用户名: 密码: 验证码:
2BMFJ-3型麦茬地免耕覆秸大豆精密播种机的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国黄淮海一年两熟地区,冬小麦产量高,收获后大量的秸秆、根茬残留田间,而且没有休闲腐解过程,给下茬作物的播种造成很大难度。由于缺少适合的免耕播种机具,“三夏”时节,为抢农时和降低生产成本,于是产生了秸秆焚烧问题。针对这一现状,本研究根据生产实际的迫切需求,设计一种新型的麦茬地免耕覆秸大豆精密播种机,并对其进行深入的理论分析和系统的试验研究,理想地解决了堵塞问题,提高了作业质量,降低了作业成本,为保护性耕作技术的推广和应用提供了有效的装备技术支撑,具有重要的现实意义。本文主要研究内容及结论如下:
     (1)清秸覆秸装置的设计:对清秸覆秸刀齿进行运动学分析,建立了刀齿端点的运动轨迹方程和速度方程;分析影响刀齿切茬节距的主要因素,建立了切茬节距与影响因素之间关系的数学模型,确定刀齿的主要结构参数;确定了刀齿合理的排列方式,完成了刀齿总成的结构设计和刀齿的总体布置方案;找出了满足刀齿总成切茬节距均匀性的条件,并建立了衡量清秸覆秸装置输送秸秆参数性能的数学方程;通过秸秆抛撒运动学分析,建立了秸秆运动轨迹方程。
     (2)清秸覆秸装置参数优化试验:采用四因素三水平正交试验设计方法,以机组作业速度、刀轴转速、刀齿排布、覆秸控制板角度为影响因素,以清秸覆秸装置的秸秆清除率、根茬清除率、覆秸均匀度、覆秸宽度为目标函数,寻求清秸覆秸装置的最优结构与作业参数组合及各因素对指标的影响规律。试验结果表明:最优结构与参数组合为机组作业速度3.6~4.5km/h,刀轴转速400r/min,刀齿排布4-3-4,覆秸控制板角度75°,此时秸秆清除率90.82%~92.36%,根茬清除率92.13%~93.79%,覆秸均匀度14.88~15.13,覆秸宽度2.97~3.01m。
     四因素对秸秆清除率影响的主次关系为:刀轴转速、刀齿排布、机组作业速度、覆秸控制板角度;对根茬清除率影响的主次关系为:刀轴转速、刀齿排布、机组作业速度、覆秸控制板角度;对覆秸均匀度影响的主次关系为:覆秸控制板角度、刀轴转速、刀齿排布、机组作业速度;对覆秸宽度影响的主次关系为:覆秸控制板角度、刀轴转速、刀齿排布、机组作业速度。
     (3)清秸覆秸装置关键部件有限元分析:采用模块化设计原理,应用SolidWorks软件建立了虚拟样机,并采用ANSYS Workbench软件分别对清秸覆秸刀齿和机架进行了静力学分析和模态分析,结果表明:刀齿最大应力为497MPa,小于刀齿材料的最大许用应力667MPa,能够满足强度要求;各激振源的振动频率与机架固有频率不发生重合,机架不会发生共振现象,设计的机架能够满足实际作业对刚度和强度的要求。
     (4)播种单元体及施肥装置设计:根据生产条件和农艺要求,设计了播种、施肥装置的关键部件;采用单因素对比试验方法,以作业速度为影响因素,以粒距合格指数、重播指数、漏播指数和变异系数为目标函数,对三种机械式大豆精密排种器进行选型试验。按照国标GB/T6973-2005《单粒(精密)播种机试验方法》测试要求,对排种性能进行评价。试验结果表明:在作业速度3~6km·h~(-1)、理论粒距8cm条件下,勺轮式排种器的排种性能优于垂直窝眼轮式与垂直圆盘勺式排种器,其合格指数87.8%~98.9%,重播指数0.5%~1.1%,漏播指数低于12%,变异系数小于16%。
     (5)田间作业功耗试验:采用三因素五水平正交旋转中心组合设计方法,以机组作业速度、刀轴转速、刀齿切茬深度为影响因素,以功耗、燃油消耗率、滑转率为目标函数,寻求整机技术经济性最佳的作业参数组合及各因素对指标的影响规律。试验结果表明:最佳作业参数组合为作业速度4.2~4.6km/h、刀轴转速370~420r/min、刀齿切茬深度20mm,此时机组功耗18~20kW,燃油消耗率低于0.46,滑转率小于15%,且本机技术经济性最佳的配套动力为20~22.22kW。
     三因素对功耗影响的主次关系为:刀轴转速、刀齿切茬深度、机组作业速度;对燃油消耗率影响的主次关系为:刀齿切茬深度、机组作业速度、刀轴转速;对滑转率影响的主次关系为:刀齿切茬深度、刀轴转速、机组作业速度。
     (6)田间性能试验:依据《免耕播种机选型试验大纲》和免耕播种机性能检测项目与检测方法对样机进行田间性能试验,并根据中华人民共和国机械行业标准JB/T51017-1999《中耕作物精密播种机产品质量分等》对作业质量进行评定。结果表明:在作业速度4.5km/h,理论粒距6cm和8cm,理论播深3~5cm条件下,粒距合格指数、重播指数、漏播指数、变异系数均达到国家标准优等品要求水平,播深合格率达到国家标准一等品要求水平;当清秸覆秸刀齿切茬深度20~30mm时,机具只发生一次轻微堵塞,播后地表秸秆覆盖率达98%以上;无晾籽现象发生,田间出苗率高达90%以上。
     (7)生产考核:为检验样机在大面积作业条件下的播种质量、适应性及可靠性等指标,在河南许昌、北京顺义两地对其进行田间生产试验,结果表明:平均生产率为3.9mu/h,平均可靠性系数为0.955;与传统播种方式相比,平均单株粒数增加3粒,平均亩株数增加6668.5株,千粒重增加39.9g,平均实际亩产量增加141.15kg;节约成本35.5元/亩,产值增加564.6元/亩,净收益率高达88%以上。
