用户名: 密码: 验证码:
一种基于图像底层特征的对象粒认知方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对象非监督发现、分割的应用领域相当广泛,包括图像理解、视频监控、图像和视频编辑、人机交互、图像和视频检索、视频编码以及对象识别等。分析已有的众多应用,发现有三点显得至关重要:一是所发现的对象与真实对象的逼近度,如边缘的吻合性等;二是所设计的应用算法的通用性和扩展能力,由于图像、视频种类繁多,一次性设计出通用性完美的发现、跟踪算法是不可能的,为达到无限地逼近真实对象的目的,相关算法具有持续升级能力和好的移植能力便显得十分必要;三是因众多资源有限的应用环境的出现,例如无线传感网等,为让图像、视频对象的非监督发现和跟踪能用于这些环境,相应的算法得轻便,易于硬化,最好是线性的。本文针对以上问题,以对象非监督提取和跟踪为目标,借鉴心理学的认知模型,基于底层特征构筑了一个对象粒认知平台,并将其用于显著对象的非监督粗糙提取。本文的主要工作包括:
     第一,针对复杂运动对象的跟踪失效情形,提出了一种基于颜色阈值和区域融合的方法。运动在采样时间尺度变长、物体本身外型较复杂且动作轨迹不受约束或受遮挡时,其复杂性将增加。此时将导致被连续跟踪帧间的变化增大,均值漂移算法会因Bhattarchayya系数太低而失效。针对这种情况,本文基于快速颜色阈值和区域融合,改进了均值漂移算法。实验证明,改进算法消除了失效。为做到进一步精密,比如让跟踪的边缘贴合于所跟踪的对象等,本文继续作了以下几项工作
     第二,为让计算机非监督地获得“感觉”,提出并实现了一种粒截分模型。通过分析已有的图像、视频底层特征的处理和语义挖掘算法,本文归纳出了一种映射关系,即底层特征、知识表示、语义概念对人类认知的感觉、知觉、表象。以此为指导,开始探索一种由感觉到表象的对图像、视频对象的非监督认知方法。做为基础,为让计算机能自主产生对彩图的“感觉”,基于人工智能领域中的长于模拟人类思维解决复杂问题的粒计算理论,提出了一种粒截分模型。首先以粗糙集和商空间理论为指导,构建拓扑信息系统。接下来,将数据视为超立方,建立由基础截分向量和拓扑截分向量构成的截分向量集,以图分别示意基础截分向量和拓扑截分向量的截分效果,提出了概念粒和连通粒两个新概念,给出了粒截分模型的定义。最后,为实现粒截分模型,设计一种单属性分析器,论证相关的定理及引理,详细描述所有概念粒的截分过程,讨论了存在的不足,并通过计算证实了单属性分析器的低复杂度。在超过三百幅各类彩图上做了实验,结果显示:单属性分析器能有效分析所指定的属性,让计算机从彩图中得到“感觉’
     第三,为让“感觉”更清晰,提出了一种可适用于任意图像甚至图像碎片的粒标注算法。首先,根据粒截分模型依据所选用的观察概念截分图像,得到相应的概念粒。然后,行压缩指定概念粒或全部概念粒,得到对应的行连通段。最后,给出了实现粒标注的算法—IGL算法,详细描述标注、提取所有连通区(本文称连通粒)的过程,定义可供后续处理应用的开放存贮结构,讨论标注模型向高维的可扩展性。用二值图和彩图分别作验证和比较分析,所得结果表明:所呈标注算法精确、鲁棒,且较之传统标注算法更高速。
     第四,考虑到截分所得的“粒”是任意形状、任意分布的连通区域,对以区域为基元作特征提取和分析进行了探索,提出并实现了一种粒相关边缘模型。本文针对现有边缘提取算法不能提取任意形状、任意分布区域的边缘及所提取的边缘缺乏统一模型、与实际对象的相关性不密切等问题,提出一种粒相关边缘模型,并给出相应的实现算法—任意区域边缘提取算法(Arbitrary Region Edge Extraction,简称(?)REE)。粒相关边缘模型兼容于粒计算理论,由拓扑信息系统、概念粒、连通粒及边缘空间等概念组成。AREE算法引入行连通段等定义,给出并证明计算边缘集的定理,随后依据定理在压缩状态下搜索连通粒中的内点,进而完成边缘提取。对比分析和示例实验都证明:本文所提出的算法能精确、快速地提取出各类图像中任意连通粒的边缘。
     第五,基于以上构筑的认知平台,提出了一种显著对象非监督粗糙认知算法。算法首先以粒截分模型用双概念分别拓扑划分论域,标注连通粒;依据尺度过滤掉过小拓扑等价类;用拓扑连通强度、拓扑分布密度等计算出拓扑等价类的拓扑显著度;借改进Fisher线性判别算法找到最大跃变点,裁掉拓扑显著度过小的拓扑等价类,得到候选区;以维扫梯度等捕捉拓扑等价类间的渐变模式,完成局部粗糙分割,得到候选对象,更新候选对象的拓扑显著度;再次调用Fisher线性判别算法裁减,如果还剩多个对象,用位权选择最终显著对象。最后,以实验分步验证了算法的执行过程,并与同类三种算法的提取结果作了比较分析,证实了本文算法的直观语义逼近效果。
The application domain of unsupervised discovery and segmentation of objects is quite broad. It includes video coding, video surveillance, image and video editing, image and video retrieval, human computer interaction, image understanding and object recognition, etc. According to the anaylsis of the numerous applications, it was found that there are three concerned issues:(1)the degree of the closeness, by which discovered objects approach the correct objects, such as the degree of agreement between edges and the capability of restraining possible interferences;(2) the generality and the extented capacity of the proposed algorithms—it is often impossible to make an algorithm discover or track objects perfectly at a time due to the fact that there is a great variety of images and videos, so it is necessary that the proposed algorithm have the capability for sustainable upgrade and good transplant so that the correct objects can be discovered and tracked in a closer and closer way;(3) the complexity—the proposed algorithms must be handy, better linear, so that these algorithms are able to be used to discover and track objects under condition of limited resources such as embedded devices and wireless sensor networks which are witnessing a rapid development. Aiming at solving the problems ibid, centering around the tracking of objects in videos and the unsupervised discovering of objects in images, and using psychological cognition model for reference, this dissertation set up a granular cognition platform for the discovering of objects. And then the platform is used in the unsupervised rough extracting of salient objects. The main work of this dissertation is as follows.
