用户名: 密码: 验证码:
安徽不同生态区域油茶叶片结构及生理生化特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油茶(Camellia oleifera Abel.)是集经济、生态和社会效益于一体的木本油料树种,近年来被广泛栽植。安徽为暖温带向亚热带过渡的气候类型区,既是油茶适宜分布区之一,也是油茶分布的北缘地带,故影响油茶发展的因素较多。为了更好地促进安徽油茶产业的健康发展,给安徽江淮地区发展油茶提供更多的理论依据,本文选择了皖东、皖西以及皖南三个生态栽培区的21个油茶品种为试材,较系统地研究了安徽不同生态区域油茶叶片解剖结构、酶活性、电导率、苯醇抽提物、纤维素含量等生理生化特性及活性物质的差异,研究结果表明:
     1.不同生态类型区的6组油茶4个物种气孔密度的测定结果表明,江西小果、普通油茶(黄山、大别山、凤阳油茶)、博白大果与攸县油茶的气孔密度差异较大且显著,分别为6.50个/mm~2、4.35个/mm~2(普通油茶气孔密度均值)、3.20个/mm~2、2.8个/mm~2,而黄山、大别山、凤阳油茶等普通油茶同一物种间的气孔密度无显著差异。
     2.通过对不同生态区域油茶品种叶片解剖结构进行观察测定发现,不同地区间油茶叶片的上下表皮、角质层、栅栏组织、海绵组织厚度等叶片表皮结构差异十分明显,且上述组织厚度由大到小排序为:凤阳油茶>大别山油茶>黄山油茶。由此可证明,凤阳地区油茶品种为适应北方低温、干旱等气候条件,叶片组织在解剖上形成了抵抗逆境环境的结构特征。
     3.不同生态区域年平均降雨量与油茶叶片气孔开度和叶片细胞结构的通径分析结果表明:年平均降雨量与油茶叶片气孔长度、气孔个数、气孔开度呈正相关;但与叶片角质层的厚度却呈负相关,且有明显的直接作用。另外,在对不同生态区域油茶叶片气孔开度与叶片细胞结构中的其他各项指标多元逐步回归分析中发现,叶片气孔开度与气孔尺寸有直接正相关关系,但与叶片上、下表皮的厚度关系均为负相关。
     4.本文通过DPS数据处理软件对来自三个生态区域的6个油茶物种的叶片细胞气孔开口大小进行聚类分析,结果表明:在遗传距离为1.06cm处,6个油茶种质资源共分为5个类群。类群1包括博白大果(2号)和江西小果(5号)2个物种,它们的样品相似性最大,亲缘关系最为接近。凤阳油茶亲缘关系较远,可能是该油茶长期生长在相对温度较低、降雨量较少的环境下,导致在形态上产生了较大的变异。4号攸县油茶与其他的油茶物种亲缘关系最远,其主要原因可能是物种的不同。
     5.通过对不同生态区域油茶植株含水量及电导率测定发现,油茶叶片电导率以皖东地区偏低,但三个生态类型区的差异并不显著。植株新梢、叶片含水量的测定结果表明:皖南>皖西>皖东,即植株含水量与降雨量表现出明显的正相关关系;在同一生态类型区,油茶新梢含水量高于叶片含水量。
     6.通过对不同生态区域油茶叶片丙二醛(MDA)及脯氨酸(Pro)含量的测定发现,三地区油茶叶片MDA含量排列顺序为:皖南地区3.227μg/g>皖西地区2.836μg/g>皖东地区2.675μg/g;当年生叶片Pro含量皖南油茶最高,达到1192.963μg/g,依次为皖西和皖东,分别为1158.938μg/g和997.129μg/g,其排序与丙二醛含量相一致。该结果表明:地处油茶分布最北缘地带的皖东地区油茶抗逆性较强。
     7.通过对三个生态区油茶SOD、CAT和POD三种酶活性的测定试验结果表明:皖东地区油茶植株的SOD活性高于皖西和皖南;油茶植株CAT活性也是皖东地区高于皖南和皖西地区,但它们之间的差异不如SOD那样显著;与以上相反,油茶植株的POD活性皖东地区为最低(仅为1.5061U/g.min),而皖西和皖南地区均较高,都达到了5.2U/g.min以上。
     8.通过对同一生态区域油茶品种野外调查及对其SOD、POD和CAT三种酶活性的进行了比较分析,SOD、CAT酶活性在同一地区良种的含量高低排序中出现高度的一致,分别为:皖东地区凤阳4号>凤阳3号>凤阳2号>凤阳1号>凤阳5号;皖西地区大别山3号>大别山1号>大别山4号>大别山2号;皖南地区黄山1号>皖徽5号>皖宁5号>皖宁2号>黄山2号>皖徽3号>黄山4号。这说明了SOD、CAT两种酶在油茶保护酶系统中的共同作用和核心地位。
     另外多重比较分析结果表明,同一地区不同油茶良种之间POD活性差异显著,皖东凤阳2号POD活性最低,只有0.736U/g.min,凤阳1号和凤阳3号POD活性较高且差别不大;皖西仅大别山2号POD活性较低,其它良种POD活性较高,且均在6.762U/g.min以上;皖南油茶良种POD活性为黄山2号和皖宁5号含量较低,但和其他良种POD活性差异显著。
     9.不同地区油茶品种的内含物研究结果表明:在所测的油茶试样中,含水量、苯醇抽提物、综纤维素、纤维素和木质素的含量分别为:44.3%-50.1%、10.8%-26.2%、0.28%-0.57%、0.12%-0.25%和0.13%-0.28%。在同一生态类型区,油茶体内仅苯-醇抽提物含量为叶片高于枝条,其余物质含量均是枝条高于叶片。在三类生态类型区中,最北缘(凤阳)油茶林的枝条、叶片苯醇抽提物含量、纤维素及木质素含量最高;含水量(枝和叶)和综纤维素(枝)为最低;其中油茶枝条的综纤维素含量差异极显著(P=0.0084<0.01)、纤维素含量差异显著(P=0.0214<0.05);叶片综纤维素含量差异显著(P=0.0467<0.05);由此可见,油茶体内较低的水分,较高的苯醇抽提物、纤维素和木质素含量有利于植株抗寒和抗旱能力的提高。
     10.通过用高分辨质谱联用法(HPLC-DAD-MS)对皖西的大别山3号、皖南的黄山1号、皖东的凤阳4号叶片的甲醇和乙酸乙酯混合提取物进行了比较分析,发现生长在三个不同生态区域油茶品种中,大别山3号特有的化合物阴离子有C_(18)H_(24)O_(11)、C_(21)H_(20)O_(11),阳离子有C_(23)H_(18)N_2O_4、C_(24)H_(30)O_6和C_(12)H_(20)N_4O_5;黄山1号特有的化合物有C_(27)H_(36)O_(12);凤阳4号特有的化合物阴离子有C_(32)H_(42)O_3,阳离子有C_(16)H_(35)NO_2、C_(18_H_(39)NO_3和C_(20)H_(43)NO_4。三种生态类型的油茶叶片的活性化学物质差别较大,每个地区的叶片内都具有不同的抗性物质。其中皖东地区的凤阳4号阳离子化合物除含有脂肪酰胺类物质,还具有C_(16)H_(35)NO_2和C_(18)H_(39)NO_3等鞘氨醇类物质,鞘鞍醇类物质是一组具有显著抗性的活性物质,这也可能显著提高了处在北缘地区的凤阳4号油茶的抗性。
Camellia oleifera Abel. is woody oil tree having economic, ecological and socialbenefits, which is widely planted in recent years. Anhui province is a climate transitionregion from warm temperate zone to subtropical, which is one of C. oleifera appropriatedistribution area and is on the northern margin of C. oleifera. Thus, the factors affecting thedevelopment of C. oleifera are complicated. To promote the health development of AnhuiC. oleifera industry and to provide more theoretical basis for jianghuai region,21C.oleifera varieties from eastern, western and southern Anhui were selected as experimentalmaterials, and leaves physiological and biochemical characteristics such as Anatomystructures, enzymes activity, conductivity, benzene-ethanol extracts and cellulose content,and the differences of active substances in different ecotypes were studied, the resultsshowed that as follows:
     1. Stomatal density of4species,6groups C. oleifera in different ecotypes weredetermined and the results indicated that there was significant difference between C.meiocarpa, C. oleifera (Huangshan, and dabieshan and fengyang C. oleifera), C.gigantocarpa and C.yuhsienensis, with the value of6.50a/mm~2,4.35a/mm~2(mean valueof C. oleifera stomatal density),3.20a/mm~2,2.8a/mm~2respectively. However, there wasno significant difference in stomatal density level between the same species of C. oleifera.
