用户名: 密码: 验证码:
基于语义的视频事件检测分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着网络应用的飞速发展,多媒体文件数量每天在以几何级数的速度在Internet上不断涌现。其中的视频数据由文本、视频、声音、图像等多种文件融合而成,其本身具有的层次性、结构性、复杂性等特征,还含有丰富的语义信息;所以快速处理视频数据、提取视频特征、分析和理解视频中包含的语义内容,受到多媒体信息处理研究人员的广泛关注。视频语义事件检测分析的研究成果对于如何在浩瀚的视频信息海洋中快速、准确地检测到用户需要的视频,且进一步应用在视频点播、智能监控和视频挖掘等领域具有重要的实际应用价值。现有的基于语义的视频事件检测分析技术,还存在很多局限性,如对于多个具有不同特征的运动对象识别率低、视频语义事件检测准确率低、难以发现语义事件关联性以及事件语义描述标准不统一等。
     本文围绕视频多运动对象识别特征描述与分类、基于语义的视频复杂事件检测与分析、语义事件关联性挖掘及事件级高层语义描述和理解四个方面的关键技术,深入分析了这些关键技术的研究现状和存在问题,提出了自适应的组合不变矩量值的多运动对象特征描述与分类方法、轨迹多标签超图模型检测与分析复杂事件方法、时序关联规则挖掘事件语义算法以及格语法框架网络结构描述理解视频多线程事件技术。本文的主要工作概况如下:
     (1)提出了自适应的组合不变矩量值的多运动对象特征描述与分类方法。在该方法中,针对不同的运动对象特征各异的特点,提出了自适应组合不变矩量值方法,可动态选择不变矩特征量值用于描述不同对象的特征。通过定义SF-ISF(Similar Frequency-In verse Singular Frequency)方法计算出每个对象的不变矩量值的权重值,之后再将不变矩量值的权重值和组合不变矩量值作为输入参数;建立回归型支持向量机(Support Vector Regression,SVR)多类分类器模型,对场景中的多种运动对象进行分类。通过实验验证了对不变矩特征量值选择权重的合理性,以及对SVR多类分类器的分类性能进行分析,结果显示能有效提高运动对象的识别率。
     (2)提出了基于轨迹多标签超图模型的视频复杂事件检测分析方法。由运动对象的时空特征,在对运动轨迹进行定义、修剪和相似度计算后,用标准化分割的方法检测出运动子事件。之后建立轨迹多标签超图模型对视频复杂事件分析进行分类识别:首先,根据运动轨迹建立轨迹超图,再由视频事件中的语义概念建立概念多标签超图,并对两者进行了配对融合,从中发现了轨迹与多概念标签之间的映射关系,从而提取出多个运动事件组成的复杂事件语义。实现了视频事件识别过程中低层特征与高层语义之间的跨越,实验结果和相关工作分析比较表明,该方法能够有效提高视频复杂事件检测的平均查准率和平均查全率。
     (3)基于时序关联规则的视频事件语义挖掘算法。在该方法中,根据视频事件中多运动对象运动规律之间存在的时序关联特性,设计了一个描述运动事件,存储运动事件语义标签的频繁模式树(Temporal Frequent Pattern Tree, TFPTree)结构,设计了加权的频繁模式挖掘算法,以挖掘出不仅包含事件发生频率,还表现事件之间具有时序特性的强关联关系规则。克服了视频事件分析中,事件关联性检测准确率低的缺点,能够根据事件频繁模式过滤了无关的非频繁项集,挖掘出具有时序和频次关联性的视频事件,发现视频事件语义的时序频繁模式。实验结果表明,由此方法挖掘之后得到的强关联规则数目更加精确;算法运行效率得到有效提高。
     (4)基于格语法框架网络结构的视频高层语义描述和理解的方法。该方法将用于自然语言理解的格语法理论与视频语义事件结构特征相结合,设计了格语法框架网络(Case Semantic Frame Net, CSFN)结构,将子事件框架之间关系定义为,继承(Inheritance)、总分(SubFrame)、时序(Temporal)、起始(StartState_EndState)、因果(Causative)、使用(Using)、参照关联(Ref Asso)七种,用于描述事件中的运动对象、事件、状态及事件之间的关系。并对事件框架的时序关联性和空间关联性进行了分析,并从事件级语义层上描述和分析多线程的复杂事件之间的关系。实验结果表明,通过格语法框架网络结构的语义描述,能更好地便于用户理解视频事件级语义,有效提高视频语义事件检测的效率。
     本文在视频多运动对象的特征描述与分类,视频复杂事件检测,语义事件关联性挖掘、视频高层语义描述和理解等方面进行了新的尝试并提出了有效的解决方案,为后续基于语义的视频事件检测分析研究提供了新的参考。
With the rapid development of the applications of network, enormous multimedia files are emerging every day. Video data is an integration of text, sound, image and other files. Not only being hierarchical, structural and complex, video data is also rich in semantic information. Therefore, extensive attentions have been drawn to how to process video data quickly, extract the video characteristics accurately, and analyze and understand the semantic content deeply. Semantic event detection and analysis could find video information quickly and accurately for users in the vast ocean of video data. It can be applied to the field of video on demand, intelligent monitoring and video mining as well. However, there are still many limitations, such as low recognition rate for multiple moving objects with different characteristics, low accuracy in semantic event detection, difficulties in detecting semantic event correlations, the lack of consistent standards of event semantic description, and so on.
     This dissertation focuses on four key techniques, the description and classification method of multiple moving objects, detection and analysis of complex semantic-based events, semantic event correlation mining, and the description and understanding events. This work then discusses their research status and potential problems. The main contributions are listed below.
