonta E R, Grosseb I R, Slaterc G J. Requirements for comparing the performanceof finite element models of biological structures [J]. Journal of Theoretical Biology,2009,256(1):96-103.
    [48] Cook R D. Concepts and applications of finite element analysis [M]. New York:Wiley,1974.
    [49] Yong R N, Hanna A W. Finite element analysis of plane soil cutting [J]. Journal ofTerramechanics,1977,14(3):103-125.
    [50] Upadhyaya S K, Rosa U A, Wulfsohn D. Application of the finite clement method inagricultural soil mechanics [J]. Advances in Soil Dynamics,2002,2ASAE:117-153.
    [51] Araya K, Gao R. A nonlinear three-dimensional finite element analysis of subsoilercutting with pressurized air injection [J]. Journal of Agricultural EngineeringResearch,1995,61(2):115-128.
    [52] Kushwaha R L, Shen J. Finite element analysis of the dynamic interaction betweensoil and tillage tool [J]. Transactions of theASAE,1995,38(5):1315-1319.
    [53] Mouazen A M, Neményi M. Finite element analysis of subsoiler cutting innon-homogeneous sandy loam soil [J]. Soil and Tillage Research,1999,51(1–2):1–15
    [54] Fielke J M. Finite Element Modelling of the Interaction of the Cutting Edge of TillageImplements with Soil [J]. Journal of Agricultural Engineering Research,1999,74(1):91-101.
    [55] Gebregziabher S, Mouazen A M, Van Brussel H, Ramon H, Meresa F, Verplancke H,Nyssenf J, Behailuf M, Deckersg J, De Baerdemaeker J. Design of the Ethiopianard plough using structural analysis validated with finite element analysis [J].Biosystems Engineering,2007,97(1):27-39.
    [56] Topakci M, Celik H K, Canakci M, Rennie AE, Akinci I, Karayel D. Deep tillage tooloptimization by means of finite element method: case study for a subsoiler tine [J].Journal of FoodAgriculture Environment,2010,8(2):531-536.
    [57] Alavi N, Hojati R. Modeling the soil cutting process in rotary tillers using finiteelement method [J]. Journal ofAgricultural Technology,2012,8(1):27-37.
    [58] Lu Y X. Significance and Progress of Bionics [J]. Journal of Bionics Engineering,2004,1(1):1-3.
    [59] Franco L. The Nature of Design [J]. Design Management Review,2005,16(1):56-61.
    [60]机翼的升力.中国公众科技网[EB/OL]:
    [61] Autumn K, Liang Y A, Hsieh S T, Zesch W, Chan W P. Adhesive force of a singlegecko foot-hair [J]. Nature,2000,405(8):681-685.
    [62] Praker A R, Lawrence C R. Water capture by a desert beetle [J]. Nature,2001,414:33-34.
    [63] Dijksta M, van Bear J J, Wiegerink R J, Lammerink T S J, de Boer R J, Krijen G J M.Artificial sensory hairs based on the flow sensitive receptor hairs of crickets [J].Journal of Micromechanics and Microengineering,2005(15):5132-5135.
    [64] Krijen G J M,Dijkstra M,van Bear J J,Shankar S S, Kuipers W J, de Boer R J H,Altpeter D,Lammerink T S J, Wiegerink R. MEMS based hair flow-sensors as modelsystem for acoustic Perception studies [J]. Nanoteehnology,2006,17(4):584-589.
    [65]汪延成.仿生蜘蛛振动感知的硅微加速度传感器研究[D].浙江大学,2010:1-20.
    [66]任露泉,丛茜,佟金.界面粘附中非光滑表面基本特征的研究[J].农业工程学报,1992,8(1):16-22.
    [67]陈秉聪,任露泉,徐晓波,崔相旭,王煜明,张伯兰,葛辽海,金桂萍.典型土壤动物体表形态及减粘脱土的初步研究[J].农业工程学报,1990,6(2):1-6.
    [68]任露泉,终金,李建桥,陈秉聪.松软地面机械仿生理论与技术[J].农业机械学报,2000,31(l):5-9.
    [69]崔相旭,任露泉.穿山甲鳞片成分与结构及其减粘脱土分析[J].农业工程学报,1990,6(3):15-22.
    [70] Ren L, Han Z, Li J, Tong J. Effects of non-smooth characteristics on bionic bulldozerblades in resistance reduction against soil [J]. Journal of Terramechanics,2003,(39):221-230.