     2. Leaf anatomical structures of C. oleifera varieties in different ecotypes weredetermined and the results showed that there was significantly different in leaves upper andlower epidermis, cutin layer, stockade and spongy tissue thickness levels. Moreover, theordering of the above tissue thickness of C. oleifera in different ecotypes was as follows:Fengyang> Dabieshan> Huangshan. Therefore, the results indicated that leaf tissuestructure of Fengyang C. oleifera formed the characteristic structure, and to adapt to thecold, drought and other adverse northern climate conditions.
     3. The path analysis between and stomatal opening and leaf cell structure of C.oleifera were carried out and indicated that average annual rainfall in different ecotypeswere positively correlated with leaves stomatal length, stomatal number per unit andstomatal opening, while negatively correlated with leaf cutin layer thickness. In addition, the multiple stepwise regressions between the leaf stomatal opening and the otherindicators in leaf cell structure of C. oleifera in different ecotypes showed that leafstomatal opening was positively correlated with stomatal length, and negatively correlatedwith leaves upper and lower epidermis thickness.
     4. leaf cell stomatal opening of6C. oleifera cultivars in three ecotypes were clusteranalyzed by DPS data processing software, and the results showed that6C. oleiferacultivars was divided into5groups, when the genetic distance was1.06cm. C.gigantocarpa (No.2) and C. meiocarpa (No.5) were grouped in Class1, which had amaximum similarity and a relatively close relationship. Fengyang C. oleifera was moredistant from other cultivars, because the cultivar grew long-term at a relatively lowtemperature and low rainfall, leading to a large variation of morphology. No.4C.yuhsienensis was the most distant from the other cultivars; the main reason was the cultivarfrom different species.
     5. Water content and conductivity of C. oleifera leaves in different ecotypes wasdetermined and found that leaf conductivity of eastern Anhui was the lowest, while theconductivity in three ecotypes was not different; the ordering of water content wassouthern Anhui> western Anhui> eastern Anhui. Moreover, leaf water content waspositively correlated with rainfall, and water content of shoot was higher than that in leaf inthe same ecotype.
     6. leaves MDA and Pro content of C. oleifera in different ecotypes weredetermined and the results showed that the ordering of MDA content was southern Anhui(3.227μg/g)> western Anhui (2.836μg/g)> eastern Anhui (2.675μg/g); leaves Procontent in southern Anhui was the highest, reaching1192.963μg/g, followed by westernAnhui and eastern Anhui, with the value of1158.938μg/g and997.129μg/g respectively,MDA content had the same tendency with Pro content in different ecotypes. The aboveresults indicated that eastern Anhui, which is located in the northern fringe of Anhui, had astrong resisting property.
     7. SOD, CAT and POD activities in the three ecotypes were determined andanalyzed that SOD and CAT activities of eastern Anhui were higher than that of southern and western Anhui; there was significantly different in SOD activity level; on the contrary,POD activity in eastern Anhui was the lowest with the value of1.5061U/g.min, whereaswestern and southern Anhui was higher, reaching above5.2U/g.min.
     8. SOD, POD and CAT activity in the same ecological region were compared andanalyzed. SOD, CAT enzyme activity in the same area had the same tendency: easternAnhui, Fengyang No.4> Fengyang No.3> Fengyang No.2> Fengyang No.1> FengyangNo.5; western Anhui, Dabieshan No.3> Dabieshan No.1> Dabieshan No.4> DabieshanNo.2; southern Anhui, Huangshan No.1> Wanhui No.5> Wanning No.5> Wanning No.2>Huangshan No.2> Wanhui No.3> Huangshan No.4. This explained the two enzymes ofSOD, CAT playing an important role in the protective enzyme system of C. oleifera.
     In addition, multiple comparison analysis showed that POD activity was significantdifference between different varieties of C. oleifera in the same area. POD activity ofFengyang No.2in eastern Anhui was the lowest, only0.736U/g.min, and Fengyang No.1and Fengyang No.3was higher and the difference of POD activity in the two varieties waslittle; POD activity of Dabieshan No.2in western Anhui only was the lowest, POD activityin other cultivars was higher, reaching above6.762U/g.min; POD activity of HuangshanNo.2and No.5in southern Anhui was lower, there was significant difference between theabove cultivars and other cultivars.