In annual double cropping area of Huang-huai-hai, it is difficult for the next-crop to seed in wheatstubble fields, the reasons are that there are large amount of straws and higher stubbles, and there is notime for them to decay after wheat harvest. The problem of straw-burning has been caused by shortageof suitable no-till seeders, reducing cost and saving farming time. A new type of no-till precision planterwith straw-covering, used in wheat stubble field, has been designed with the purpose of solving aboveproblems and satisfying the requirement of actual production. Theoretical analysis in details andsystematic experimental research have been carried out, the purpose was not only to solvestraw-blocking, improve working quality but also to reduce cost. It has practical significance and couldprovide equipment and technologyl support for the promotion and application of conservation tillagetechnology. In this paper, the research contents and conclusions are as follow:
     (1) Trajectory and velocity equations were established througn kinematic analysis of the cuttingblade; Major influencing factors of stubble-cutting pitch was finded out, then structural parameters ofcutting blade were determined according to the mathematical model of relationship betweenstubble-cutting pitch and influencing factors; The structural design of blade assembly and overall layoutof cutting blade were accomplished with balde reasonable arrangement; The qualification which wascontent to the uniformity of stubble-cutting pitch of blade assembly was obtained, and also,mathematical equation used for estimating the performance of straw transport of cleaning and coveringmechanism was set up; Trajectory equation was developed with the kinematic anlysis of straw scatter.
     (2) The optimal structural and working parameters combination of cleaning and coveringmechanism was obtained, meanwhile, relationship between indexes and each factor was confirmed.The method of four factors and three levels orthogonal test was applied, of which working speed, shaftrotating speed, blade arrangement, angle of straw-covering baffle were selected as factors andstraw-cleaning rate, stubble-cleaning rate, straw-covering eveness, straw-covering width were asobjective function. The optimal combination has been obtained: working speed was3.6to4.5km/h,shaft rotating speed was400r/min, blade arrange was4-3-4, angle of straw-covering baffle was75°, inthe meantime, straw-cleaning rate was90.82%~92.36%, stubble-cleaning rate was92.13%~93.79%,straw-covering eveness was14.88~15.13, straw-covering width was2.97~3.01m. The important effectorders of factors on objective functions were as follow: for straw-cleaning and stubble-cleaning rate, thesequence was shaft rotating speed, blade arrangement, working speed, angle of straw-covering baffle;for straw-covering eveness and straw-covering width, the order was angle of straw-covering baffle, shaft rotating speed, blade arrangement, working speed.
