用户名: 密码: 验证码:
新型结构光纤传感器及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的发展、社会的进步,环境污染和工程质量问题已经成为制约社会健康、和谐发展的一个因素。发展新型的环境、工程监测用传感器成为当今学术界、工程界的一个研究热点。相比于电子传感器,光纤传感器由于具有体积小、质量轻、抗电磁干扰、易于复用和远程传感等优点而受到越来越多的关注。本文针对这样一个研究热点,介绍了几种基于新型结构光纤的环境、工程监测用光纤传感器。
     我们首先提出了一种新型的全光纤模式干涉仪,该干涉仪是通过标准单模光纤和细芯光纤之间的模式失配来激发高阶包层模式,高阶包层模式和芯层模式发生干涉形成干涉条纹用作传感信号。该干涉仪具有较高的折射率灵敏度(140nm/R.I.U.(R.I.U折射率单位))和很低的温度灵敏度(15pm/℃),是理想的生物、化学传感器。通过静电自组装技术,可以在细芯光纤模式干涉仪上自组装上功能性材料,从而实现pH,相对湿度,金属离子浓度等参量传感。在pH传感中,通过优化自组装膜,例如增加膜厚,在膜上引入纳米孔等方法,使传感器具有单调、高灵敏度、快速、可逆响应等特点。在相对湿度传感中,通过在细芯光纤模式干涉仪上刻写光纤布拉格光栅,实现了同时测量相对湿度和温度的目的,从而可以有效的进行温度补偿。我们提出的相对湿度传感器具有价格低,灵敏度高(97.2pm/1%RH),响应时间快(10s)等优点。在金属离子浓度传感中,我们提出的传感器可以用于铜离子、亚铁离子、锌离子等金属离子浓度的监测,具有很高的灵敏度。利用强金属螯合剂,该金属离子浓度传感器可以实现反复使用。
     拉力是工程监测中的一个重要物理量,我们介绍了两种新型的光纤拉力传感器,一种是基于全固态混合模式保偏光子晶体光纤的干涉仪传感器。应力双折射光纤可以提高很高的拉力和温度灵敏度,利用该保偏光纤形成的双折射干涉仪可以提供23.8pm/με的拉力灵敏度和-1.12nm/℃的温度灵敏度。为了排除温度对拉力监测的影响,我们提出了级联的Sagnac干涉仪,其中一个Sagnac干涉仪用于拉力传感,另一个用于温度补偿,实验结果表明该传感器仍然保持很高的拉力灵敏度(25.6pm/με),其温度响应降低到-9pm/℃,有效的实现了温度补偿。另一种是基于光子晶体光纤中四波混频现象的拉力传感器。传统的拉力传感器都是基于特种光纤或者光纤后处理技术,同时,也都是利用光纤的线性性质。本文首先提出了利用光子晶体光纤中四波混频现象来实现拉力传感的技术。当在光纤上施加轴向拉力时,将引起光纤几何结构和折射率的变化,从而导致光纤色散的变化。因为光子晶体光纤中四波混频信号对光纤色散非常敏感,所以可以通过测量光子晶体光纤的四波混频信号的变化来实现拉力传感。本文从理论和实验方面,验证了该非线性拉力传感器的性能,并模拟优化了灵敏度。
With the economic development and social progress, environmental pollution and engineering quality have become the important factors to restrict the healthy and harmonious development of our society. To develop new sensors for environmental and engineering monitoring is a hot topic in both academic and engineering areas. Compared to the electrical counterpart, the optical fiber sensors have many advantages:small size, low weight, electromagnetic immunity, multiplex and remote sensing capability. Therefore optical fiber sensors have attracted more and more research interests. In this thesis, we propose some optical sensors based on novel structured fibers for environmental and engineering monitoring applications.
     We propose a novel in-fiber modal interferometer, which is based on the modal mismatch between a standard single-mode fiber and a thin-core fiber. The high-order cladding mode excited by the modal mismatch will interfere with the core mode, and the generated interference signal can be used as the sensing signal. The thin-core fiber modal interferometer (TCFMI) has a high refractive-index (RI) sensitivity of140nm/R.l.U.(refractive index unit:R.I.U.) and a low temperature sensitivity of15pm/℃. Thus, the TCFMI is a promising chemical and biological sensor. After coating the TCFMI by electrostatic self-assembly technology, the sensor can be used for pH sensing, relative humidity (RH) sensing, metal ion concentration sensing, etc. The pH sensor has a monotonic, highly sensitive, fast, reversible response through optimizing the self-assembled coating, i.e., increasing the coating thickness, generating nanoporous in the coating, etc. To measure the RH and temperature simultaneously, we fabricate a fiber Bragg grating in the thin-core fiber. Our proposed RH sensor based on TCFMI with self-assembled coating has many advantages, such as low cost, high sensitivity (97.2pm/1%RH), fast response (10s), etc. In metal ion sensing area, our proposed sensor can measure Cu2+, Fe2+and Zn2+with a high sensitivity. With a stronger metal chelator (ethylene-diamino-tetraacetic acid), the reusability of this sensor can be achieved.