     This dissertation starts with the study of the algorithm for the tracking of objects moving in complex motion in videos. Three factors contribute to more complexity of motion:longer sampling period, an moving object with complex appearance and nonrestraint movement and occlusion. And then mean shift algorithm loses its target due to too low a Bhattacharyya coefficient. To treat it, mean shift algorithm is improved based on fast color thresholding and region merging in this dissertation. Visual experiments show the effectiveness of the proposed method. To obtain the moving objects more accurately, such as to let the edge of tracking region coincide with that of the real object in videos, this dissertation continues to do a series of studies with granular computing.
     This dissertation generalizes a mapping relationship between semantic mining in images&videos and human cognition from the past algorithms for low-level feature analysis and semantic mining in images and videos. The mapping relationship is:low-level features, knowledge representation and semantic concepts in images&videos to sensation, apperception and presentation in human cognition respectively. So before computers may think like human being, they must acquire sensations from images according to the mapping relationship. It's a new idea to make computers be able to obtain sensations from a color image through some unsupervised ways. To let the idea come into true, a granule-based partitioning model, based on granular computing(GrC) which is a new way to simulate human thinking to help solve complicated problems in the field of computational intelligence, is proposed for color image processing. First, on the basis of the analyses for rough sets and quotient space, this dissertation constructs a topology information system. And then, this dissertation deems data a hypercube, creates a partition vector set consisting of a basic cross-section vector and several topology cross-section vectors, illustrates the ocular appearances of partitions obtained with the basic cross-section vector and the topology cross-section vectors respectively, defines two new concepts, attribute granules(AtG) and connected granules(CoG), and presents the definitions of the granule-based model. Finally, in order to fulfill the granule-based model, this dissertation designs a single attribute analyser(SAA), defines some theorems and lemmas, describes the processing of extracting all attibute granules in details, discusses limitations, and presents time complexity analysis which shows SAA is high-speed. Experimental results on over300color images show that the proposed analyser is accurate, robust, and able to provide sensations for computers.
     The sensations obtained above are vague, and in order to make these sensations clear and provide follow-up procedure with a scalable and uniform platform, this dissertation makes a deep study of unsuperivised labeling algorithms for images and designs a granular labeling model suitable for any images even fragments of images. Firstly, this dissertation divided images into concept granules with the granule-based partitioning model according to the selected concept. And then, this dissertation compresses the selected concept granules or all concept granules based on runlength coding row by row and acquires the basic units(referred to as runs) of them. Finally, in order to fulfill the granule-based labeling model, this dissertation designs a labeling algorithm, image granule labeling(IGL), describes the processing of labeling and extracting all connected components(referred to as connected granules) in details, defines the open storage structure which can be used by late stage works, and discusses the expandability of the proposed labeling model to high-dimension. Comparisons and experimental results on binary and color images show that the proposed labeling algorithm is accurate and robust, and quicker than conventional labeling algorithms.
     Granules used as basic units of the basic platform mentioned above may be connected regions in any shapes or arbitary distributions, which results in a new problem—how to do feature extraction and analysis when basic units are regions. So we makes studies of edge extraction for connected granules. Most of the algorithms for edge extraction are incompetent at edge extraction of arbitrary regions(in any shape or sparse), and without a unified model, the edges obtained by these algorithms are not closely related to the real objects in images. To address these issues, this dissertation construct an edge model related to granules in images based on granular computing. Then the algorithm for arbitrary region edge extraction (referred to as AREE), which is used to fulfill the edge model related to granules in images, is presented. The edge model which is compatible with granular computing consists of four new concepts:topology information system, concept granule, connected granule and edge space. As a way of realizing the edge model, the AREE algorithm introduces some new concepts such as run(a run is a block of contiguous pixels of a concept granule in a row) and interior-point firstly, then presents and proves the theorem used to obtain edges, and finally extracts edges through searching interior-points according to the theorem. The comparative analysis and the experimental results on various types of images show that the proposed algorithm is able to extract edges from arbitrary regions(they may be in any shape or sparse) accurately and quickly.
     Finally, this dissertation presents an unsupervised rough cognition algorithm based on the basic platform mentioned above for salient object extraction. Firstly, the universe is partitioned with the granular partitioning model according to two concepts respectively, and connected granules are labeled. Then, the following steps are done successively:(1) topology equivalence classes with smaller scale are filtered;(2)the significance of topology equivalence classes is quantized with topology connectivity and topology distribution density;(3)the cut-off position in the significance sequence is found with the improved Fisher's linear discriminant algorithm, and then candidate regions are obtained by removing non-significant topology equivalence classes;(4)gradual changing pattern is expressed with dimensional scan gradient, which is used to do the local rough segmentation until candidate objects are available, the candidate objects that follow the gradual changing pattern are merged and the significant values of these candidate objects are refreshed;(5)Fisher's linear discriminant algorithm is run again, and the final salient object is determined according to position weight if more than one candidate object is left. Finally, the executing process of the proposed approach is validated by experiment step by step, and a comparative analysis with three recent methods is conducted, which shows the superiority of the proposed approach in terms of ability to approximate semantic of object and speed.
引文
[1]章毓晋.图像分割[M].北京:科学出版社,2001
    [2]Milind M M, Ajoy K R. Color image segmentation:Rough-set theoretic approach[J]. Pattern Recognition Letters,2008,29:483-493
    [3]Li C, Xu C, Gui C, et al. Level set evolution without reinitialization:A new variational formulation[C]. In:Schmid C, Soatto S, Tomasi C, eds. Proc. of the 2005 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition. Wahington:IEEE Computer Society Press,2005:430-436
    [4]叶齐祥,高文,王伟强等.一种融合颜色和空间信息的彩色图像分割算法[J].软件学报,2004,15(4):521-529
    [5]李国杰.信息科学技术的长期发展趋势和我国的战略取向[J].中国科学:信息科学,2010,40:128-138
    [6]W. Roush. Tr10:Peering into video's future[OL]. Technology Review, march 2007, http://www.technologyreview.com/Infotech/18284/?a=f
    [7]Sundaram, H; Shih-Fu Chang. Constrained utility maximization for generating visual skims[C]. Content-Based Access of Image and Video Libraries,2001. (CBAIVL 2001). IEEE Workshop, pp:124-131
    [8]C. Gollan. Nichtlineare Verformungs model le fur die Bilderkennung[D]. Lehrstuhl fur Informatik VI, RWTH Aachen, Aachen, Germany, Sept.2003.