     (3) The virtual prototype was established using the software of SolidWorks and the principle ofmodular design, in addition, the statics analysis of blade and modal analysis of frame were completedwith the software of ANSYS Workbench. The analysis result indicated that the maximum stress of bladewas497MPa and that was less than the maximum allowable stress of667MPa of blade material;resonance of the frame would not occur for it’s inherent vibration was not consistent with that ofvibration source, so, it could be seen that the strength and stiffness of blade and frame could be fulfilledworking demand.
     (4) The structural and major parameters of key parts of seeding and fertilizing mechanism weredetermined according to the production condition and agricultural demand. Optimization of threemechanical soybean precision metering devices was conducted with the method of single factorcomparative test, of which working speed was as influencing factor and qualified rate, multiple rate,missed rate, variant coefficient were chosen as objective function. Seeding performance of meteringdevice was assessed by the test requirement of GB/T6973-2005”Testing methods of single precisiondrills”. The experimental result indicated that the seeding performance of spoon-roller metering devicewas better than that of vertical socket-roller and vertical spoon-roller metering device, and qualified ratewas87.8%~98.9%, multiple rate was0.5%~1.1%, missed rate was lower than12%, variant coefficientwas less than16%, while working speed was3to6km/h, theory space was8cm.
     (5) The optimal working parameters combination of technique-economic of cleaning and coveringmechanism was obtained, simultaneously, relationship between indexes and each factor was found. Acentral composite rotatable orthogonal experimental design was employed, of which working speed,shaft rotating speed, stubble-cutting depth of blade were as influencing factors and power, specific fuelconsumption, slippage rate were selected as objective function. The optimal combination has beenobtained: working speed was4.2to4.6km/h, shaft rotating speed was370~420r/min, stubble-cuttingdepth of blade was20mm, at the same time, power was18to20kW, specific fuel consumption was lessthan0.46, slippage rate was less than15%, furthermore, the best mating power was20~22.06kW. Theimportant effect orders of factors on objective functions were as follow: for power, the order was shaftrotating speed, stubble-cutting depth of blade, working speed; for specific fuel consumption, the orderwas stubble-cutting depth of blade, working speed, shaft rotating speed; for slippage rate, the order wasstubble-cutting depth of blade, shaft rotating speed, working speed.
     (6) The performance test was put into effect refering to the “No-till Planter Type Selection Testsyllabus” and performance test projects and methods of no-till seeder, and JB/T51017-1999“QualityClassification of Precision Seeder for Intertilled Crop” was used to evaluate seeding performance. Theresult manifested that qualified rate, multiple rate, missed rate, variant coefficient satisfied therequirement of superior class, qualified rate of sowing depth attained the requirement of first class,under the condition that working speed was4.5km/h, theory space were6cm and8cm, theory sowingdepth was3to5cm; when stubble-cutting depth was20to30mm, only one time of slight blocking happened, and straw-covering rate of seeding field surface was more than98%; there was no seedswithout soil-covering, and field seedling rate was as high as90%above.
     (7) Under the condition of large-scale working, field production test was conducted in Xuchangand Shunyi with the purpose of detecting the seeding quality, adaptability, reliability, and so on. Theresult showed that average productivity and reliability was3.9mu/h and0.955, respectively; Comparedwith traditional seeding mode, average seeds number per plant increased by3, average plant number permu increased by6668.5, average thousand kernel weight increased by39.9g, average actual yieldincreased by141.15kg, the cost per mu was saved by35.5yuan, yield value increased by564.6yuan/mu,net income ratio was as high88%above.
引文
[1]高焕文,李洪文,李问盈.保护性耕作的发展[J].农业工程学报,2008,39(9):43-48.
    [2]常春丽,刘丽平,张立峰,等.保护性耕作的发展研究现状及评述[J].中国农学通报,2008,24(3):167-172.
    [3]王长生,王遵义,苏成贵,等.保护性耕作技术的发展现状[J].农业机械学报,2004,35(1):167-169.
    [4]贾延明,尚长青,张振国.保护性耕作适应性试验及关键技术研究[J].农业工程学报,2002,18(1):78-81.
    [5]李安宁,范学民,吴传云,等.保护性耕作现状及发展趋势[J].农业机械学报,2006,37(10):111,177-180.
    [6] Ronald P Beyaert,Jacqueline W Schott,Peter H White.Tillage effects on corn production in acoarse-textured soil in south ontario[J].Agronomy Journal,2002,94(7~8):767-774.