     (1) The recognition methods of multi-moving objects based on adaptive combined moment invariants are proposed. In this method, the adaptive combination of moment invariants metric technique is proposed to describe different characteristics of different objects with selecting dynamically invariant moments. Then, Similar Frequency-Inverse Singular Frequency (SF-ISF) is defined to calculate the moment invariant weight value of each object. Support Vector Regression (SVR) model of multi-class classifier is then built to classify a variety of moving objects in the scene, with weight value and moment invariants value as an input parameter. Experimental results show that the method of selection moment invariant metric, with weight, is reasonable. The performance of multi-class classifier SVR is verified by experiment that it improve the recognition rate of multi-moving objects effectively.
     (2) The detection and analysis methods of complex event based on matching integration between trajectory and multi-label hypergraphs are proposed. Firstly, sub-events are detected by definition, prune, normalized cut and similarity calculation of trajectories. Secondly, trajectory and multi-label hypergraphs are constructed for classifying and recognizing the complex events. By matching the trajectory hypergraph and multi-label hypergraph, mapping relationship between trajectory and multiple semantic labels is built to extract the complex semantic events. The recognition of low-level features to high-level semantic is made possible for video events. Experimental results and related analysis show that this method can effectively improve the average precision and average recall rate of video complex event detection.
     (3) The mining algorithm of semantics events based on temporal association rules is proposed. According to the temporal association between the motion laws of multiple moving objects in an event, a frequent pattern tree structure is designed for describing events, storing events semantic labels. Then, the weighted frequent pattern growth method is designed. It mines the frequency of events as well as the strong association rules between events with temporal characteristics. These methods overcome the shortcomings of low accuracy in semantic event detection. It can also filter the non-frequent item set and find the events with temporal association. The experimental results show more accurate numbers of strong association rules obtained by this method, the algorithm operating efficiency is improved considerably.
     (4) The methods for description and understanding of semantic events based on the case grammar framework network structure are proposed. Case grammar theory is used for natural language understanding. A design of case grammar framework network structure (CSFN) which incorporates the case grammar and semantic event structure features to describe the relationship between the sub-events. There are seven types of relationship defined as Inheritance, Subframe, Temporal, StartState_EndState, Causative, Using, and Ref_Asso, which describe the relationship among objects, events, and states. In Ref_Asso, the temporal and spatial association is analyzed, for describing the relationship of multi-threaded event. Experimental results show that with the semantic description of the multi-threaded event by the case grammar network structure, it is better for users to understand the semantics and the effectiveness of semantic event detection is improved.