     9. Leaf inclusions of C. oleifera cultivars from the three regions were studied thatthe range of the content of water, benzene-ethanol extracts, holocellulose, cellulose content,lignin content of all the tested were44.3%-50.1%,10.8%-26.2%,0.28%-0.57%,0.12%-0.25%and0.13%-0.28%respectively. The same material content in different tissueof C. oleifera of the same ecological type was different, including the content ofbenzene-ethanol extracts of leaves was higher than that of branches, and the other materialcontents were quite the contrary.(3) The material content of branches and leaves weredifferent with ecotypes, the content of benzene-ethanol extracts, the cellulose content andlignin content of eastern Anhui were the highest, followed by western and southern Anhui;the water content of eastern Anhui was the lowest; there were significant differences of thecontent of holo-cellulose(P=0.0084<0.01), cellulose content (P=0.0214<0.05)of branches at the level of0.05, with the range of0.84%-2.14%; and there was significant difference inthe content of holo-cellulose(P=0.0467<0.05) of leaves at0.05; there was no difference inwater content and lignin content. In the future production of C. oleifera of northern edge,many different cultivation measures such as improving the content of benzene-ethanolextracts and the cellulose and lignin, reducing water content and holo-cellulose contentwere taken to improve the stress resistance of C. oleifera.
     10. Methanol and mixed solvent of choroform and ethyl acetate extracts from leavesof Dabieshan No.3in western Anhui, Huangshan No.1in southern Anhui and FengyangNo.4in eastern Anhui were analyzed with HPLC-DAD-MS. In three ecotypes, DabieshanNo.3had unique negative ions of C18H24O11, C_(21)H_(20)O_(11), positive ions of C_(23)H_(18)N_2O_4,C_(24)H_(30)O_6and C_(12)H_(20)N_4O_5, Huangshan No.1has unique compounds of C_(27)H_(36)O_(12);Fengyang No.4had unique negative compounds of C_(32)H_(42)O_3, positive ions of C_(16)H_(35)NO_2,C_(18)H_(39)NO_3and C_(20)H_(43)NO_4. Active substances of C. oleifera leaf in three ecotypes weresignificant difference; each region has some different resistance-substances in leaves.Moreover, Fengyang No.4contained sheath saddle alcohol substances, such as C_(16)H_(35)NO_2and C18H39NO3of sphingosine, with the exception of fatty acyl amine substance, which isa group of significant resistance substances and significantly increased the resistance ofFengyang No.4located in the northern edge region.
引文
1.庄瑞林.中国油茶[M].中国林业出版社,2008.
    2.束庆龙,张良富.中国油茶栽培与病虫害防治[M].中国林业出版社,2009.
    3.李振记.油茶.北京:中国林业出版社,1981.
    4.刘跃进,欧日明,陈永忠.我国油茶产业发展现状与对策.林业科技开发,2007,21(4):1~4.
    5.郭祥胜.安徽省油茶栽培规划的研究[J].安徽农业科学,2009,37(8):3512~3515.
    6.霄治国,黄永芳,何会蓉.油茶及其种质资源研究进展[J].经济林研究.2003,2l(4): l23~l25.
    7.黎章矩,曾燕如,戴文圣.油茶低产低效的内外影响因子调查[J].林业科技开发.2009,23(5):26~31.
    8.赵可夫,王韶唐.作物抗性生理[M].北京农业出版社,1990.
    9.王军.林木抗病性原理[M].中国林业出版社,1997.
    10.戴雨生,马阅,林其瑞.侧柏叶表形态结构与抗病性研究[J].林业科学研究(专刊),1996,1~3.
    11.刘旭颖,沈向群,张艳红.耐寒杜鹃叶片结构研究[J].湖北农业科学,2010,49(8):1903~1905.
    12.孙洪强,庞占荣,蒋春光.水分胁迫对果树形态和生理生化指标的影响[J].北方果树,2008(1):1~3.
    13. F.B.索尔兹伯里,C.罗斯. Plant Physiology[M]. Wadsworth Publishing Company,1969.
    14. Patton R F. Factors in green pine blister rust resistance [J]. Forestry Abstracts,1967, Vol.28:25~26.
    15. Patton R F, Spear R N. Stimulate influences on infection by Cronartium ribicola[J].Proceedings ofAmerican PHytopathologicalSociety,1977,(4):5~8.
    16.王栋.茶树抗寒性研究进展[J].茶叶科学技术,2010(1):5~8.
    17.刘旭颖,沈向群,张艳红.耐寒杜鹃叶片结构研究[J].湖南农业科学.2010,49(8):1903~1905.
    18.李合生.现代植物生理学(第2版).高等教育出版社,363~363
    19. Edward M C, Agres P G. Cell death and cell wall papillae in the resistance of oak species topowdery mildew disease. New pHytopathologist,89(3):411~418.
    20.余倩珠,岑炳沾.大叶相思叶片病理解剖和抗病性研究,1992,第四届全国林病讨论会摘要:150.
    21.侯渝嘉,唐敏,胡翔.茶树种质资源的抗寒性鉴定[J].西南农业学报,2010,23(1):137~140.
    22. Xue S,Wang PH,Xu D Q,et al. Effects of water stress on assimilation of winter wheat[J]. PlantPhysiol,1992,18(1):1~7.
    23.陈学泽等.湖南油茶林红垠的物理化学性质研究[J].经济林研究,2004,22(1):43~45.
    24.陈彦,王国明,周坚.木麻黄抗逆性研究进展[J].植物学通报,2005,22(6):746-752.
    25. Peeter, Talts, Tiit Parnik, Per Gardestromet a1.Respiratory acclimation in Arabidopsis thalianaLeaves at low temperature[J].Plant Physiol,2004(161):573~579.
    26.纪忠雄.柑桔抗寒性的生理生化指标[J].园艺学报,1962,10(4),239~244.
    27.董丽,黄亦工,贾麦娥等.北京园林主要常绿阔叶植物抗冻性及其测定方法[J].北京林业大学学报,2002,24(3):70~73.
    28.曹福亮.水分(水淹)胁迫与林木适应性.北京:中国林业出版社,2003苏世平,席艳芸,张继平等.沙地柏抗旱性的研究[J].防护林科技,2008,85(4):3~25.
    29. Spires A G, Hopcroft D H. Ultrastructural atudies of interaction between resistant and susceptiblepoplar cultivars and the rust [J].Melampsora medusae and Melampsora larici-populina. NewZealand Journal of Botany,1990,28(3):307~322.