    [7]师江澜,刘建忠,吴发启.保护性耕作研究进展及评述[J].干旱地农业研究,2006,24(1):205-212.
    [8]张海林,高旺盛,陈阜,等.保护性耕作研究现状、发展趋势及对策[J].中国农业大学学报,2005,10(1):16-20.
    [9]杨学明,张晓平,方华军,等.北美保护性耕作及对中国的意义[J].应用生态学报,2004,15(2):335-340.
    [10]王维新,坎杂,田学艳,等.2BCM-6型茬地免耕播种机的研制[J].农业工程学报,2001,17(3):174-176.
    [11]沈卫强,周松,叶云霞.2BCM-3型麦茬地免耕播种机的设计[J].农机化研究,2004,(1):135-136.
    [12]刘俊峰,杨欣,冯晓静.2BF28型小麦精播机播种均匀性影响因素分析[J].农业工程学报,2001,17(6):64-68.
    [13] Harry H,Schomberg,Dinku M,et al.Cover crop effects on nitrogen mineralization and availabilityin conservation tillage cotton[J].Biol. Fertil. Soils,2004,40:398-405.
    [14] Kabir Z,Koide R T.Effect of autumn and winter mycorrhizal cover crops on soil properties,nutrient uptake and yield of sweet corn in Pennsylvania U S[J].Plant and Soil,2002,238(2):205-215.
    [15]孙伟,吴建民,黄晓鹏,等.2BFM-28型山地免耕播种机的设计与试验[J].农业工程学报,2011,27(11):26-31.
    [16]林静,刘安东,李宝筏,等.2BG-2型玉米垄作免耕播种机[J].农业机械学报,2011,42(6):43-46,62.
    [17]刘庆福,栾文辉,田耘,等.2BLZ22型垄上镇压式精密播种机的研制与试验[J].农业机械学报,2001,17(2):175-176.
    [18]刘立晶,杨学军,李长荣,等.2BMG-24型小麦免耕播种机设计[J].农业机械学报,2009,40(10):39-43.
    [19]徐迪娟,李问盈,王庆杰.2BML-2(Z)型玉米垄作免耕播种机的研制[J].中国农业大学学报,2006,11(3):75-78.
    [20]李民,刘恒新,李伟,等.2BST-160型播种机性能试验台研究[J].农业工程学报,2004,20(3):100-103.
    [21]王庆杰,李洪文,何进,等.凹形圆盘式玉米垄作免耕播种机的设计与试验[J].农业工程学报,2011,27(7):117-122.
    [22]赵旭,张祖立,唐萍,等.被动式倾斜波纹圆盘破茬刀工作性能试验[J].农业机械学报,2011,42(1):64-67.
    [23]王庆杰,李洪文,何进,等.并列组合式种肥分施防堵装置的设计与试验[J].农业机械学报,2008,39(12):73-77.
    [24]张晋国,高焕文,杨光.不同条件下麦秸切碎效果的试验研究[J].农业工程学报,2000,16(3):70-72.
    [25]何进,李洪文,王庆杰.动力甩刀式小麦固定垄免耕播种机[J].农业机械学报,2011,42(10):51-55,67.
    [26] Vamerali T,Bertocco M,Sartori L.Effects of a new wide-sweep opener for no-till planter on seedzone properties and root establishment in maize: A comparison with double-disk opener [J].Soiland Tillage Research,2006,(89):196-209.
    [27] Cai Z C,Tsuruta H,Gao M,et al.Options for mitigating methance emission from a permanentlyflooded rice field[J].Global Change Biology,2003,9:37-45.
    [28] Rochette P,Janzen H H.Towards a revised coefficient for estimating N2O emissions fromlegumes[J].Nutrient Cycling in Agroecosystems,2005,73:171-179.
    [29] Six J,Callewaert,Lenders S,et al.Measuring and understanding carbon storage in afforested soilby physical fractionation[J].Soil Science Society of America Joural,2002,66:1981-1987.
    [30] N. Tangyuan,H. Bin,J. Nianyuan,et al.Effects of conservation tillage on soil porosity inmaize-wheat cropping system[J].Plant,Soil and Environment,2009,55(8):327-333.
    [31]刘巽浩.泛论我国保护性耕作的现状与前景[J].农业现代化研究,2008,29(2):208-212.