     In this dissertation, we have researched on the aspects of the description and classification method of multiple moving objects, the detection and analysis method of complex event semantic-based, the mining algorithm of semantic event temporal association rules, and the methods of description and understanding for semantic event. These methods will provide the foundation and references to the further research on the semantic events recognition and analysis.
引文
[1]S. F. Chang, R. Manmatha, T. S. Chua, B. Combining text and audio-visual features in video indexing[C]. Proceedings of ICASSP 2005, Philadelphia, PA,2005:1005-1008.
    [2]http://www.cnnic.com.cn/
    [3]Junyong You, Guizhong Liu, Andrew Perkis. A semantic framework for video genre classification and event analysis[J]. Signal Processing:Image Communication. 2010,25:287-302.
    [4]Hyun-seok Min,Jae Young Choi,Wesley De Neve et al.Bimodel fusion of low-level visual features and high-level semantic feature for near-duplicate video clip detection[J]. Sinal Processing:Image Communication.2011,26:612-627.
    [5]Jiang Yuan, She Qiaoqiao, Li Ming, et al. A transductive multilabel text categorization approach[J]. Journal of Computer Research and Development,2008,45(11):1817-1822.
    [6]A. Hauptmann, R. V. Baron, M.-Y. Chen, et al. Informedia at TRECVID 2003:Analyzing and searching broadcast news video[C]. In Proceedings of (VIDEO) TREC 2003 (12th Text Retrieval Conference.), Gaithersburg, MD,2003.
    [7]Natsev A,Naphade M,Tesic J. Teisic. Learning the semantics of multimedia queries and concepts from a small number of examples[C]. In Proceedings 13th ACM Int. Conf. Multimedia,2005:598-607.
    [8]Paul Over, Tzveta Ianeva, Wessel Kraajj et al. TRECVID 2006-An overview[C]. In Proceedings TRECV1D'06 Video Retrieval Evaluation. Gaithersburg. MD.2006.
    [9]Cees G. M. Snoek, Bouke Huumink, Laura Hollink, et al. Adding semantics to detectors for video retrieval[C]. IEEE Transactions on Multimedia, Aug 2007,9(5):975-986.
    [10]Navneet Panda, Edward Y.Chang. Efficient top-k hyperplane query processing for multimedia information retrieval[C], In Proceedings ACM Multimedia,2006:317-326.
    [11]Alan F. Smeaton, Paul Over, Wessel Kraaij. High level feature detection from video in TRECV:a 5-year retrospective of achievements[M]. Multimedia Content Analysis:Theory and Applications. Springer series on Signals and Communication Technology. Springer US, Norwell, MA 02061,2009:151-174, ISBN 978-0-387-76567-
    [12]Tinghui Wang, Feng Zhao, Jiang Wan, et al. A novel hardware architecture for rapid object detection based on adaboost algorithm[J].Advances in visual computing lecture notes in computer science,2010,6455:397-406.
    [13]庄越挺,潘云鹤,芮勇.用语义联想支撑基于内容的视频检索[J],计算机研究与发展,1999,36(5):613-618.
    [14]吴飞,刘亚楠,庄越挺.基于张量表示的直推式多模态视频语义概念检测[J],软件学报,2008,19(11):2853-2868.
    [15]刘亚楠,吴飞,庄越挺.基于多模态子空间相关性传递的视频语义挖掘[J],计算机研究与发展,2009,46(1):1-8.
    [16]白亮,老松杨,刘海涛等.基于OWL本体扩展的视频内容分析[J],国防科技大学学报,2010,32(2):79-84.
    [17]陈丹雯,刘然,袁志民等.基于概念对关系的视频多语义概念学习方法研究[J],计算机 科学,2011,38(4):244-248.
    [18]王吴冉,白亮,老松杨.基于图模型的足球视频语义建模方法[J],计算机科学,2011,38(6):266-270.
    [19]金标,胡文龙,王宏琦.基于时空语义信息的视频运动目标交互行为识别方法[J],光学学报,2012,32(5):0512002-1-0512002-7.