    30. Ranney T G, Bassuk N L, Whitle T H.Oamotic adjustment and solute conafiuents in leaves androots of water-stressed cherry tress[J].Amer Soc Hort Sci,1991,16(6):684~688.
    31. Yu Q.Reo.gel Z.Drought and salinity differentially influence activities of superoxide dismutasesin narrow leafed lupins [I].Plant SCienee Limerlck,1999,142(1): l~11.
    32. Wahlstrom K T, Johansson M. Structural responses in bark to mechanical wouding and Armillariaostoyae infection in seedings of Pinus sylvestris [J]. European Journal of Forest Pathology,1992,22(2-3):56~76.
    33. Tippett J T, Shigo A L. Barrrier zone anatomy in red pine roots invaded by Heterobasidiumannosum[J].Canadian Journal of Forest Research,1980,10(2):224~232.
    34. Heather W A. Susceptibility of the juvenile leaves of Eucaluplus eucalypti (Hansf)Walker[J].Australian Journal of Biological Science,1969,20(4):769~775.
    35.简令成.植物冻害及抗冻性的细胞生物学研究.植物生理生化进展[M].北京科学出版社,1987,21(5):1.
    36.谢晓金,郝日明,张纪林.常绿阔叶树种耐低温能力研究与生态学评价[J].生态学报,2004,24(11):2671~2677.
    37.吴树彪,韩雪梅.缺铁对苹果叶片解剖结构的影响.园艺学报.1992.24(2):115~119
    38.谢玉英.膜脂组成与植物抗寒性的关系[J].安徽农学报,2007,13(11):38~39.
    39.许振柱,于振文,董庆裕等.水分胁迫对冬小麦旗叶细胞质膜及叶肉细胞超微结构的影响.作物学报,1998,25(4):61~62.
    40.汪洪,周卫等.养分元素供应失调与植物解剖结构的关系[A].李生秀主编.土壤—植物营养研究文集[C].西安:山西科学技术出版社,1999:433~439
    41.汪洪杰.缺铁对黄瓜叶内细胞超微结构及其某些形态的影响.植物学报.199613(2):25~28A. Bernatzky著,陈自新,许慈安译.树木生态与养护.北京;中国建筑工业出版社.1987
    42. Bolduc jone method enzymologique a appliquer pourla selection plants resistances aufroid[J].Can.J. Plant Sci,1980,60(4):1303~1308.
    43. Sari Kontunen Soppela,Janne Lankila,Pekka Lahdesmaki et a1.Response of protein andcarbohydrate metabolism [J].Plant Physiol,2002,159(2):157~180.
    44.关义新,戴俊英.水分胁迫下植物叶片光合的气孔与非气孔限制[J].植物生理学通讯,1995,31(4):293~297
    45. Ranney T G,Bassuk N L,Whitle T H.Oamotic adjustment and solute conafiuents in leaves androots of water-stressed cherry tress[J].Amer Soc Hort Sci,1991,16(6):684~688.
    46. Kazuoka T,Oeda K.Heat stable COR(cold regulated)proteins patterns and translatable messengerRNA populations during cold acclimation [J].Plant Physiology,1987(84):1172~1172.
    47. Soppela SK,Lankila,J Lahdesmaki Pet a1.Response of protein and carbohydrate of seedlings tolow temperature[J].Plant Physiol,2002,159(2):157~180.
    48. Wi11R.Effect of different daytime and night—time temperature regimes on the foliar respirationof Pinus taeda:predicting the effect of variable temperature on acclimation[J].Exp Pot,2000,(51):1733~1739.
    49. Singh T N,Aspinall D,Palag L G. Proline accumulatin and varietral adatability to drought inbarley:A potential metabolic meature of drought resistance[J]. Nature New boil,1972,236:188~190.
    50. Hanson A D,Nelsen C E,Everson E H. Evaluation of free proline accumulation as an index ofdrought resistance using two contrasting barely cultivars[J]. Crop Science,1977,17:720~726.
    51. KE SH SH. Photosynthetic characteristics of Sinocalycanthus chinesis leaves under droughtstress.Acta Bot.boreal.-Occident.Sin.,2007,27(6):1209~1215.
    52.王新建,谢碧霞,何威等.干旱胁迫对4种豫楸1号嫁接苗膜脂过氧化作用的影响.中南林业科技大学学报,2008,28(6):30~34.
    53.郭文硕,黄宗安.锥栗对栗疫病抗性与过氧化物酶的关系[J].福建林学院学报,2000,20(1):5~8.
    54.吴林,李亚东,郝瑞等.水分逆境对沙棘叶片脯氨酸、过氧化物酶、过氧化氢酶等的影响[J].沙棘,1996,9(3):15~18.
    55.苏冬梅,吴福金,李旭等.板栗失水对其种子细胞透性和两种酶活性的影响.种子,2001,113(1):28~30.
    56.宋玉伟,刘宗才,杨建伟.干旱条件下蚕豆光合和生理特性变化研究.河南师范大学学报,2009,37(4):109~113.
    57.卓仁英,陈益泰.木本植物耐涝性研究进展.林业科学研究,2001,14(2):215~220.
    58. Yan YF,Li J,Zu YG. Effect of drough stress on activity of cell defense enzymes and lipidperoxi-dation on korean pine seedings. Acta Ecol Sin,1999,19(6):850~854.
    59. Bartoli GC,Simontacchi M,Tambussi E,et al.Drought and water dependent oxidative stress:effecton antioxidant content in Triticum asestrium L.leaves. J Exper Bot,1999,50:375~383.
    60. Badiani M,de Biassi M,Colognola M,et al. Catalase,peroxidase,and superoxide dismutase activitiesin seedings submitted to increasing water deficit. Agrochimica,1990,34:90~102.
    61.喻方圆,徐锡增.植物逆境生理研究进展[J].世界林业研究,2003,16(5):6~11.
    62.陆湘云.浅谈广西油茶低产林改造[J].广西林业科学,2001,30(3):161-162.
    63.陈立松,刘星辉.水分胁迫对荔枝叶片呼吸代谢有关酶活性的影响[J].林业科学,2003,39(2):39~43.
    64.万善霞,秦岭,于同泉等.水分胁迫对板栗幼苗过氧化物酶、超氧化物岐化酶活力及同工酶谱的影响[J].北京农学院学报,1987,12(3):20~25.
    65.张红萍,牛俊义,轩春香等.干旱胁迫及复水对豌豆叶片脯氨酸和丙二醛含量的影响[J].甘肃农业大学学报,2009,43(5):50~54.