    [32]吴子岳,高焕文.根茬处理技术的现状与发展[J].中国农业大学学报,2000,5(4):46-49.
    [33]毛红玲,李军,贾志宽,等.旱作麦田保护性耕作蓄水保墒和增产增收效应[J].农业工程学报,2010,26(8):44-51.
    [34]王宏立,张祖立,张伟,等.机械化保护性耕作免耕播种机的研究现状及发展趋势[J].农机化研究,2006,(10):22-24.
    [35]吴仕宏,李宝筏.基于Pro/E的免耕垄作播种机清垄装置设计[J].农业工程学报,2010,26(赠刊1):18-21.
    [36]张军昌,闫小丽,薛少平,等.秸秆粉碎覆盖玉米免耕施肥播种机设计[J].农业机械学报,2012,43(12):51-55.
    [37]孙荣荣,李问盈,李洪文.垄作玉米免耕播种机破茬装置设计与试验[J].农业机械学报,2008,39(8):48-53.
    [38]高旺盛.论保护性耕作技术的基本原理与发展趋势[J].中国农业科学,2007,40(12):2702-2708.
    [39]王庆杰,李洪文,何进,等.螺旋刀型垄台清理装置的设计与试验[J].农业工程学报,2010,26(6):109-113.
    [40] D. Karayel,Z. B. Barut,A. Qzmerzi.Mathematical Modeling of Vacuum Pressure on a PrecisionSeeder[J].Biosystems Engineering,2004,87(4):437-444.
    [41]蒋金琳,高焕文.免耕播种机播种带玉米根茬处理装置研究[J].农业工程学报,2004,20(2):129-131.
    [42]杨帆,李问盈.免耕播种机防堵装置的设计[J].农机化研究,2009,(7):59-61,65.
    [43]范旭辉,贾洪雷,张伟汉,等.免耕播种机仿形爪式防堵清茬机构参数分析[J].农业机械学报,2011,42(10):56-60.
    [44]王庆杰,何进,李洪文,等.免耕播种机开沟防堵单元体设计与试验[J].农业工程学报,2012,28(1):27-31.
    [45]张喜瑞,何进,李洪文,等.免耕播种机驱动圆盘防堵单元体的设计与试验[J].农业工程学报,2009,25(9):117-121.
    [46]高旺盛.中国保护性耕作制[M].北京:中国农业大学出版社,2011.
    [47]高焕文.保护性耕作技术与机具[M].北京:化学工业出版社,2004.
    [48]兰真,赵艳忠.免耕播种机土壤工作部件的研究[J].农机化研究,2009,(4):247-249.
    [49]蒋金林,高焕文,龚丽农.免耕播种机玉米根茬处理装置破茬性能试验[J].农业机械学报,2007,38(9):63-66.
    [50]龚丽农,高焕文,蒋金林.免耕播种机玉米根茬处理装置作业功耗试验研究[J].农业工程学报,2008,24(7):124-127.
    [51]侯志刚,宋建农.免耕播种机运动的线性模型的建立与分析[J].中国农业大学学报,2004,9(6):31-33.
    [52]王丽艳,郭树国,邱立春.免耕技术及免耕播种机的发展[J].农机化研究,2006,(2):34-36.
    [53]高焕文,李洪文,姚宗路.轻型高防堵性能免耕播种机研究[J].中国工程科学,2007,9(9):35-39.
    [54]李友军,付国占,张灿军,等.保护性耕作理论与技术[M].北京:中国农业出版社,2008.
    [55]罗红旗.垄作免耕播种机研制及虚拟制造技术应用研究[M].北京:中国农业科学技术出版社,2010.
    [56]李成华,何波.铲式玉米精密播种机仿真及虚拟设计[M].北京:中国农业大学出版社,2006.
    [57]马洪亮,高焕文,魏淑艳.驱动缺口圆盘玉米秸秆根茬切断装置的研究[J].农业工程学报,2006,22(5):86-89.
    [58]王庆杰,何进,姚宗路,等.驱动圆盘玉米垄作免耕播种机设计与试验[J].农业机械学报,2008,39(6):68-72.
    [59]魏延富,高焕文,李洪文.三种一年两熟地区小麦免耕播种机适应性试验与分析[J].农业工程学报,2005,21(1):97-101.