    [20]王晓峰,张大鹏,王绯,史忠植.基于语义轨迹的视频事件探测[J],计算机学报,2010,33(10):1845-1858.
    [21]张玉珍,丁思捷,王建宇等.基于HMM的融合多模态的事件检测[J],系统仿真学报,2012,24(8):1638-1643
    [22]张静,马桔.利用本体的视频语义概念检测[J],小型微型计算机系统,2008,29(12):2353-2359.
    [23]Muchurl Kim, J.GJeon, J.S.Kwak, et al. Moving object segmentation in video sequences by user interaction and automatic object tracking[J]. Image and Vision Computing, 2001,19(5):245-260.
    [24]L. Wang, W. M. Hu, T. N. Tan. Recent developments in human motion analysis[J]. Pattern Recognition,2003,36(3):585-601.
    [25]W. Hua, M. Han, Y. Gong. Baseball scene classification using multimedia features[C].In: Proceedings of the IEEE International Conference on Multimedia and Expo, vol.1, 2002:821-824.
    [26]H. Lu, Y.-P. Tan. Sports video analysis and structuring[C].In:Proceedings of the IEEE Fourth Workshop on Multimedia Signal Processing,2001:3-5.
    [27]Feng Wanga, Chong-Wah Ngob, Ting-Chuen Ponga. Structing low-quality videotaped lectures for cross-reference browsing by video text anlysis[J]. Pattern recoginition.2008(41):3257-3269.
    [28]J.C. SanMiguel, J.M. Martinez. Computer Vision and Image Understanding[J],2012(116): 937-952
    [29]G. Zhu, C. Xu, Q. Huang, et al. Event tactic analysisbased on broadcast sports video[J], IEEE Transactions Multimedia 2009,11 (1):49-67.
    [30]E. Kijak, G. Gravier, L. Oisel, P. Gros. Audiovisual integration for tennisbroadcast structuring[J]. Multimedia Tools and Applications,2006,30 (3):289-311.
    [31]H.-T. Chen, M.-C. Tien, Y.-W. Chen, et al. Physics-based balltracking and 3D trajectory reconstruction with applications to shooting location estimation in basketball video[J], Journal of Visual Communication and Image Representation,2009, (20):204-216.
    [32]H.-T. Chen, C.-L. Chou, W.-J.et al. Extraction and representation of human body for pitching style recognition in broadcast baseball video[C].In:Proceedings of IEEE International Conference on Multimedia Expo,2011.
    [33]Xinguo Yu,Changsheng Xu, Hong Wai Leong, et al. Trajectory-based ball detection and tracking with applications to semantic analysis of broadcast soccer video[J].IEEE Transactions on Multimedia 2006,8(6):1164-1178.
    [34]C.H. Chen, C.C. Lien. The multiresolution and flooding based RSST (MFRSST) image segmentation method[J]. Chung Hua J. Sci. Eng.1,2003:9-16.
    [35]Y. Gao, W.B. Wang, J.H. Yong, H.J. Gu. Dynamic video summarization using two-level redundancy detection[J]. Multimedia Tools and Applications 2009 (42) 233-250.
    [36]C.L. Huang, H.C. Shih, C.Y. Chao. Semantic analysis of soccer video using dynamic Bayesian network[J]. IEEE Transactions on Multimedia,2006,8 (4):749-760.
    [37]Heung-I Suk, Bong-Kee Sin, Seong-Whan Lee. Hand gesture recognition based on dynamic Bayesian network framework[J]. Pattern Recognition,2010,43(9):3059-3072
    [38]J. Assfalg, M. Bertini, C. Colombo, et al. Semantic annotation of soccer videos:automatic highlights identification[J]. Computer Vision and Image Understanding,2003,92 (2-3):285-305.
    [39]Li F H, Woodham R J. Video analysis of hockey play in selected game situation[J]. Image amd Vision Computing,2009,27(1-2):45-48.
    [40]Perse M, Kristan M, et al. A trajectory-based analysis of coordinated team activity in a basketball game[J]. Computer Vision and Image Understanding,2009,113(5):612-621.