    [71]李安琪,任露泉,陈秉聪,崔相旭.蚯蚓体表液的组成及其减粘脱土机理分析[J].农业工程学报,1990,6(3):8-14.
    [72]韩志武,崔占荣,任露泉,李建桥,佟金.非光滑仿生曲面形推土铲推土阻力试验研究[J].农业机械学报,2002,33(2):125-126.
    [73]丛茜,王连成,任露泉,陈秉聪,周淑辉,李安琪.波纹非光滑仿生推土板的减粘降阻的试验研究[J].建筑机械,1996,(3):28-30.
    [74]任露泉,丛茜,吴连奎,方瑛.仿生非光滑推土板减粘降阻的试验研究[J].农业机械学报,1997,28(2):1-5.
    [75]丛茜,王连成,任露泉,王志中,李安琪.鳞片形非光滑表面的仿生设计[J].吉林工业大学学报,1998,28(2):12-17.
    [76]施新泉.原来如此—千姿万态的动物[M].上海:上海科学技术文献出版社,2005.
    [77] Ji W, Chen D, Jia H,Tong J. Experimental Investigation into Soil-CuttingPerformance of the Claws of Mole Rat (Scaptochirus moschatus)[J]. Journal ofBionic Engineering,2010,7: S166-S171.
    [78]汲文峰.旋耕-碎茬仿生刀片[D].长春:吉林大学,2010.
    [79]任露泉,徐晓波,陈秉聪,崔相旭,王煜明,张伯兰,葛辽海,金桂萍.典型土壤动物爪趾形态的初步分析[J].农业机械学报,1990(2):44-49.
    [80]吉尔W.R.,范德伯奇G.E..耕作和牵引土壤动力学[M].北京:中国农业机械出版社,1983.
    [81]佟金,郭志军,任露泉.仿生减阻深松铲柄[P].中国:200410010902.X,2004.06.04.
    [82]杜卫刚.开沟器仿生设计及其试验分析[D].长春:吉林大学,2004.
    [83] Li J Q, Ren L Q, Cui Z R, Tong J, Chen B C. Experiments on plow mold boards withbionics unsmoothed surface [C]. In Proceedings13th International Conference of theISTVS, Munich,1999:241-248.
    [84] Duncan J M, Chang C Y. Nonlinear analysis of stress and strain in soils [J]. Journal ofSoil Mechanics&Foundations Division,1970,96(5):1629-1653.
    [85] Shen Z J. Some Considerations on Recent Research Activities of Soil Mechanics [J].Journal of Chinese Geotechnical Engineering,1986,8(5):1-8.
    [86] Raper R L, Erbach D C. Prediction of soil stresses using the finite element method [J].Transactions of theASAE,1990,33(3):725-730.
    [87] Block W A, Johnson C E, Bailey A C, Burt E C, Raper R L. Energy analysis of finiteelement soil stress prediction [J]. Transactions of the ASAE,1994,37(6):1757-1762.
    [88] Kushwaha R L, Shen J. Finite element analysis of the dynamic interaction betweensoil and tillage tool [J]. Transactions of theASAE,1995,38(5):1315-1319.
    [89] Mouazen A M, Neményì M. Tillage tool design by the finite element method: part1.finite element modelling of soil plastic behaviour [J]. Agricultural EngineeringResearch,1999,72(1):37-51.
    [90] Kelln C, Sharma J, Hughes D. A finite element solution scheme for anelastic–viscoplastic soil model [J]. Computers and Geotechnics,2008,35(4):524-536.
    [91] Abu-Hamdeh N H, Reeder R C. A nonlinear3D finite element analysis of the soilforces acting on a disk plow [J]. Soil Tillage Research,2003,74(2):15-124.
    [92] Abo-Elnor M, Hamilton R, Boyle J T.3D Dynamic analysis of soil–tool interactionusing the finite element method [J]. Journal of Terramechanics,2003,40(1):51-62.
    [93] Abo-Elnor M, Hamilton R, Boyle J T. Simulation of soil–blade interaction for sandysoil using advanced3D finite element analysis [J]. Soil Tillage Research,2004,75(1):61-73.
    [94] Richards B G, Peth S. Modelling soil physical behaviour with particular reference tosoil science [J]. Soil Tillage Research,2009,102(2):216-224.
    [95]李广信.高等土力学.北京:清华大学出版社,2004..
    [96] Upadhyaya S K, Rosa U A, Wulfsohn D. Application of the finite clement method inagricultural soil mechanics [J]. Advances in Soil Dynamics,2002,2ASAE:117-153.