    [9]James B, Tucker B, Manuela V. Fast and Cheap Color Image Segmentation for Interactive Robots [C]. Proceedings of IROS-2000:2061-2066
    [10]Zhong-Sheng Li, Ren-Fa Li, Yu-Feng Liu, et al. A new improvement on mean-shift algorithm[C]. First International Congress on Image and Signal Processing, CISP 2008,1:307-311
    [11]C. M. Bishop. Neural Networks for Pattern Recognition[M]. Oxford University Press, 1995.
    [12]S. Siggelkow. Feature Histograms for Content-Based Image Retrieval[D]. University of Freiburg, Institute for Computer Science, Freiburg, Germany,2002.
    [13]Thomas Deselaers. Features for Image Retrieval[D]. RWTH Aachen University,2003
    [14]M. Brill, E. Barrett, P. Payton. Projective Invariants for Curves in Two and Three Dimensions[M]. Chapter 9 in Geometric Invariance in Computer Vision, pp.193-214. MIT Press,1992.
    [15]H. Schulz-Mirbach. Invariant Features for Gray Scale Images[C]. Proc. DAGM- Symposium-Mustererkennung,1995:1-14
    [16]M. Schael. Texture defect detection using invariant textural features[C]. Proc. DAGM 2001, Pattern Recogntion,23rd DAGM Symposium, Lecture Notes in Computer Science,2001:17-24
    [17]S. Siggelkow, M. Schael. Fast estimation of invariant features[C]. Proc.DAGM Symposium-Mustererkennung, Informatik aktuell, Bonn, Germany,1999:181-188,
    [18]J. Dahmen, J. Hektor, R. Perrey, et al. Automatic classification of red blood cells using gaussian mixture densities[C]. Proc. Bildverarbeitung f"ur die Medizin, Munich, Germany,2000:331-335,.
    [19]M. Park, J. S. Jin, L. S. Wilson. Fast content-based image retrieval using quasi-gabor filter and reduction of image feature[C]. Proc. Southwest Symposium on Image Analysis and Interpretation, Santa Fe, NM,2002:178-182
    [20]D. Zhang, A. Wong, M. Indrawan, G. Lu. Content-Based Image Retrieval Using Gabor Texture Features[C]. Proc. Pacific-Rim Conference on Multimedia, Sydney, Australia,2000:392-395
    [21]Q. Iqbal, J. Aggarwal. Using Structure in Content-Based Image Retrieval[C]. Proc. International Conference Signal and Image Processing, Nassau, Bahamas,1999: 129-133
    [22]C. Palm, D. Keysers, T. Lehmann, K. Spitzer. Gabor Filtering of Complex Hue/Satur-ation Images for Color Texture Classification[C]. Proc. International Conference on Computer Vision, Pattern Recognition, and Image Processing, Atlantic City, NJ,2000, 2:45-49
    [23]H. Tamura, S. Mori, T. Yamawaki. Textural Features Corresponding to Visual Perception [J]. IEEE Transaction on Systems, Man, and Cybernetcs,1978, Vol. SMC-8, No.6:460-472
    [24]C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack, D. Petkovic, W. Equitz. Efficient and Effective Querying by Image Content[J]. Journal of Intelligent Information Systems,1994,3(3/4):231-262
    [25]B. Terhorst. Texturanalyse zur globalen Bildinhaltsbeschreibung radiologischer Auf-nahmen[R]. Research project, RWTH Aachen, Institut f"ur Medizinische Informatik, Aachen, Germany, June 2003.
    [26]A. R. Rao. A Taxonomy for Texture Description and Identification[M]. Springer Ver-lag,1990.
    [27]S. W. Zucker, D. Terzopoulos. Finding Structure in Co-Occurrence Matrices for Text-ure Analysis[J]. Computer Graphics and Image Processing,1980,12:286-308
    [28]R. M. Haralick, B. Shanmugam, I. Dinstein. Texture Features for Image Classi-fica-tion[J]. IEEE Transaction on Systems, Man, and Cybernetics,1973,3(6):610-621
    [29]Z. Q. Gu, C. N. Duncan, E. Renshaw, M. A. Mugglestone, C. F. N. Cowan,P.M. Grant. Comparison of Techniques for Measuring Cloud Texture in Remotely Sensed Satellite Meteorological Image Data[J]. Radar and Signal Processing,1989,136(5): 236-248
    [30]Manjunath, B., Newsam, P.W.S., Shin, H.:A texture descriptor for browsing and similarity retrieval[R]. Signal Processing Image Communication (2001)
    [31]R. Paredes, J. Perez-Cortes, A. Juan, et al. Local Representations and a Direct Voting Scheme for Face Recognition[C]. Proc. Workshop on Pattern Recognition in Information Systems, Set'ubal, Portugal,2001:71-79
    [32]T. K'olsch. Local Features for Image Classification[D]. Diploma thesis, Lehrstuhl f"ur Informatik VI, RWTH Aachen, Aachen, Germany, Nov.2003.