    [41]R.E. Kalman, R.S. Bucy. New results in linear filtering and prediction theory[J], Transactions of the ASME-Journal of Basic Engineering,1961 (83):95-107.
    [42]E. Maggio, A. Cavallaro. Hybrid particle filter and mean shift tracker with adaptive transition model[C]. In:Proceedings of IEEE Signal Processing Society International Conference on Acoustics, Speech, and Signal Processing,2005:221-224.
    [43]H.-Y. Cheng, J.-N. Hwang. Integrated video object tracking with applications in trajectory-base event detection[J]. J. Vis. Commun. Image R.2011, (22):673-685.
    [44]Rodriguez-Benitez L, Moreno-Garcia J, Castro-Schez J.J, et al. Automatic objects behaviour recognition from compressed video domain[J]. Image and Vision Computing,2009,27(6): 648-657.
    [45]Chen S C, Shyn M L, Chen M, et al. A decision tree-based multimodal data mining framework for soccer goal detection[C]. Proceedings of IEEE International Conference on Multimedia and Expo. Taipei,2004:27-30.
    [46]Snoek C G M, Worring M, Geusehroek J M, et al. The semantic pathfinder for generic news video indexing[C]. Proceedings of IEEE International Conference on Multimedia and Expo, Toronto.2006:1469-1472.
    [47]Lili N. A. Hidden Markov Model for Content-Based Video Retrieval[C]. Proceedings of Third Asia International Conference on Modelling & Simulation,2009:353-358
    [48]Chen X, Zhang C C, Chen S C, et al. A Human-Centered Multiple Instance Learning Framework for Semantic Video Retrieval[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C:Applications and Reviews,2009,39(2):228-233.
    [49]Zhan Y Z, Cheng K Y, Chen Y B, et al. A New Classifier for Facial Expression Recognition: Fuzzy Buried Markov Model[J]. Journal of Computer Science and Technology,2010,25(3): 641-650.
    [50]Wijesekera D, Babara D. Mining cinematic knowledge:Work in progress-An extended abstract[C]. In:Proceedings of the 1st International Workshop on Multimedia Data mining, Boston, MA, August 2000,98-103.
    [51]Oh JungHWan, Bandi B. Multimedia data mining framework for raw video sequence[C]. In: Proceedings of the 3rd International Workshop on Multimedia Data mining, Edmonton, Alberta,Canada,July 2002:1-10.
    [52]Jia Yu Pan, Chiristos Faloutsos. Geoplot:spatial data mining on video libraries[C].Proceedings of the 11th international conference on information and knowledge management,2002:405-412.
    [53]Zhu Xing-Quan, Aref W G, Fan Jianping, et al. Medical video mining for efficient database indexing, management and access[C]. In:Proceedings of 19th ICDE Conference, March 2003.
    [54]代科学,李强,李国辉.视频挖掘研究进展[J],计算机科学,2010,37(10):11-15.
    [55]Zhou Y, Cao Y, Zhang L, et al. An SVM-based soccer video shot classification[C]. Proceedings of the 4th International Conference on Machine Learning and Cybernetics, Guangzhou, China:IEEE Press,2005:5398-5403.
    [56]于俊青,王宁.基于子窗口区域的足球视频镜头分类[J].中国图象图形学报,2008,13(7):1347-1352.
    [57]赵士伟,卓力,孙少卿等.基于数据挖掘的视频镜头分类方法[J],北京工业大学学报,2012,38(5):721-726.
    [58]Wang S,Jiang S,Huang Q, et al. Shot classification for action movies based on motion characteristics[C].Proceedings of the 15th IEEE International Conference on Image Processing. San Diego, Califomia,USA:IEEE Press,2008:2508-2511.
    [59]I.S. Dhillon, D.S. Modha. Concept devompositons for large sparse text data using clusteringfJ]. Machine Learning,2001,42(1):143-175.
    [60]J.Mennis,J.W.Liu. Mining association rules in spatio-temporal data[C].In:Proceedings of the Seventh International Conference on GeoComputation,2003.
    [61]肖卫东,黄凯歌,徐振宁等.语义信息模型及应用[M].电子工业出版社,2002.