    66.李靖等.黄瓜感染霜霉病菌叶片中一些酶活性的变化[J].植物病理学报,1991,21(4):277~283.
    67.谢春艳.多酚氧化酶及其生理功能.生物学通讯[J],1999,34(6):11~13.
    68.土小宁,何振祥.沙棘几个抗旱生理指标的测定与分析[J].沙棘,1991(3):36~38.
    69.桂意云,杨荣仲,周会.干旱及复水条件下甘蔗的生理响应与抗旱性简易鉴定[J].广东农业科学,2009,(9):19~21.
    70.彭淼,钟晓红,张玲等.钙对干旱胁迫下草莓SOD、CAT、PPO活性的影响.长江大学学报,2009,3(6):11~14.
    71.宁伟,鲍桐等.番茄秧苗运贮中的逆境指标变化[J].辽宁农业科学,2006(2):9~11.
    72.程春慧,孟焕文,Juli D.Scholes等.水分胁迫对番茄幼苗转化酶表达及代谢的影响[J].园艺学报,2002,29(3):278~279.
    73.刘建宁,赵美清,王运琦.水分胁迫对2种牧草幼苗脯氨酸及过氧化氢酶活性的影响[J].山西林业科学,2009,37(6):27~29.
    74.杨书运,严平,梅雪英.水分胁迫对冬小麦抗性物质可溶性糖与脯氨酸的影响[J].中国农学通报,2007,23(12):229~233.
    75.薛建辉,苏敬,刘金根等.5个常绿阔叶园林树种对低温变化的生理响应[J].南京林业大学学报,2009,33(4):38~42.
    76. Edward M C, Agres P G. Cell death and cell wall papillae in the resistance of oak species topowdery mildew disease. New pHytologist,1989,78(3):411~418.
    77. Spires A G, Hopcroft D H. Ultra structural atudies of interaction between resistant and susceptiblepoplar cultivars and the rust, Melampsora medusae and Melampsora larici-populina[J]. NewZealand Journal of Botany,1990,28(3):307~322.
    78. Bos M A, Vennat B, Meunier MT et al. Procyanidins from tormentil: antioxidant propertiestowards lipoperoxidation and anti-elastase activity [J]. Biol PHarm Bull,1996,(19):146~148.
    79. Terao J, Piskula M, Yao G. Protective effect of epicatechin, epicatechin gallate and quercetin onlipid peroxidation in pHospHolipid bilayers[J].Arch Biochem BiopHys,1994,(308):278~284.
    80.马虹霞,郁继华,颉建明等.水分胁迫处理对青花菜幼苗叶片生理生化特性的影响[J].甘肃农业大学学报,2009,44(1):93~97.
    81.王静.水分胁迫对玉米叶片可溶性糖和脯氨酸含量的影响[J].玉米科学,2007,15(6):57~59.
    82.郝永生,刘迪秋,陈丽梅等.水分胁迫对蚕豆生理生化特性的影响[J].湖北农业科学,2008,47(9):1013~1016.
    83.余叔文,汤章城.植物生理与分子生物学[M].第二版.北京科学出版社,1999.
    84.秦国政,田世平,刘海波等.拮抗菌与病原菌处理对采后桃果实多酚氧化酶、过氧化物酶及苯丙氨酸解氨酶的诱导[J].中国农业科学,2003,36(1):89~93.
    85.胡青平,徐建国等.辣椒感染清枯菌后POD活性及同工酶的变化.西北大学学报,2007,37(3):425~428.
    86.潘建菁等.青枯菌侵染后烟株体内过氧化物酶活性的变化及其与抗病性的关系[J].中国烟草科学,2004,(3):28~30.
    87.蒋选利等.过氧化物酶与植物抗病性研究进展[J].西北农林科技大学学报,2001,29(6):124~129.
    88.万善霞,秦岭,于同泉等.水分胁迫对板栗幼苗过氧化物酶、超氧化物岐化酶活力及同酶谱的影响.北京农学院学报,1987,12(3):20~25.
    89. Singh T N,Aspinall D,Palag L G. Proline accumulatin and varietral adatability to drought inbarley:A potential metabolic meature of drought resistance. Nature New boil,1972,236:188~190.
    90. Hanson A D,Nelsen C E,Everson E H. Evaluation of free proline accumulation as an index ofdrought resistance using two contrasting barely cultivars. Crop Science,1977,17:720~726.
    91.彭邵锋,张党权等.14个油茶良种遗传多样性的SRAP分析[J].中南林业科技大学学报.2011,31(1):80~85
    92.张党权,田华,谢耀坚等.桉树4个种遗传多样性的ISSR分析[J].中南林业科技大学学报,2010,30(1):12-17.
    93.覃鹏,刘飞虎,粱雪妮.超氧化物歧化酶与植物抗逆性[J].黑龙江农业科学,2002,24(1):31~34.
    94.王建华,夏涛,张鹤英等.超氧化物歧化酶(SOD)在植物逆境和衰老生理中的作用[J].植物生理学通讯,1989,24(1):1~7.
    95.房江育,张仁涉.无机营养和水分胁迫对春小麦叶绿素、丙二醛含量等的影响及其相关性.甘肃农业大学学报,2001,36(1):89~94.
    96.区炳庆,何丽烂.香蕉组培苗POD、PPO及SOD活性对银胁迫的反应.广西植物,2003,23(1):93~95.
    97.胡景江,朱伟.杨树细菌壁HRGP和木质素的诱导积累与其对溃疡病抗性的关系.植物病理学报,1999,29(2):151~156
    98.宏勋,杜甫似,张晓等.白腐菌选择性降解秸秆木质素纤维研究[J].华中科技大学学报(自然科学版).2006,34(3):97~100
    99.骆桂芬,邹艳华.黄瓜叶片中木质素含量与抗霜霉病的关系.吉林农业大学学报,1995,17(2):18~21
    100.宾金华,潘瑞积.茉莉酸甲酯诱导烟草幼苗抗病与氧化酶活性和木质素含量的关系.应用与环境生物学报,1999,5(2):160~164
    101.檀根甲,李增智,薛莲.苹果果实中几种生化物质的含量与抗采后炭疽病的关系.植物生理学通讯,2007,43(5):857~860
    102.景耀,朱炜.杨树树皮中化学成份与溃疡病关系的初步研究I[J].常量元素与溃疡病的关系.林业科学,1989(4):304~310.
    103. ZHAO C Z,Wu L B, Yang C, et al. The effect of dehydration on plant regeneration and somephysiology characters in rice calli. Chinese Rice Research Newsletter,1997,5(2):7~8.