    [60]江晓东,迟淑筠,王芸,等.少免耕对小麦/玉米农田玉米还田秸秆腐解的影响[J].农业工程学报,2009,25(10):247-251.
    [61]张喜瑞,何进,李洪文,等.水平拨草轮式玉米免耕播种机设计和试验[J].农业机械学报,2010,41(12):39-43.
    [62]高焕文,李洪文,姚宗路.我国轻型免耕播种机研究[J].农业机械学报,2008,39(4):78-82.
    [63]牛博英,马洪亮,史磊.小麦免耕播种机防堵装置的研究进展―以一年两熟地区为例[J].农机化研究,2009,(2):247-249.
    [64]张喜瑞,李洪文,何进,等.小麦免耕播种机防堵装置性能对比试验[J].农业机械学报,2010,41(2):73-77.
    [65]张喜瑞,何进,李洪文,等.小麦免耕播种机驱动链式防堵装置设计[J].农业机械学报,2009,40(10):44-48.
    [66]王建政.小麦免耕播种机通过性能分析[J].农业机械学报,2005,36(8):151-153.
    [67]王庆杰,姚宗路,高焕文,等.楔刀型免耕开沟器设计与试验[J].农业工程学报,2008,44(9):177-181.
    [68] Huang,G. B.,R. Z. Zhang,L. L. Li,et al.Productivity and sustainability of a springwheat-fieldpea rotation in a semi-arid environment under conventional and conservation tillagesystems[J].Field crops research,2008,107:43-55.
    [69] Liao Q X,Gao H W,Shu C X.Design of sawing anti-blocking mechanism for no-tillage planterand its cutting mechanism[J].Transaction of the CSAE,2003,19(5):64-70.
    [70] Wang H Y,Chen H T,Ji W Y.Design and experiment of cleaning and covering mechanism forno-till seeder in wheat stubble fields[J].Transaction of the CSAE,2012,28(2):7-12.
    [71]姚宗路,李洪文,高焕文,等.一年两熟区玉米覆盖地小麦免耕播种机设计与试验[J].农业机械学报,2007,38(8):57-61.
    [72]高娜娜,张东兴,杨丽,等.玉米免耕播种机滚筒式防堵机构的设计与试验[J].农业工程学报,2012,28(12):31-37.
    [73]谢瑞芝,李少昆,李小君,等.中国保护性耕作研究分析―保护性耕作与作物生产[J].中国农业科学,2007,40(9):1914-1924.
    [74]刘云泉,刘鹏,李志刚.中国保护性耕作研究现状分析[J].内蒙古民族大学学报,2010,16(5):80-82.
    [75]金亚征,王莉,刘朝巍.中国玉米保护性耕作研究进展[J].河北北方学院学报(自然科学版),2009,25(3):36-42.
    [76]赵娟伟.2BMF-4型玉米免耕播种机的研究[D].河北:河北农业大学,2007.
    [77]藏英.保护性耕作防治土壤风蚀的试验研究[D].北京:中国农业大学工学院,2003.
    [78]何磊.茬地免耕精量播种机关键部件设计与研究[D].新疆:石河子大学机械电气工程学院,2011.
    [79]张晋国.带状粉碎免耕播种机的试验研究[D].北京:中国农业大学工学院,2001.
    [80]陈翠华.带状旋耕灭茬组合机灭茬部分最佳参数的试验研究[D].黑龙江:黑龙江八一农垦大学,2009.
    [81]包文育.东北垄作免耕播种机关键部件研究与整机设计[D].辽宁:沈阳农业大学工程学院,2009.
    [82] A. Hemmat,V. I. Adamchuk,P. Jasa.Use of an instrumented disc coulter for mapping soilmechnical resistance[J].Soil&tillage research,2008,98:150-163.
    [83] M. C. Siemens,D. E. Wilkins,R. F. Correa.Development and evaluation of aresidue managementwheel for hoe-type no-till drills[J].Transaction of the ASAE,2004,47(2):397-404.
    [84] Arzu Yazgi,Adnan Degirmencioglu.Optimisation of the Seed Spacing Uniformity Perfor-manceof a Vacuum-type Precision Seeder Using Response Surface [J].Biosystem Engineering,2007,97:347-356.
    [85] M. H. Raoufat,A. Matbooei.Row cleaners enhance reduced tillage planting of corn in Iran [J].Soil&tillage research,2007,93:152-161.