    [62]J.Hunter,L. Armstrong. A comparison of schemas for video metadata representation[J]. Computer Networks,1999,31(11-16):1431-1451
    [63]Muriel Jourdan. A formal semantics of SMIL:a web standard to describe multimedia documents[J].Computer Standards & Interfaces,2001,23(5):439-455
    [64]Bolehdom S,Petridis K.,Saatho C., et al. Semantic annotation of images and video for multimedia analysis[C]. In:Proceedings of the 2nd European Semantic Web Conference, Greece,2005.
    [65]王煜,周立柱,邢春晓.视频语义模型及评价准则[J].计算机学报,2007,30(3):337-351.
    [66]F. Onmoto,K.Tanaka. OVID,design and implementation of a video-object database system[J]. IEEE Transactions on Knowledge and Data Engineering,1993,5(4):629-643.
    [67]R. Hjelsvold, R. Midtstraum. Modeling and querying video data[C].In:Proceedings of 20th VLDB conference,1994
    [68]K.Kim,K.B.Kim,H.Kim. VIRON, and annotation-based video information retrieval system[C].In Proceedings of the 20th International Conference on Computer Software and Application COMPSAC 1996.
    [69]于吉红,吕俊伟,白晓明.一种基于组合不变矩的新的舰船图像目标识别方法[J].红外,2011,9(32):23-28
    [70]曾万梅,吴庆宪,姜长生.基于组合不变矩特征的空中目标识别方法[J].电光与控制2009,7(16):21-24,44
    [71]刘正君,李琦,王骐.基于组合矩的激光雷达距离像目标识别[J].中国激光,2012,6(39):1-7
    [72]M K H. Visual pattern recognition by moment invariants[J].IRE Trans Inf Theory,1962,8: 179-187
    [73]M R Teague. Image analysis via the general theory of moments[J]. Journal Optical Society of America,1980,70 (8):920-930
    [74]S S Reddi. Radial and angular moment invariants for image identification[J]. IEEE Transactions of Pattern Analysis and Machine Intelligence,1981,3 (2):240-242
    [75]Y S ABU-Mostafa, D Psaltis. Recognitive aspects of moment invariants[J]. IEEE Transactions of Pattern Analysis and Machine Intelligence,1984,6 (6):698-706.
    [76]Y L Sheng, H H Arsenault. Noisy-image normalization using low-order radial moments of circular-harmonic function[J]. Journal of Optical Society of America,1987,4(7):1176-1184.
    [77]Gupta L, Srinath M D. Contour sequence moments for the classification of closed planar shapes [J]. Pattern Recognition,1987,20 (3):267-272
    [78]Teh, C H, Chin, R T. On image analysis by the method of moments[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1988,10:496-513.
    [79]Pizlo, Z, Rosenfeld A. Recognition of planar shapes from perspective images using contour-based invariants[J]. CVGIP:Image Understanding,1992 3(56):330-350.
    [80]Flusser, J, Suk T. Pattern recognition by affine moment invariants[J]. Pattern Recognition, 1993,26:167-74.
    [81]Y L Sheng, L X Shen. Orthogonal Fourier-Mellin moments for invariant pattern recognition[J]. Journal of Optical Society of America(A),1994,11(6):1748-1757
    [82]Lenz R, Meer P. Point configuration invariants under simultaneous projective and permutation transformations[J]. Pattern Recognition,1994,27:1523-32.
    [83]Mukundan R, Ramakrishnan K R. Moment Functions in Image Analysis [M].Singapore:World Scientific,1998.
    [84]Cheng H D, Desai R. Scene Classification by Fuzzy Local Moments[J].International Journal of Pattern Recognition and Artificial Intelligence,1998,7:921-938.
    [85]Chen Guangyi, Bui, Tien D. Invariant fourier wavelet descriptor for patern recognition[J].Pattern recognition,1999,32:1083-1088.
    [86]Flusser, J. On the independence of rotation moment invariants[J]. Pattern Recognition, 2000,33:1405-1410.