    104.葛体达,隋方功,白莉萍.长期水分胁迫对夏玉米根、叶保护酶活性及膜脂过氧化作用的影响.干旱地区农业研究,2005,23(3):18~23.
    105. Fukuju yamamoto. Effects of Flooding Depth on Growth, Morphology and photosynthesis in Alusjaponica. New Forests,2008(35):1~14.
    106.佘文琴,刘星辉.荔枝叶片膜透性和束缚水/自由水与耐寒性的关系[J].福建农业大学学报,1995,24(1):14~18.
    107.王传义,张忠锋,徐秀红,等.烟草叶片中自由水含量测定方法比较分析[J].中国烟草科学,2008,29(3):29~31.
    108.刘向莉,高丽红,刘明池.植物组织中自由水和束缚水含量测定方法的改进[J].中国蔬菜,2005,(4):9~11.
    109. Rodrigues M L,Pachco M A,Chaves M M. soil-plant water relations, root distribution and biomasspartitioning Lupinus albus L. under drought condition. J.Exp.Bot,1995,46:947~951.
    110. Pinhero C,Chaves M M,Ricardo C P.Altertions in carbon and nitrogen metabolism induced bywater deficit in the stems and leaves of Lupinus albus L.. J.Exp.Bot,1995,46:951~956.
    111. Jones J, Ramos H E. Physiological control of water status in temperate and subtropfruittress.Horti-culturae Review,1985(7):301~344.
    112.刘红宇,束庆龙,徐建敏等.板栗树皮电阻值与枝干病害的关系[J].经济林研究,2004,22(1):46~48.
    113.郭文川,伍凌,魏永胜.失水对植物生理特性和电特性的影响[J].西北农林科技大学学报,2007,35(4):185~191.
    114.孙丽艳,韩一凡.对云斑天牛有不同抗性的杨树品种中化学物质的分析[J].林业科学,1995,31(4)338~345.
    115.詹怀宇.纤维化学与物理[M]..北京:科学出版社,2005:43.
    116.杨书蕙.植物纤维化学[M].北京:中国轻工业出版社,2002.
    117.范鹏程,田静,黄静美等.花生壳中纤维素和木质素的测定方法[J].重庆科技学院学报:自然科学版,2008,10(5):64~65.
    118.熊素敏,左秀凤,朱永义.稻壳中纤维素、半纤维素和木质素的测定【J].粮食与饲料工业,2005,8:40~41.
    119.彭志远,谌凡更.木质纤维素基高分子材料的研究进展【J].高分子材料科学与工程,2009,8:167~170.
    120.郑大锋,邱学青,楼宏铭.木质素的结构及其化学改性进展[J].精细化T,2005,22(4):249~252.
    121.邱卫华,陈洪章.木质素的结构、功能及高值化利用[J].纤维素科学与技术,2006,14(1):52~56
    122. Lewis N.G,Yamamoto E.Lignin:occurrence,biogenesis and biodegradation[J].Annu.Rev.PlantPhysio1.and Plant Mo1.Biol,1990,41:455~496.
    123. G.Sena-Martins,E.Almeida-Vara,J.C.Duarte Eco-friendly new products from enzymaticallymodified industrial lignins.industrial crops and products,27,2008:189~195.
    124.黄安民,江泽慧,李改云.杉木综纤维素和木质素的近红外光谱法测定[J].光谱学与光谱分析,2007,27(7):1328~1331.
    125.江泽慧,李改云,王戈等.近红外光谱法测定毛竹综纤维素的含量研究[J].林产化学与工业,2007,27(1):15~18.
    126.李改云,黄安民,王戈等.近红外光谱法快速测定毛竹Klason木质素的含量[J].光谱学与光谱分析,2007,27(10):1977~1980.
    127. Kelley S S,Rials T G,Snell R,et a1.Use of near infrared spectroscopy to measure the chemicaland mechanical properties of solid wood [J].Wood Science and Technology,2004,38(4):257~276.
    128. Jones P D,Schimleck L R,Peter G F,et a1.Nondestructive estimation of wood chemicalcomposition of sections of radial wood stripsby difuse reflectance near infraredspectroscopy[J].Wood Science and Technology,2006,40(8):709~720.
    129. Schimleck L R,Wright P J,Miehen A J,et a1.Near-infrared specand chemical compositions ofE.globulus and E.nitens plantation woods[J].APPITA,1997,50(1):40~46.
    130. Stafford H A. The metabolism of aromatic[J]. Ann. Rev. Plant pHysiol,1974,25:459~486.
    131.王玉娟,陈永忠,王瑞.覆草间种对油茶林土壤养分及生长量影响的主成分分析.中南林业科技大学学报,2010,30(6):43~49.
    132.谭冬梅.干旱胁迫对新疆野苹果及平邑甜茶生理生化特性的影响.中国农业科学,2007,40(5):980~986.
    133.段琳,红果油茶抗炭疽病机理研究:[硕士学位论文].安徽农业大学,2003.
    134.阙龙善.油茶造林的关键技术[J].林业科技开发,2007,2l(4):86~88.
    135.孔照胜,岳爱琴,武云帅.不同大豆品种抗旱性生理指标综合分析.华北农学报,2001,16(3):40~45.
    136.杨光道,段琳,束庆龙等.油茶果皮花青素、糖含量和PAL活性与炭疽病的关系[J].林业科学,2007,43(6):100~104.
    137. Baisak R,Rana D,Acharya PB,Kar M. Alterations in the activities of active oxygen scavengingenzymes of wheat leaves subjected to water stress. Plant Cell Physiol,35:489~495.
    138. Stadtman E R. Oxidation of the free amino acids andamino acid residues in proteins by radiolysisand by metal catalyzed reactions. Ann Rev Biochem,1993(62):797~821.
    139. Price A H, Graft GAF. Stress and roles of activated oxygen scavengers and protective enzymes inplant subjected to drought. Biochem Soctrans,1989,17:493~494.
    140. Smirnoff N. Antioxidant systems and plant response to the environment.In:Smirnoff NEd.Environment and metabolism:flexibility and acclimation. Bios Scientific Publishers,1995:217~243.
    141. Willekens H,Chamnongpol S,Davey M,et al. Catalase is a sink for H2O2and is indispensable forstress defense in C3plants. Embo Journal,1997,16:4806~4816.
    142.符绮琼,欧阳凤.衡阳地区油茶优良单株抗病性研究[J].第四届全国林病讨论会摘要:1992,156
    143.覃正亚,王永安,苏立刚等.湖南省油茶林经济效益研究[J].经济林研究,2002,20(4):4~9.