    [33]N. R. Pal, S. K. Pal. A Review on Image Segmentation Techniques[J]. Pattern Recog-nition,1993,26(9):1277-1294
    [34]Wang J, Li J, G. Wiederhold. SIMPLIcity:Semantics-Sensitive Integrated Matching for Picture LIbraries[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(9):947-963
    [35]C. Carson, M. Thomas, S. Belongie, et al. Blobworld:A System for Region-Based Image Indexing and Retrieval[C]. Proc. International Conference on Visual Information Systems, Amsterdam, The Netherlands,1999:509-516
    [36]刘继敏,史忠植.一种基于形状的图像信息检索方法[J].软件学报.2000,11(1)110-115
    [37]彭宇新等.一种通过视频片段进行视频检索的方法[J].软件学报.2003,14(8)1409-1417
    [38]Yu-Xin Peng, Chong-Wah Ngo. Clip-Based Similarity Measure for Query-Dependent Clip Retrieval and Video Summarization[J]. IEEE Transactions on Circuits and Systems for Video Technology,2006,16(5):612-627
    [39]X. Liu, Y. Zhuang, Y. Pan. A new approach to retrieve video by example video clip [C]. In Proc. ACM Multimedia Conf.,1999:41-44.
    [40]Y. Wu, Y. Zhuang, Y. Pan, "Content-based video similarity model," [C]. In Proc. ACM Multimedia Conf.,2000, pp.465-467
    [41]Farhad Dadgostar, Abdolhossein Sarrafzadeh. An adaptive real-time skin detector based on Hue thresholding:A comparison on two motion tracking methods[J]. Pattern Recognition Letters 27 (2006):1342-1352.
    [42]Xin-Bo Gao, Xue-Long Li, Jun Feng, et al. Shot-based video retrieval with optical flow tensor and HMMs[J]. Pattern Recognition Letters,2009,30(2):140-147
    [43]Chih-Wen Su, Hong-Yuan, Mark Liao, etc. Motion Flow-Based Video Retrieval[J]. IEEE Transactions on Multimedia,2009,9(6):1193-1201
    [44]Bouguet, J.Y.,2000. Pyramidal implementation of the Lucas-Kanade feature tracker [EB]. Intel Corporation, Santa Clara, OpenCV documents.
    [45]Ying Wu.Outline of LHI Short Courses[R].2006龙星计算机视觉课程, pl.3.
    [46]Wei Jiang, Le-Xing Xie, Shih-Fu Chang. Output Regularized Metric Learning with Side Information [OL].2009. http://www.ctr.columbia.edu/advent/
    [47]Flickr. Tagged with Apple[OL]. Sept 24,2008. http://www.flickr.com/photos/tags/ apple/clusters.
    [48]D. Forsyth, P. Torr, and A. Zisserman (Eds.):ECCV 2008, Part III[M], LNCS 5304, (?) Springer-Verlag Berlin Heidelberg 2008:358-371
    [49]J. Puzicha, Y. Rubner, C. Tomasi, et al. Empirical Evaluation of Dissimilarity Mea-sures for Color and Texture[C]. International Conference on Computer Vision, Corfu, Greece,1999,2:1165-1173
    [50]M. J. Swain, D. H. Ballard. Color Indexing[J]. International Journal of Computer Vision,1991,7(1):11-32
    [51]S. Kullback. Information Theory and Statistics[M]. Dover,1968.
    [52]M. Nolle. Distribution Distance Measures Applied to 3-D Object Recognition-A Case Study[C]. Proc. DAGM 2003, Pattern Recognition,25th DAGM Symposium, Magdeburg, Germany,2003, Vol.2781 of Lecture Notes in Computer Science:84-91
    [53]M. Flickner, H. Sawhney, W. Niblack, et al. Query by image and video content:the QBIC system. IEEE Computer,1995,28(9):23-32
    [54]J. Hafner, H. S. Sawhney, W. Equitz, et al. Efficient color histogram indexing for quadratic form distance functions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),1995,17(7):729-736
    [55]Y. Rubner and C. Tomasi. Perceptual Metrics for Image Database Navigation[R]. Kluwer,2001.
    [56]Y. Rubner, C. Tomasi, L. J. Guibas. A metric for distributions with applications to image databases[C]. In IEEE International Conference on Computer Vision (ICCV), Bombay, India,1998:59-66
    [57]D. Keysers, J. Dahmen, H. Ney, et al. Statistical Framework for Model-Based Image Retrieval in Medical Applications [J]. Journal of Electronic Imaging,2003,12(1): 59-68
    [58]C. Carson, S. Belongie, H. Greenspan, et al. Blobworld:Image Segmentation Using Expectation-Maximization and its Application to Image Querying[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(8):1026-1038
    [59]Yu-Chyeh Wu, Chia-Hui Chang, Yue-Shi Lee. CLVQ:Cross-Language Video Ques-tion/Answering system[C]. ISMSE'04.
    [60]Darin B, Diane J. Automatic Video Classification:A Survey of the Literature[J]. IEEE Transactions on Systems, Man, and Cybernetics—Part C:Applications and Reviews, 2008,38(3):416-430
    [61]Le-Xing Xie, Rong Yan. Extracting Semantics from Multimedia Content:Challenges and Solutions[R]. Signals and Communication Technology.2009,pp:1-31
    [62]Janko C, Neill C, Stamatia D, et al. A Survey on Multimodal Video Representation for Semantic Retrieval[C]. Serbia & Montenegro, Belgrade,2005:135-138.
    [63]Arnold W. M. S, Marcel W, Simone S, et al. Content-based image retrieval at the end of the early years[J]. IEEE Trans. Pattern Anal. Mach. Intell.,2000,22(12):1349-1380
    [64]C.G.M. Snoek, M. Worring. Multimodal video indexing:A review of the state-of-the-art[J]. Multimedia Tools and Applications,2005,25(1):5-35
    [65]Yao Wang, Zhu Liu, Jin-Cheng Huang. Multimedia content analysis-using both audio and visual clues[J]. Signal Processing Magazine, IEEE,2000,17(6):12
    [66]V. Vapnik. The Nature of Statistical Learning Theory[M]. Springer,1995.
    [67]T. Joachims. Making large-scale support vector machine learning practical[R]. In A. S. B. Sch'olkopf, C. Burges, editor, Advances in Kernel Methods:Support Vector Machines. MIT Press, Cambridge, MA,1998.
    [68]Thomas Deselaers, Georg Heigold, and Hermann Ney.SVMs, Gaussian Mixtures, and their Generative/Discriminative Fusion[R]. Computer Science Department-RWTH Aachen University, Aachen, Germany.2009.