    [87]Mukundan R, Ong S H, Lee P A. Image analysis by Tchebichef moments[J]. IEEE Transactions on Image Processing,2001,10:1357-1364.
    [88]Z L Ping, R G Wu, Y L Sheng. Describing image with Chebyshev-FourierMoments[J]. Journal of Optical Society of America(A),2002,19(9):1748-1754.
    [89]Liao S X, Chiang A, Lu Q, Pawlak M. Chinese character recognition via Gegenbauer moments[C]. In Proceedings of the 16th International Conference on Pattern Recognition ICPR'02 (Quebec City, Canada),2002,3:11-15.
    [90]Yap P T, Paramesran R. Ong S H. Image analysis by Krawtchouk moments[J]. IEEE Transactions Image Processing,2003,12:1367-77.
    [91]Guleng Amu, Surong Hasi, Xingyu Yang et al. Image Analysis by Pseudo-Jacobi(p=4, q=3)-FourierMoments[J]. Applied Optics,2004,43 (10):2093-2101
    [92]曹茂永,孙农亮,郁道银.用于模式识别的极半径不变矩[J].计算机学报,2004.27(6),860-864.
    [93]Yap, P.-T. Paramesran, R. Jacobi moments as image features[C]. In Proceedings of the Region 10 Conference on TENCON'04.2004,594-597.
    [94]Suk, T. Flusser, J. Projective moment invariants[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26:1364-1367.
    [95]范立南,董立菊,许心和.基于线矩特征提取的图形模式识别研究[C].2005,哈尔滨,中国控制与决策学术年会:579-582.
    [96]Wu Y, Shen J. Properties of orthogonal Gaussian-Hermite moments and their applications [J]. EURASIP Journal on Applied Signal Processing,2005,4:588-99.
    [97]李宗民.矩方法及其在几何形状描述中的应用[D].博士学位论文,北京,中国科学院研究生院(计算技术研究所),2005.
    [98]Qjidaa H. Image reconstruction by Laguerre moments[C]. In Proceedings of the Second International Symposium on Communications, Control and Signal Processing lSCCSP'06, 2006.
    [99]Zhu H, Shu H, Zhou J, Luo L, Coatrieux J L. Image analysis by discrete orthogonal dual Hahn moments[J]. Pattern Recognition Letters,2007,28:1688-1704.
    [100]Ping Z, Ren H, Zou J, Sheng Y et al. Generic orthogonal moments:Jacobi-Fourier moments for invariant image description[J]. Pattern Recognition,2007,40:1245-54.
    [101]Flusser J, Kautsky J, Sroubek F. Implicit moment invariants [J]. International Journal of Computer Vision,2009,10:1007-1009.
    [102]G.A. Papakostas, E.G.Karakasis,D.E.Koulouriotis. Novel moment invariants for improved classification performance incomputer vision applications [J].Pattern Recognition,2010,43:58-68.
    [103]Tomas Suk, JanFlusser. Affine moment invariants generated by graph method[J].Pattern Recognition,2011,44:2047-2056.
    [104]B.J. Chen, H.Z.Shu, H.Zhang et al. Quaternion Zernike moments and their invariants for color image analysis and object recognition [J]. Signal Processing,2012,92:308-318.
    [105]Q. Liu. Hypergraph with sampling for image retrieval[J]. Pattern Recognition,2011,10(44): 2255-2262.
    [106]L. Ding, A. Yilmaz. Interactive image segmentation using probabilistic hypergraphs[J],Pattern Recognition,2010, (43):1863-1873.
    [107]Yuchi Huang Qingshan Liu Dimitris Metaxas. Video Object Segmentation by Hypergraph Cut[C]. Int'l Conf. Computer Vision and Pattern Recognition (CVPR),2009.
    [108]Ya-hong,Jian Shao, Fei Wu, et al. Multiple hypergraph ranking for video concept detection[J]. J Zhejiang Univ-Sci C (Comput & Electron),2010,11(7):525-537.
    [109]C. Piciarelli, G.L. Foresti. On-line trajectory clustering for anomalous events detection[J]. Pattern Recognition Letters,2006,27(15):1835-1842
    [110]J. Shi and J. Malik. Normalized Cuts and Image Segmentation[C].In IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22:888-905.