    144.黄永芳,陈红跃,雷治国等.广东省油茶生产状况与发展对策口[J].经济林研究,2005,22(3):77~79.
    145.李合生.现代植物生理学(第2版)[M].高等教育出版社,2006,21(7):572~767.
    146.陈润正,黄上志等.植物生理学[M].中山大学出版社,1998.
    147.薛应龙.植物生理学实验手册[M].上海:上海科学技术出版社,1985.
    148.张志良.植物生理学实验指导[M].北京:高等教育出版社,1990.
    149.陈建勋,王晓峰.植物生理学实验指导[M].广州:华南理工大学出版社,2002.
    150.郝建军,刘延吉.植物生理实验技术[M].沈阳:辽宁科学技术出版社,2001.
    151.李玲,李娘辉,蒋素梅等.植物生理学模块实验指导.北京:科学出版社,2009.
    152.孔祥生,易现峰.植物生理学技术.北京:中国农业出版社,2008.
    153.董继新,董海涛,李德葆.植物抗病基因研究进展[J].植物病理学报,2001,31(1):1~8.
    154.沈永波,李光旭等.苹果果实内含物与轮纹病抗性的关系.北方果树,2003(6):9~10
    155. Cahill, D. M. Bennett, I. J., Mccomb, J. A. Mechanism of resistance to phytophthora cinnamomi inclonal, micropropagated Eucalyptus marginata.Plant Pathology,1993,42(6):865~872
    156. Tippett, J.T., Shigo, A. L. Barrrier zone anatomy in red pine roots invaded by Heterobasidiumannosum. Canadian Journal of Forest Research,1980,10(2):224~232
    157.郭文硕,林清洪.油桐品种抗黑斑病与超氧化物歧化酶之间的关系[J].林业科学研究(专刊).1996:161~163.
    158.叶建仁,周明显,李传道等.松针过氧化物酶及其对松针褐斑病抗性.南京林业大学学报,1978,20(4):27~36.
    159. Cai D, Kleine M, Kifle S et al. Positional cloning of a gene for nematode resistance in sugar beer[J].Science,1997,(275):832~834.
    160. Williams J G K, Kubelic A R.DNA polymorpHism amplified by arbitrary primers are usefulgenetic marker [J]. Nucleic Acids Res,1990,(18)(22):6531~6535.
    161. Raymond C A,Schimleck L R.Development of near infrared retlectance analysis calibrations forestimating genetic parameters for eellulose content in Eucalyptus globules[J].Canadian Journal ofForest Research,2002,32(1):170~176
    162. Schimleck L R,Mora C,Daniels R F.Estimation of the physical wood properties of gro~n Pinustaeda radial samples by near infrared spectroscopy[J].Canadian Journal of Forest Research,2003,33(12):2297~2305.
    163. Sykes R,Li B,Hodge G,et a1.Perdiction of loblolly pine wood properties using transmittancenear--infrared spectroscopy[J].canadian Journal of Forest Research,2005,35(10):2423~243
    164.郭明辉.脱脂处理对樟子松单板苯醇抽提物含量的影响[J].材料科学与工艺,2008,12(6):852~854
    165.彭万喜,武书彬,吴义强,陈洪尾.巨桉新旧木片苯/醇抽提物的Py-GC/MS分析[J].华南理工大学学报(自然科学版),2009,37(3):67~74
    166.张宁南,王卫文等.印度檀香叶苯醇抽提物生物活性成分的Py-GC/MS分析[J].华南理工大学学报(自然科学版),2009,29(4):70~73
    167.饶丽敏,李伊乐,张宏健.柚木苯醇抽提物对西南桦木材MUF胶合效果的影响[J].西部林业科学,2010,39(2):42~45
    168.翟光雯,汤斌,张庆庆等.超声波法预处理对秸杆纤维素水解的促进作用[J].安徽工程科技学院学报,2007,22(4):22~24.
    169.孙勇,李佐虎,肖祈等.木质素分离方法的研究进展[J].中华纸业,2005,26(10):58~61
    170.苏茂尧,由利丽等.液氨预处理对纤维素可及度和反应性的影响[J].纤维素科学与技术,1998,6(3):44~51.
    171.李云雁,彭亚勤,宋光森等.从板栗壳中分离乙醇木质素[J].西北农业学报,2007,16(3):200~203
    172. Poke F S, J K Wright, C A Raymond. Predicting extractives and lignin contents in Eucalyptusglobulus using near infrared reflectance analysis[J]. J Wood Chem Tech,2004,24(1):55~67.
    173.李坚.木材科学[M].哈尔滨:东北林业大学出版社,1994.295.
    174. D. Narayanam urti Joseph George, H. C. Pant, Jagra jSingh. Ex tractives in Teak[R]. ForestResearch Institu te, Dehra,DunIndia.1962(11):57.
    175. H. J. Zhang, J. Z. W ang, Q. Sh.i Surface tension, adhesivew ettability and bondability ofartificially weathered CCA treted southern pine [J]. Forest Products Journal1997,47(10):69~72.
    176. Elgerma, D. M. Tylose formation in elms after inoculation with Ceratocystis ulmi, a possibleresistance mechanism. Netherlands Journal of Pathology,1973,79(5):218~220
    177. Elgerma, D., M. Resistance mechanisms of elms to Ceratocystis ulmi. Forestry Abstracts, Vol,1969,30:41~85
    178. Rioux, D., Ouelletle, G. B. Barrier zone formation in host and nonhost trees inoculated withOpiostoma ulmi, I. Anatomy and biochemistry. Canadian Journal of Botany,1991,69(9):2055~2073
    179. Lewis, R. A. Quantitative assessment and possible biochemical indicators of variation in tesistanceto fusiforme rust in loblolly pine. Dissertation Abstracts International B,1975,36(1):15~16
    180.孙丽艳,韩一凡.对云斑天牛有不同抗性的杨树品种中化学物质的分析.林业科学,1995,31(4):338~345
    181.陈钧辉,陶力等编.生物化学实验(第三版).科技出版社
    182.陈毓荃主编.生物化学实验方法和技术.科学技术出版社
    183.李如亮.生物化学实验.武汉大学出版社
    184.谢古蓉.在自然降温过程中南方红豆杉(Taxus chinensis var mairei)抗寒性的变化及其适应性的研究[D].2001,成都:西南师范大学硕士学位论文.
    185. Goya H L et al. Resistance to disease in the hybrid N. glutinosa is associated with high constitutivelevels of B-1,3-glucanase, peroxidase and PPO. PHysiol. Mol Plant Pathol [J].1992,(41):11~21.