    [86]杨捷.黄河流域保护性耕作技术适宜性评价研究[D].北京:中国农业科学院,2007.
    [87]赖庆辉.链式纸钵育苗甜菜自动高速移栽机关键技术研究[D].吉林:吉林农业大学生物与农业工程学院,2011.
    [88]赵俊卿.麦茬夏大豆免耕覆秸精量播种技术研究[D].北京:中国农业科学院,2012.
    [89]白晓虎.免耕播种机关键部件及其参数化设计方法研究[D].辽宁:沈阳农业大学工程学院,2012.
    [90] A.Bianchini, P. S. G. Magalhaes.Evaluation of coulters for cutting sugar cane residue in a soilbin[J].Biosystems engineering,2008,100:370-375.
    [91]侯志刚.免耕覆盖往复冲孔式播种机的试验研究[D].北京:中国农业大学工学院,2005.
    [92]王业成.摩擦式精密排种器的设计与试验研究[D].辽宁:沈阳农业大学工程学院,2012.
    [93]杨彦光.三种小麦免耕播种机性能试验及其效果对比研究[D].北京:中国农业科学院,2010.
    [94]潘涛.小麦免耕播种机防堵装置的设计研究[D].甘肃:甘肃农业大学工学院,2005.
    [95]牛博英.小麦免耕播种机双向螺旋刀防堵装置的研究[D].河北:河北农业大学,2009.
    [96]徐云峰.小型免耕播种机的设计与试验研究[D].北京:中国农业大学工学院,2005.
    [97]周兴祥.一年两熟地区机械化保护性耕作体系试验与分析[D].北京:中国农业大学工学院,2001.
    [98]刘立晶.一年两熟地区全程保护性耕作体系试验与效应研究[D].北京:中国农业大学工学院,2004.
    [99]夏连明.玉米精量播种机关键部件研究[D].黑龙江:东北农业大学工程学院,2011.
    [100]蒋金琳.玉米免耕播种机切茬挖茬装置研究[D].北京:中国农业大学工学院,2004.
    [101]赵金.玉米免耕深松全层施肥精量播种机的研究[D].河北:河北农业大学,2012.
    [102]李辉,吴建民,孙伟.垂直分层种施开沟器的设计与试验研究[J].甘肃农业大学学报2010,45(2):143-146.
    [103]罗红旗,高焕文.免耕播种机组合镇压器设计研究[J].北京工商大学学报(自然科学版),2008,26(3):21-24.
    [104]中国农业机械化科学研究院.农业机械设计手册[M].北京:中国农业科学技术出版社,2004.
    [105]曹文,丁俊华,李再臣.机械式精密排种器的研究与设计[J].农机化研究,2009,(7):142-145.
    [106]王业成,邱立春,张文娇,等.摩擦型立式圆盘精密排种器的设计与试验[J].农业工程学报,2012,28(1):22-26.
    [107]吴明亮,官春云,高晓燕,等.偏心轮型孔轮式排种器排种油菜极限转速试验[J].农业工程学报,2010,26(6):119-123.
    [108]李成华,高玉芝,张本华.气吹式倾斜圆盘排种器排种性能试验[J].农业机械学报,2008,39(10):90-94.
    [109]中华人民共和国标准化管理委员会.JB/T6973-2005单粒(精密)播种机试验方法[S].
    [110]赵巍,张永珍.电阻应变计法测量组合变形轴的扭矩和弯矩[J].唐山学院学报,2009,22(3):1-2.
    [111]赵美香,吴海平,王小龙.后轮驱动轮式拖拉机牵引特性测试及分析[J].山西农业大学学报(自然科学版),2009,29(5):470-473.
    [112]禹精达.传动轴扭矩测量技术及精度分析[D].山西:中北大学,2012.
    [113]葛宜元.液态施肥关键部件及机构可靠性分析与试验研究[D].哈尔滨:东北农业大学工程学院,2010.
    [114]国家机械工业局.中耕作物精密播种机产品质量分等[S].
    [115]汤秋香.保护性耕作技术评价研究[D].新疆:新疆农业大学农学院,2008.
    [116]吕美蓉,李增嘉,张涛,等.少免耕与秸秆还田对极端土壤水分及冬小麦产量的影响[J].农业工程学报,2010,(1):41-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700