    [111]Zhou Deng-yong, Huang Jia-yuan, SchOkopf B. Learning with Hypergraphs:Clustering, Classification, and Embedding[C]. In:NIPS'06,2006.
    [112]Agarwal S, Branson K, Belongie S. Higher order learning with graphs[C]. Proc of the 23rd International Conference on Machine Learning, United states.2006:17-24.
    [113]CAVIAR:Context Aware Vision using Image-based Active Recognition. More details at http://homepages.inf.ed.ac.uk/rbf/CAVIARDATAl/.
    [114]Hakeem A, Shah M. Learning, detection and representation of multi-agent events in videos[J]. Artificial Intelligence,2007,171(8-9):586-605.
    [115]Zha Zheng-jun, Mei Tao, Wang Jing-dong, et al. Graph-based semi-supervised learning with multi-label[C]. Proc of 2008 IEEE International Conference on Multimedia and Expo. Hannover:Inst. of Elec. and Elec. Eng. Computer Society,2008:1321-1324.
    [116]卢汉清,刘静.基于图学习的自动图像标注[J].计算机学报,2008,31(9):1629-1639.
    [117]S.Ebadollahi,L.Xie,S.F.Chang, et al.Visual event detectiong using multi-dimensional concept dynamics[C].In Proceedings IEEE International Conference Multimedia and Expo,2006:881-884.
    [118]J.Yang and A.G. Hauptmann.Exploring temporal consistency for video retrieval and analysis[C].In Proceeding 8th ACM SIGMM International,Workshop on Multimedia Information Retrieval,2006:33-42.
    [119]Sher Muhammad Doudpota, Sumanta Guha, Junaid Baber. Mining movies for song sequences with video based music genre identification system[J], Information Processing & Management,2013,49(2):529-544.
    [120]Toshev, A. Bremond, F. Thonnat, M. An apriori-based method for frequent composite event discovery in videos[C]. In Proceedings of the 4th IEEE International conference on computer vision systems,2006.
    [121]Cees G.M.Snoel. Marcel Worring, Jan C, et al. The Challenge problem for automated detection of 101 semantic concepts in multimedia[C]. In Proceedings of ACM International Conference on Multimedia,2006:421-430.
    [122]Fahad Anwar,Llias Petrounias, Tim Morris, et al. Mining anomalous events against frequent sequences in surveillance videos from commercial environments [J].Expert systems with applications,2012,39:4511-4531.
    [123]C. Fernandez, P. Baiget, F.X. Roca, J. Gonzalez. Determining the best suited semantic events for cognitive surveillance [J].Expert Systems with Applications,2011,38(4):4068-4079
    [124]Blake, B.J.Case[M].2005,北京:北京大学出版社.
    [125]Brigitte Nerlich, David D. Clarke. Semantic fields and frames:Historical explorations of the interface between language, action, and cognition[J]. Journal of Pragmatics, 2000,32(2):125-150
    [126]FrameNet[EB/OL].http://framenet.icsi.berkely.edu/.
    [127]Eugene Santos Jr., Joel D. Young. Probabilistic temporal networks:A unified framework for reasoning with time and uncertain ty[J]. International journal of approximate reasoning,1999,20:263-291.
    [128]田光明,刘艳玲.Framenet框架之间的关系分析[J].现代图书情报技术,2008,6:1-5.
    [129]G. Nagyoal,B.Motik. A fuzzy model for representing uncertain, subjective and vague temporal knowledge in ontologies[C]. International Conference on Ontologies,Databases and Application of Semantics,2003,Lectures Notes in Computer Science.2003,2888:906-923.
    [130]Slobodan Ribaric, Tomislav Hrkac. A model of fuzzy spatio-temporal knowledge representation and reasoning based on high-level petri nets[J].Imformation systems.2012,37:238-256.
    [131]S. Hai-Bin, L. Wen-Hui. Qualtative spatial relationships cleaning for spatial data mining[C]. Proceedings of the 4th international conference on machine learning and cybernetics Guangzhou,2005:1851-1857.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700