    [69]C. Hsu, C. Chang, C. Lin, et al. A practical guide to support vector classification[R]. National Taiwan University, Tech. Rep., July,2003.
    [70]A.mir, W. Hsu, G. Iyengar, et al. IBM research TRECVID-2003 video retrieval system [C]. In Proceedings of NIST TREC Video Retrieval Evaluation, Gaithersburg, MD, Nov 2003.
    [71]T. Westerveld. Using generative probabilistic models for multimedia retrieval[D]. PhD thesis, CWI, Centre for Mathematics and Computer Science,2004.
    [72]C. M. Bishop, Pattern Recognition and Machine Learning[M]. New York:Springer, 2006.
    [73]L. R. Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition[C]. Proceedings of the IEEE,1989,77(2):257-285
    [74]J. Schlenzig, E. Hunter, and R. Jain. Recursive identification of gesture inputs using hidden Markov models[C]. In Proceedings of the Second IEEE Workshop on Applications of Computer Vision, IEEE Computer Society Press,1994:187-194.
    [75]T. Starner, A. Pentland, and J. Weaver. Real-time american sign language recognition using desk and wearable computer based video[J]. IEEE Trans. Pattern Anal. Mach. Intell.,1998,20(12):1371-1375
    [76]McCowan, D. Gatica-Perez, S. Bengio, et al. Automatic analysis of multimodal group actions in meetings[J]. IEEE Trans. Pattern Anal. Mach. Intell.,2005,27(3):305-317
    [77]金国英,陶霖密,徐光等.基于HHMM的多线索融合和事件推理方法[J].清华大学学报(自然科学版),2007,47(1):112-115.
    [78]Jeff A. Bilmes.A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models[R]. International Computer Science Institute. TR-97-021 April 1998.
    [79]M. Srikanth, M. Bowden, and D. Moldovan. LCC at trecvid 2005[C]. In Proceedings of NIST TREC Video Retrieval Evaluation, Gaithersburg, MD,2005.
    [80]A. Hauptmann, M. Y. Chen, M. Christel, et al. Confounded Expectations:Informedia at TRECVID 2004[C]. In Proceedings of NIST TREC Video Retrieval Evaluation, Gaithersburg, MD,2004.
    [81]Zhai Y, Chao X, Zhang Y, et al. University of Central Florida at TRECVID 2004[C]. In Proceedings of NIST TREC Video Retrieval Evaluation, Gaithersburg, MD,2004.
    [82]Berners-Lee T, Hendler J, Lassila O. The Semantic Web[R]. Scientific American.279, 2001.
    [83]Jian-Ping Fan, Hang-Zai Luo, Yu-Li Gao, et al. Incorporating Concept Ontology for Hierarchical Video Classification, Annotation, and Visualization[J]. IEEE Transactions on Multimedia,2007,9(5):939-957
    [84]Vasileios M, Ioannis K, Nikolaos V, et al. Real-Time Compressed-Domain Spatio-temporal Segmentation and Ontologies for Video Indexing and Retrieval[J]. IEEE Transactions on Circuits and Systems for Video Technology,2004,14(5):606-621
    [85]M. Bertini, R. Cucchiara, A. Del Bimbo, et al. Video Annotation with Pictorially enriched Ontologies[C].2005 IEEE.
    [86]The National Institute of Standards and Technology (NIST). TREC video retrieval evaluation[OL],2001-2007. http://www-nlpir.nist.gov/projects/trecvid/.
    [87]M. Naphade, J. R. Smith, J. Tesic, et al. Large-scale concept ontology for multimedia [J]. IEEE MultiMedia,13(3):86-91,2006.
    [88]M. Naphade, L. Kennedy, J. Kender, et al. A light scale concept ontology for multimedia understanding for TRECVID 2005[R]. Technical report, IBM Research, 2005.
    [89]M. R. Naphade, T. Kristjansson, B. Frey, et al. Probabilistic multimedia objects (multijects):A novel approach to video indexing and retrieval in multimedia systems[C]. In Proc. of IEEE International Conference on Image Processing (ICIP), 1998:536-540
    [90]C. Snoek, M.Worring, J. Geusebroek, et al. The MediaMill TRECVID 2004 semantic viedo search engine[C]. In Proceedings of NIST TREC Video Retrieval Evaluation, Gaithersburg, MD,2004.
    [91]Y. Wu, B. L. Tseng, J. R. Smith. Ontology-based multi-classification learning for video concept detection[C]. In IEEE International Conference on Multimedia and Expo (ICME), Taipei, Taiwan,2004.
    [92]J. Kender. A large scale concept ontology for news stories:Empirical methods, analysis, and improvements[C]. In IEEE International Conference on Multimedia and Expo (ICME), Beijing, China,2007.
    [93]Le-Xing Xie, Shih-Fu Chang. Pattern mining in visual concept streams[C]. In Interational Conference on Multimedia and Expo (ICME), Toronto, Canada, July 2006.
    [94]Lyndon K, Shih-Fu Chang. Query-Adaptive Fusion for Multimodal Search[C]. Proceed-ings of the IEEE,2008,96(4):567-588
    [95]R. Yan, J. Yang, and A. G. Hauptmann. Learning query-class dependent weights in automatic video retrieval[C]. In Proceedings of the 12th annual ACM international conference on Multimedia, New York, NY, USA,2004:548-555
    [96]J. Platt. Probabilistic outputs for support vector machines and comparison to regular-ized likelihood methods[R]. In A. Smola, P. Bartlett, B. Scholkopf, and D. Schuurmans, editors, Advances in Large Margin Classiers. MIT Press,1999.