    [97]薛守义.高等土力学[M].北京:中国建材工业出版社,2007,48-101.
    [98]张孟喜.土力学原理[M].武汉:华中科技大学出版社,2007,203-206.
    [99] Abaqus theory manual. Version6.10.
    [100]申屠留芳,邵鹏.正反转旋耕灭茬机刀片的功耗分析[J].农机化研究,2007,11:87-89.
    [101]http://baike.baidu.com/view/28378.htm.
    [102]王天齐.中国螳螂目分类概要[M].上海:上海科学技术文献出版社,1993.
    [103]http://image.baidu.com
    [104]Roeder K D. An experimental analysis of the sexual prey recognition in the prayingmantis [J]. The Biological Bulletin,1935,69(2):203-220.
    [105]Corrette B. Prey capture in the praying mantis tenodera aridifolia sinensis:coordination of the capture and strike and strike movements [J]. Journal ofexperimental Biology,1990,148:147-180.
    [106]Yamawaki Y. Investigating saccade programming in the praying mantis Tenoderaaridifolia using distracter interference paradigms [J]. Journal of Insect Physiology,2006,52(10):1062-1072.
    [107]王庆林.常见螳螂的习性及种类辨别[J].南都学坛,1992,2:90-92.
    [108]Yager D D. The midline metathoracic ear of the praying mantis, Mantis religiosa [J].Journal of Cell and Tissue Research,1987,250(3):531-541.
    [109]Yamawaki Y. Saccadic tracking of a light grey target in the mantis, Tenoderaaridifolia [J]. Journal of Insect Physiology,2000,46(2):203-210.
    [110]Stahl R W. Similarity and Dimensional Methods in Biology [J]. Science,1962,137:205-212.
    [111]Abrams P. The theory of limiting similarity [J]. Annual Review of Ecology andSystematics,1983,14:359-376.
    [112]Gower J C. A general coefficient of similarity and some of its properties [J].Biometrics,1971,27(4):857-871.
    [113]Slowinski R, Vanderpooten D. A generalized definition of rough approximationsbased on similarity [J]. IEEE Transactions on Knowledge and Data Engineering,2000,12(2):331-336.
    [114]Taussky O, Zassenhaus H. On the similarity transformation between a matrix and itstranspose [J]. Pacific Journal of Mathematics.1959,9(3):893-896.
    [115]Knowlton T M, Karri S B R, Issangya A. Scale-up of fluidized-bed hydrodynamics[J]. Powder Technology,2005,150(2):72-77.
    [116]Cerra D, Datcu M. Algorithmic Relative Complexity [J]. Entropy,2011,13(4):902-914.
    [117]Avramenko Y, Kraslawski, A. Similarity concept for case-based design in processengineering [J]. Computer&Chemical Engineering,2006,30(3):548-557.
    [118]Batchelor G K. The application of the similarity theory of turbulence to atmosphericdiffusion [J]. Quarterly Journal of the Royal Meteorological Society,1950,76(328):133-146.
    [119]Zilitinkevich S, Calanca P. An extended similarity theory for the stably stratifiedatmospheric surface layer [J]. Quarterly Journal of the Royal Meteorological Society,2000,126(566):1913-1923.
    [120]文传源.相似理论的探索.系统仿真学报,1989,1:2-15.
    [121]周美立.相似系统工程,系统工程理论与实践,1997,9:36-42.
    [122]徐庚保.相似论浅说.计算机仿真,2000,17(3):17:1-4.
    [123]刘晓林,郁斌.基于相似度的遗传算法模式理论研究.计算机技术与应用进展,2008:964-967.
    [124]谢存毅.纳米力学测试技术及其应用[C].中国力学学会学术大会,2005.
    [125]Boussinesq J. Applications des potentielsà l'étude de l'équilibre et du movement dessolids elastiques[C]. Paris: Gauthier-Villars,1885.
    [126]Donerner M F, Nix W D. A method of interpreting the data from the depth-sensingindentation instruments [J]. Journal of Materials Research,1986,1(4):601-609.
    [127]Hay J C, Pharr G M. Experimental investigations of the sneddon solution and animproved solution for the analysis of nanoindentation data[C]. Materials ResearchSociety Symposium Proceedings,1998,522:39-44.
    [128]Vanlandinghma M R. Review of instrumented indentation [J]. Journal of research ofthe national institute of standards and technology,2003,108(4):249-265.