    186. Grelinska A I. Changes in protein level and activity of several enzymes in susceptible and resistanttomato plant after inoculation F. oxysporum. PHytopathol [J]. Z.1969,(65):374~380.
    187. Hammerschimidt R et al. Association of enhanced peroxidase activity with induced systemicresistance of cucumber to Colletotrichum lagenarium. PHysiol. Plant Pathol [J].1982,b,(20):73~82.
    188. Jones L B et al. POD changes in wheat isoline with compatible and incompatible leaf rust infection.PHysiol. Plant Pathol [J].1978,(13):173~181.
    189.杨甲月.滇山茶花和岩棕的化学成分研究[D].兰州大学,2006.
    190.侯蕾,唐玲,史丽颖等.西南山茶花化学成分的定量分析[J].云南中医学院学报,2010,33(2):25~28.
    191.银霞,罗军武,岳婕.安化不同茶树品种化学成分含量的比较研究[J].湖南农业科学,2010(9):22~24.
    192.月荣,蔡伟锋,陆建良等.浙农113和浙农139引种重庆涪陵后化学成分的变化[J].茶叶,2000,26(2):78~80.
    193. Goto K,Kanaya s,lshigami T,et a1.The effects oftea catechins on fecal conditions of elderlyresidents ina long-tem care facility[J].Journal of Nutritional
    194. Science and Vitaminology,1999,45(1):135~141.
    195. Hodgson J M,Puddy I B,Bruke V,et a1.Regular ingestion of black tea improves brachial arteryvaso dilator function[J].Clin sci(Lond),2002:102(2):195~201.
    196. Lake R, Thomson B, Devane G, et al. Trans Fatty Acid Content of Selected New ZealandFoods[J].Journal of Food Composition and Analysis,1996,9:365~374
    197. Roach JA G. Chromatographic Separation and Identificationof Conjugated Linoleic AcidIsomers[J].Analytical Chimica Acta,2002(465):207~226
    198.粱希.林产制造化学.北京:中国林业出版社,1985.161.
    199.龙正海,王道平.油茶籽油与橄榄油化学成分研究-中国粮油学报2008(2):125~132.
    200.周永红,李伟光,王立升.气相色谱-质谱法测定茶油中的脂肪酸[D].2001,17(1):18~19
    201.吴雪辉,黄永芳,谢治芳.茶油的保健功能作用及开发前景[J].食品科技,2005,8:94~96
    202.曾虹燕,李昌珠,蒋丽娟.用GC—MS分析不同方法提取的茶油脂肪酸[J].热带亚热带植物学报,2005,13(3):271~274
    203.赵振东,孙震.生物活性物质角鲨烯的资源及其应用研究进展[J].林产化学与工业,2004,24(3):107~112
    204.李冬梅,王婧,毕良武等.提取方法对茶油中活性成分角鲨烯含量的影响[J].生物质化学工程,2006,40(1):9~12
    205.廖书娟,吉当玲,童华荣.茶油脂肪酸组成及其营养保健功能[J].粮食与油脂,2005,(6):7~9
    206.于长青.橄榄油的化学组成及对人体的营养价值[J].食品科技,2000,2:59~60
    207.郭应安.茶油生产的研究与实践[J].中国油脂,1999,24(6):25-26
    208. L.Di Giovacchino.Ohve oil extraction by pressing,centrifugation and percolation methods on oilyields [J].Olivae,1991(36):14~41
    209. Pilar luaces.Effect of heat-treatments of olive fruit on pigment composition ofvirgin oliveoil[J].Food Chemistry,2004,3(35):169~174.
    210.崔晓秋,刘云刚.广玉兰幼果化学成分的提取1'J-].济宁医学院学报,2007,30(2): ll6~1l7
    211.陈兴荣,魏春红.荷花玉兰化学成分研究[J].中药材,2000,23(3):159.
    212.张应烙,龙婉婉,尹彩萍.21种植物花提取物抑菌活性的筛选研究E [J].河南农业科学,2005,34(8):60~62.
    213. M.Ganzera,M.Mair,H.Stuppner,et a1.Analysis of Sesquiterpene Lactones in Magnoliagrandiflora L. by Micellar Electrokinetic Capillary Chromatography[J].Chromatographia,2001,34(54):665~668.
    214. M.W.Feltenstein,W.Schqhly,J.E.Warnick,et a1.Anti-inflammatory and anti-hyperalgesiceffects of sesquiterpene lactones from Magnolia and Bear S footPharmacology [J]. PharmacologyBiochemistry and Behavior,2004,79(2):299~302.
    215. B.E.Bastidas Ramirez,N.Navarro Ruiz,J.D.Quezada Arellano. Anticonvulsant effects of Magnolia grandifloral L.in the rat[J].Journal of Ethnopharmacology,1998,61(2):143~152.
    216.孙莹,卢志平,高松红等.番茄茎叶挥发性成分的提取与鉴定.中国药物化学杂志;
    2001.43(10):43.
    217. Wang FD(王福东),Wan YD(万尧德),Yang (杨家友),et a1.燕子掌化学成分的研究.中药材,2006,29(11),in press.
    218. JennlngW.Quality analys~s offlavor and fr~ance volatiles by as8capillary.New York:AcademicPress,1980
    219. Masada Y.Analysis of essential oil by gas chromatography and nlass spectrometry[M].New York:Wiley Inc.1993:125—133
    220. The Central Information Station About Chinese Herbal Medicineof National MedicalAdministrative Organ.Handbook of valid ingredient in plant medicine[M].Beijing:PeopleSanitation Press,1986:219
    221.刘信中.气相色谱法测定啤酒中低沸点风味物质含量[J].广州食品工业科技,2002.
    222.张宁,曹劲松,彭志英.风味物质分离方法研究进展[J].中国调味品,1998.4(4):7-11.
    223.张志永,陈受宜.栽培大豆品种间标记的多态性分析及聚类分析[J].大豆科学,1998,17(1):1~7.
    224.裴鑫德.多元统计分析及其应用[M].北京:北京农业大学出版社,1991.
    225.陈亮,杨亚军,虞富莲等.15个茶树品种遗传多样性的RAPD分析[J].茶叶科学,1998,18(1):21~27.
    226.渠桂荣.裂叶苣英菜化学成分的研究[J].中草药,1992,23(8):412.
    227.丛浦珠.质谱学在天然有机化学中的应用[M].北京:科学出版社.1987:601—619.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700