    [97]Y. Wu, E. Y. Chang, K. C.-C. Chang, et al. Optimal multimodal fusion for multimedia data analysis[C]. In Proceedings of the 12th annual ACM international conference on Multimedia, New York, NY, USA,2004:572-579
    [98]J. Yang, M. Y. Chen, A. G. Hauptmann. Finding person X:Correlating names with visual appearances[C]. In Proc. of the Intl. Conf. on Image and Video Retrieval (CIVR), Dublin, Ireland,2004:270-278
    [99]C. Snoek, M.Worring, A. Smeulders. Early versus late fusion in semantic video analysis[C]. In Proceedings of ACM Intl. Conf. on Multimedia, Singapore,2005: 399-402
    [100]K. Barnard, P. Duygulu, D. Forsyth, et al. Matching words and pictures[J]. Journal of Machine Learning Research,2002,3:1107-1135
    [101]J. Jeon, V. Lavrenko, R. Manmatha. Automatic image annotation and retrieval using cross-media relevance models[C]. In Proceedings of the 26th annual ACM SIGIR conference on informaion retrieval, Toronto, Canada,2003:119-126
    [102]D. Blei, M. Jordan. Modeling annotated data[C]. In Proc. of the 26th ACM Intl. Conf. on SIGIR,2003.
    [103]Pan J, Yang H, C. Faloutsos, et al. Gcap:Graph-based automatic image caption-ing[C]. In Proc. of the 4th International Workshop on Multimedia Data and Document Engineering (MDDE 04), in conjunction with Computer Vision Pattern Recognition Conference (CVPR 04),2004.
    [104]S. Ebadollahi, Le-Xing Xie, Shih-Fu Chang. Visual event detection using multidi-mensional con-cept dynamics[C]. In Interational Conference on Multimedia and Expo (ICME), Toronto, Canada, July 2006.
    [105]Xu D, Shih-Fu Chang. Visual event recognition in news video using kernel methods with multi-level temporal alignment[C]. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Minneapolis, USA, June 2007.
    [106]Le-Xing Xie, Xu D, S. Ebadollahi, K. Scheinberg, et al. Pattern mining in visual concept streams[C]. In Proc.40th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, Oct 2006.
    [107]N. Japkowicz. Learning from imbalanced data sets:a comparison of various strategies[C]. In AAAI Workshop on Learning from Imbalanced Data Sets. Tech Rep. WS-00-05, Menlo Park, CA:AAAI Press,2000.
    [108]T. Joachims. Making large-scale svm learning practical. In Advances in Kernel Methods-Support Vector Learning[R], B. Scholkopf and C. Burges and A. Smola (ed.), Springer,1995.
    [109]P. Chan, S. Stolfo. Toward scalable learning with non-uniform class and cost distri-butions:A case study in credit card fraud detection[C]. In Proc. Fourth Intl. Conf. Knowledge Discovery and Data Mining,1998:164-168
    [110]M. Joshi, R. Agarwal, V. Kumar. Predicting rare classes:Can boosting make any weak learner strong?[C]. In the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton, Canada, July 2002.
    [111]詹德川,周志华.基于集成的流形学习可视化[J].计算机研究与发,2005,42(9):1533-1537.
    [112]A.Blum, T. Mitchell. Combining labeled and unlabeled data with co-training[C]. In Proc. of the Workshop on Computational Learning Theory,1998.
    [113]K. Nigam, R. Ghani. Analyzing the effectiveness and applicability of co-training[C]. In Proc. of CIKM,2000:86-93
    [114]K. Lin and C. Lin. A study on reduced support vector machines[J]. IEEE Trans-actions on Neural Networks,2003,14(6):1449-1459
    [115]R Yan, M. yu Chen, A G Hauptmann. Mining relationship between video concepts using probabilistic graphical model[C]. In IEEE International Conference on Multimedia and Expo (ICME), Toronto, Canada,2006.
    [116]S. Santini, A. Gupta, R. Jain. Emergent semantics through interaction in image data-bases[J]. IEEE Transactions on Knowledge and Data Engineering,2001,13(3):337
    [117]A.Hanjalic, L. Q. Xu. Affective video content representation and modeling[J]. IEEE Transactions on Multimedia,2005,7(1):143-154
    [118]Nevenka D. Context and memory in multimedia content analysis[J]. IEEE MultiMedia,2004,11(3):7-11
    [119]A.Dorado, J. Calic, and E. Izquierdo. A rule-based video annotation system[J]. IEEE Transactions on Circuits and Systems for Video Technology,2004,14(5):622-633, May 2004.
    [120]http://www.ctr.columbia.edu/advent/[OL]
    [121]李仁发,刘彦,徐成.多处理器片上系统任务调度研究进展评述[J].计算机研究与发展,2008,45(9):1620-1629
    [122]Yan Liu, Ren-Fa Li. HW-SW framework for multimedia applications on MPSoC: Practice and experience[J]. Journal of Computers,2009,4(3):238-244
    [123]张钹,张铃.粒计算未来发展方向探讨[J].重庆邮电大学学报(自然科学版).2010,22(5):538-540.
    [124]ZADEH L A. Fuzzy sets and information granularity[C]. GUPTAM, RAGADER, YAGER R. Advances in Fuzzy Set Theory and Application. Amsterdam:North-Holl and Publishing Co,1979:3-18.
    [125]胡峰,黄海,王国胤等.不完备信息系统的粒计算方法[J].小型微型计算机系统,2005,26(8):1335-1339.
    [126]PAWLAK Z. Rough set[J]. International Journal of Computer and Information Science,1982,11(5):341-356.
    [127]张钹,张铃.模糊商空间理论(模糊粒度计算方法)[J].软件学报,2003,14(4):770-776.
    [128]LIN T Y. Granular computing on binary relations Ⅱ:rough set representations and belief functions[J]. Rough Sets in Knowledge Discovery,1998:107-121.
    [129]Zheng Z, Hu H, Shi Z Z. Tolerance relation based information granular space[J]. Lecture Notes in Computer Science,2005(3641):682-691
    [130]Kryszkiewicz M. Rough set approach to incomplete information systems[J]. Infor-mation Sciences,1998,112:39-49.
    [131]Stefanowski J, Tsoukias A. On the Extension of Rough Sets Under Incomplete Information[C]. In:S Zhong, A Skowron, S Ohsuga (Eds.). Proc. of the 7th Int'1 Workshop on New Directions in Rough Sets, Data Mining, and Granular Soft Computing. Berlin:Springer-Verlag,1999:73-81.
    [132]王国胤Rough集理论在不完备信息系统中的扩充[J].计算机研究与发展,2002,39(10):1238-1243.