    [129]Oliver W C, Pharr G M. Measurement of hardness and elastic modulus byinstrumented indentation: advances in understanding and refinements to methodology[J]. Journal of Material Research,2004,19(1):3-20.
    [130]高吭.东方蝼蛄(Gryllotalpa orientalis Burmeister):特征、功能、力学及其仿生分析[D].长春:吉林大学,2009.
    [131]Bekker G. Introduction to Terrain-Vehicle Systems. Michigan: University ofMichigan Press,1969.
    [132]http://zh.wikipedia.org/wiki/.
    [133]王丽霞.概率论与随机过程:理论、历史及应用[M].北京:清华大学出版社,2012:58-90.
    [134]Seguro J V, Lambert T W. Modern estimation of the parameters of the Weibull windspeed distribution for wind energy analysis [J]. Journal of Wind Engineering andIndustrialAerodynamics,1978,17(3):350-385.
    [135]Tuller S E, Brett AC. The Characteristics of Wind Velocity that Favor the Fitting of aWeibull Distribution in Wind Speed Analysis [J]. Journal of Applied Meteorology,1984,23(1):124-134.
    [136]Waiininkhof R, McGillis W R. A cubic relationship between air-sea CO2exchangeand wind speed [J]. Geophysical Research Letters,1999,26(13):1889-1892.
    [137]Justus C G, Hargraves W R, Mikhail A, Graber D. Methods for estimating wind speedfrequency distributions [J]. Journal ofApplied Meteorology,2000,23(1):124-134.
    [138]Wang Z, Xia Y M. Experimental evaluation of the strength distribution of fibers underhigh strain rates by bimodal Weibull distribution [J]. Composites Science andTechnology,1998,57(12):1599-1607.
    [139]Wong T, Wong R H C, Chau K T, Tang C A. Microcrack statistics, Weibulldistributionand micromechanical modeling of compressive failure in rock [J]. Mechanics ofMaterials,2006,38(7):664-681.
    [140]Yang R C, Kozak A, Smith J H G. The potential of Weibull-type functions as flexiblegrowth curves [J]. Canadian Journal of Forest Research,1978,8(4):424-431.
    [141]Maltamo M, Kangas A, Uuttera J, Torniainen T, Saram ki J. Comparison of percentilebased prediction methods and the Weibull distribution in describing the diameterdistribution of heterogeneous Scots pine stands [J]. Forest Ecology and Management,2000,133(15):263-274.
    [142]Kelly K S, Krzysztofowicz R. Probability distributions for flood warning systems [J].Water Resources Research,1994,30(4):1145-1994.
    [143]Heo J H, Boesb D C, Salasc J D. Regional flood frequency analysis based on aWeibull model: Part1. Estimation and asymptotic variances [J]. Journal of Hydrology,2001,242(3-4):157-170.
    [144]http://zh.wikipedia.org/wiki/.
    [145]Qiao H, Tsokos C P. Parameter estimation of the Weibull probability distribution [J].Mathematics and Computers in Simulation,1994,37(1):47-55.
    [146]卢文岱. SPSS for Windows统计分析.北京:电子工业出版社,2006.
    [147]Rosenthal R. An Application of The Kolmogorov-Smirnov Test for Normality WithEstimated Mean and Variance [J]. Psychological Reports,1968,22(2):570-570.
    [148]Fasano G, Franceschini A. A multidimensional version of the Kolmogorov-Smirnovtest [J]. Monthly Notices of the RoyalAstronomical Society,1987,225:155-170.
    [149]http://baike.baidu.com/view/476038.htm.
    [150]Aarts E, Korst J. Simulated Annealing and Boltzmann Machines: A StochasticApproach to Computing [M]. Chichester: Wiley,1989.
    [151]Arts E, Korst J. Simulated annealing [M]. New York: Wiley&Sons,1997.
    [152]陈华根,吴健生,王家林,陈冰.模拟退火算法机理研究[J].同济大学学报,32(6):802-805.
    [153]Rutenbar R A. Simulated annealing algorithms: an overview [J]. Circuits and DevicesMagazine,1999,5(1):19-26.
    [154]SuppapinarmA, Seffen KA, Parksg T,Clarkson P J. Asimulated annealing algorithmfor multi objective optimization. Engineering Optimization,2000,33(1):59-85.
    [155]Bouleimen K, Lecocq H. A new efficient simulated annealing algorithm for theresource-constrained project scheduling problem and its multiple mode version [J].European Journal of Operational Research,2003,149(2):268-281.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700