    [133]Liang J, Xu Z. The algorithm on knowledge reduction in incomplete information systems[J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,2002,10(1):95-103.
    [134]王国胤,张清华,胡军.粒计算研究综述[J],智能系统学报,2007,2(6):8—26
    [135]张向荣,谭山,焦李成.基于商空间粒度计算的SAR图像分类[J],计算机学报,2007,30(3):483—490
    [136]张铃,张钹,问题求解理论及应用:商空间粒度计算理论及应用(第2版)[M],清华大学出版社
    [137]陈圣兵.基于商空间理论的海量信息检索模型的研究[D].安徽大学.2010年
    [138]张清华,王国胤,刘显全.分层递阶的模糊商空间结构分析[J].模式识别与人工智能,2008,21(5):627-634
    [139]薛志远,张清华.复合粒计算模型研究进展[J],重庆邮电大学学报(自然科学版),2010,22(5):631-640
    [140]Beymer D, McLauch. A Real-time Computer Vision System or Measuring Tracffic Parameters[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,1997.
    [141]Kass M, Wittkin A, Baker K D. Active Contour Model[J].International Journal of Computer Vision,1988,2(3):321-331.
    [142]D. Comaniciu, V. Ramesh, and P. Meer. Kernel-based object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence [J].25(5):564-577,2003.
    [143]D. Comaniciu, V. Ramesh, P. Meer. Real-time tracking of non-rigid objects using mean shift[J]. IEEE Computer vision and pattern recognition,2000,2:142-149
    [144]D. Comaniciu. An algorithm for data-driven bandwidth selection[J]. IEEE Trans-actions on Pattern Analysis and Machine Intelligence [J].25(2):281-288,2003.
    [145]D. Comaniciu, V. Ramesh, P. Meer. The variable bandwidth mean shift and data-driven scale selection. IEEE International Conference on Computer Vision [C], 2001:438-445
    [146]R. T. Collins. Mean-shift blob tracking through scale space[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition.11-234-40,2003.
    [147]D. Comaniciu, V. Ramesh. Mean shift and optimal prediction for efficient object tracking[C]. In:Mojsilovic A, Hu J, eds. Proc. of the IEEE Int'1 Conf. on Image Processing (ICIP).2000.70-73.
    [148]彭宁嵩,杨杰等.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550
    [149]李乡儒,吴福朝,胡占义.均值漂移算法的收敛性[J].软件学报,2005,16(3):365-374
    [150]彭宁嵩,杨杰等Mean-Shift跟踪算法中目标模型的自适应更新[J].数据采集与处理,2005,20(2):125-129
    [151]P. Hall, M. Wand. On the accuracy of binned kernel density estimators[J]. Journal of Multivariate Analysis,1994,56(2):165-184.
    [152]李存华,孙志挥,陈耿等.核密度估计及其在聚类算法构造中的应用[J].计算机研究与发展,2004,41(10):1713-1719
    [153]Alfredo P, Alessio F. Rough fuzzy set-based image compression[J]. Fuzzy Sets and Systems,2009,160(10):1485-1506
    [154]Hou Z, Zhang Z. Hybrid Intelligent Fault Diagnosis Based on Granular Computing[C]. Granular Computing,2009, GRC'09. IEEE International Conference, 2009:219-224
    [155]De-Gang Chen, Qiang He, Xi-Zhao Wang. FRSVMs:Fuzzy rough set based support vector machines[J]. Fuzzy Sets and Systems, In Press, Corrected Proof, Available online 4 May 2009
    [156]Abdel-Galil,T.K., Hegazy,Y.G., Salama,M.M.A., etl. Fast match-based vector quanti-zation partial discharge pulse pattern recognition [J]. IEEE Trans. Instrum. Measure. 2005,54 (1),3-9.
    [157]Laha, A., Pal, N.R., Chanda, B., Design of vector quantizer for image compression using self-organizing feature map and surface fitting[J]. IEEE Trans. Image Process. 2004,13 (10),1291-1303.
    [158]Kim, M.Y., Kleijn, W.B., KLT-based adaptive classified VQ of the speech signal[J]. IEEE Trans. Speech Audio Process.2004,12 (3),277-289.
    [159]Trentin, E., Gori, M., Face recognition using vector quantization histogram method[C]. In:Proc. of the 2002 Internat. Conf. on Image Processing, pp.22-25.
    [160]刘刚,刘晶,王泉.一种基于覆盖域密度的LBG算法[J].计算机应用.2008,28:319-321.
    [161]Y. Linde, A. Buzo, R. Gray. An Algorithm for Vector Quantization Design[C]. Proc. IEEE Transactions on Communications,1980,28:84-95
    [162]Equitz W H. A new vector quantization clustering algorithm[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing,1989,37(10):1568-1575.
    [163]Vaisey J, Gersho A. Simulated annealing and codebook design[C]. Proceedings IEEE ICASSP,1988:1176-1179.
    [164]Zhang L, Zheng B, Yang Z. Codebook design using genetic algorithm and its application to speaker identification [J]. Electronics Letters,2005,41(10):619-620.
    [165]Tsai C, Lee C, Chiang M, etl. A fast VQ codebook generation algorithm via pattern reduction[J]. Pattern Recognition Letters 2009,30:653-660
    [166]http://wang.ist.psu.edu/docs/publications.shtml[OL]
    [167]R. M. Haralick. Some neighborhood operations[R]. In Real Time/Parallel Comput-ing Image Analysis, New York. Plenum Press.1981:11-35,.
    [168]K. Suzuki, I. Horiba, N. Sugie. Linear-time connected-component labeling based on sequential local operations[J]. Computer Vision and Image Understanding,2003, 89:1-23
    [169]L. He, Y. Chao, K. Suzuki. A run-based two-scan labeling algorithm[J]. IEEE Trans-actions on Image Processing,2008,17(5):749-756
    [170]R. Lumia, L. Shapiro, and O. Zungia. A new connected components algorithm for virtual memory computers[J]. Computer Vision, Graphics, and Image Processing, 1983,22(2):287-300
    [171]A. Rosenfeld, J. L. Pfalts. Sequential operations in digital picture processing[J]. Journal of ACM,1966,13(4):471-494
    [172]D. H. Ballard. Computer Vision[M]. Englewood, New Jesey:Prentice-Hall,1982.
    [173]F. Chang, C. J. Chen, C. J. Lu. A linear-time component-labeling algorithm using contour tracing technique[J]. Computer Vision and Image Understanding,2004,93: 206-220
    [174]Giuseppe Papari, Nicolai Petkov. Edge and line oriented contour detection:State of the art[J]. Image and Vision Computing,2011,29:79-103
    [175]S. A. Coleman, B. W. Scotney, S. Suganthan. Multi-scale edge detection on range and intensity images[J]. Pattern Recognition,2011(44):821-838
    [176]Patricia Melin, Olivia Mendoza, Oscar Castillo. An improved method for edge detection based on interval type-2 fuzzy logic[J]. Expert Systems with Applications, 2010(37):8527-8535
    [177]Debashis Sen, Sankar K. Pal. Gradient histogram:Thresholding in a region of interest for edge detection[J]. Image and Vision Computing,2010(28):677-695
    [178]D.J. Withey, W. Pedrycz, Z.J. Koles. Dynamic edge tracing:Boundary identification in medical images[J]. Computer Vision and Image Understanding,2009,113: 1039-1052
    [179]Yi S, Demetrio Labate, Glenn R. Easley, et al. A Shearlet Approach to Edge Analysis and Detection[J]. IEEE Transactions on Image Processing,2009,18(5):929-941
    [180]Giuseppe P, Nicolai P. Adaptive Pseudo Dilation for Gestalt Edge Grouping and Contour Detection[J]. IEEE Transactions on Image Processing,2008,17(10): 1950-1962
    [181]高世一,赵明扬,张雷等.基于Zernike正交矩的图像亚像素边缘检测算法改进[J].自动化学报,2008,34(9):1163-1168
    [182]邵平,杨路明.基于模板分解和积分图像的快速Kirsch边缘检测[J].自动化学报,2007,33(8):795-780
    [183]Jian Ye, Gong-Kang Fu, Upendra P. Poudel. High-accuracy edge detection with Blurred Edge Model[J]. Image and Vision Computing,2005,23:453-467
    [184]Cai-Rong Zhao, Chuan-Cai Liu, Zhi-Hui Lai, et al. Sparse embedding visual attention system combined with edge information[J]. International Journal of Electronics and Communications (AEu),2011,1:1-8
    [185]Marivi Tello Alonso, CarlosLopez-Martinez, Jordi J.Mallorqui, et al. Edge Enhancement Algorithm Based on the Wavelet Transform for Automatic Edge Detection in SAR Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011,49(1):222-235
    [186]许华荣,王晓栋,方遒.基于B样条曲线模型的结构化道路检测算法[J].自动化学报,2011,37(3):795-780
    [187]Arturo Aquino, Manuel Emilio Gegundez-Arias, Diego Marin. Detecting the Optic Disc Boundary in Digital Fundus Images Using Morphological, Edge Detection, and Feature Extraction Techniques. IEEE Transactions on Medical Imaging,2010 29(11):1860-1869
    [188]苏娟,林行刚,刘代志.一种基于结构特征边缘的多传感器图像配准方法[J].自动化学报,2009,35(3):251-257
    [189]Hichem Frigui, Paul Gader. Detection and Discrimination of Land Mines in Ground-Penetrating Radar Based on Edge Histogram Descriptorsand a Possibilistic K-Nearest Neighbor Classifier[J]. IEEE Transactions on Fuzzy Systems,2009,17(1): 185-199
    [190]刘万军,姜庆玲,张闯.基于CNN彩色图像边缘检测的车牌定位方法[J].自动化学报,2009,35(12):1503-1602)
    [191]崔潇潇,王贵锦,林行刚.基于Adaboost权值更新以及K-L距离的特征选择算法[J].自动化学报,2009,35(5):462-468
    [192]Zhi Liu, Liquan Shen, Zhaoyang Zhang. Unsupervised image segmentation based on analysis of binary partition tree for salient object extraction[J]. Signal Processing 91(2011) 290-299
    [193]D.H.P.Felzenszwalb, Efficient graph-based image segmentation[J]. Int. J. Comput. Vision,2004,59 (2):167-181.
    [194]R.Nock, F.Nielsen, Statistical region merging[J]. IEEE Trans. Pattern Anal. Machine Intel.2004,26(11):1452-1458.
    [195]Yang X, Zhao W, Chen Y, et al. Image segmentation with a fuzzy clustering algorithm based on ant-tree[J]. Signal Process.2008,88 (10):2453-2462.
    [196]Vanhamel, I.Pratikakis, H.Sahli. Multiscale gradient watersheds of color images[J]. IEEE Trans. Image Process.2003,12(6):617-626.
    [197]T. Cour, F. Benezit, J. Shi. Spectral segmentation with multiscale graph decomposi-tion[C]. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, San Diego, CA,2005,2:1124-1131.
    [198]H. Lu, J. C. Woods, M. Ghanbari. Binary partition tree for salient object segmenta-tion and image segmentation[J]. IEEE Trans. Circuits Syst. Video Technol.2007, 17(3):378-383.
    [199]Zhi Liu, Weiwei Li, Liquan Shen etl. Automatic segmentation of focused objects from images with low depth of field[J]. Pattern Recognition Letters 2010, 31:572-581
    [200]Song-He Feng, De Xu, Xu Yang. Attention-driven salient edge(s) and region(s) extraction with application to CBIR[J]. Signal Processing,2010,90:1-15
    [201]Yining Deng, B. S. Manjunath. Unsupervised Segmentation of Color-Texture Regions in Images and Video[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(8):800-810
    [202]王国胤,张清华.不同知识粒度下粗糙集的不确定性研究[J].计算机学报.2008年第31卷9期:1588-1598
    [203]Y. Deng, C. Kenney, M.S. Moore, et al. Peer Group Filtering and Perceptual Color Image Quantization[C]. Proc.IEEE Int'1 Symp. Circuits and Systems,1999,4:21-24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700