     Strain is an important parameter in engineering monitoring. In this paper, we propose two types of fiber optics strain sensors. One is an interferometric sensor based on all-solid birefringent hybrid photonic crystal fiber (PCF). The stress-induced birefringent fiber is known to offer the maximum strain sensitivity, but also to suffer from temperature crosstalk. The birefringent sensor based on the all-solid hybrid PCF offers a high strain sensitivity of23.8pm/με and a high temperature sensitivity of-1.12nm/℃. To eliminate the cross sensitivity to temperature, we propose two cascaded Sagnac interferometers, one is for strain sensing, and the other is for temperature compensation. Experimental results show that the sensor can suppress the cross sensitivity to temperature to-9pm/℃, while still proving a high strain sensitivity of25.6pm/με. The other type is based on four-wave mixing (FWM) in a PCF. All the conventional strain sensors rely on either specialty fibers or postprocessing of the fibers and use the linear properties of the fiber. In this thesis, we demonstrate a nonlinear fiber-optic strain sensor for the first time, which uses the shifts of FWM Stokes and anti-Stokes peaks caused by the strain-induced changes in the structure and refractive index of the PCF. Experimental and simulation results are presented. The strain sensitivity can be improved by optimizing the pump wavelength and power.
引文
[1]K. C. Kao and G. A. Hockham, Dielectric-fibre surface waveguides for optical frequencies. Proceedings of the Institution of Electrical Engineers-London,1966,113 (7),1151-1158.
    [2]T. Miya, Y. Terunuma, T. Hosaka, and T. Miyashita, Ultimate low-loss single-mode fiber at 1.55μm. Electronics Letters,1979,15 (4),106-108.
    [3]C. McDonagh, C. Kolle, A. K. McEvoy, D. L. Dowling, A. A. Cafolla, S. J. Cullen, and B. D. MacCraith, Phase fluorometric dissolved oxygen sensor. Sensors and Actuators B-Chemical,2001,74 (1-3),124-130.
    [4]C. McDonagh, B. D. MacCraith, and A. K. McEvoy, Tailoring of sol-gel films for optical sensing of oxygen in gas and aqueous phase. Analytical Chemistry,1998,70 (1),45-50.
    [5]N. K. Sharma and B. D. Gupta, Fabrication and characterization of a fiber-optic pH sensor for the pH range 2 to 13. Fiber and Integrated Optics,2004,23 (4),327-335.
    [6]B. D. Gupta and S. Sharma, A long-range fiber optic pH sensor prepared by dye doped sol-gel immobilization technique. Optics Communications,1998,154 (5-6),282-284.
    [7]R. Maaskant, T. Alavie, R. M. Measures, G. Tadros, S. H. Rizkalla, and A. GuhaThakurta, Fiber-optic Bragg grating sensors for bridge monitoring. Cement & Concrete Composites,1997,19 (1),21-33.
    [8]M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, K. Dasgupta, and D. K. Bhattacharya, Fibre Bragg gratings in structural health monitoring-Present status and applications. Sensors and Actuators A-Physical,2008,147(1),150-164.
    [9]T. H. T. Chan, L. Yu, H. Y. Tam, Y. Q. Ni, W. H. Chung, and L. K. Cheng, Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge:Background and experimental observation. Engineering Structures,2006,28 (5),648-659.
    [10]O. S. Wolfbels, Fiber-optic chemical sensors and biosensors. Analytical Chemistry,2008,80 (12), 4269-4283.
    [11]M. D. Marazuela, B. Cuesta, M. C. MorenoBondi, and A. Quejido, Free cholesterol fiber-optic biosensor for serum samples with simplex optimization. Biosensors & Bioelectronics,1997,12 (3), 233-240.
    [12]P. A. E. Piunno, U. J. Krull, R. H. E. Hudson, M. J. Damha, and H. Cohen, Fiber optic biosensor for fluorimetric detection of DNA hybridization. Analytica Chimica Acta,1994,288 (3),205-214.
    [13]M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, Evanescent wave long period fiber Bragg grating as an immobilized antibody biosensor. Analytical Chemistry,2000,72 (13),2895-2900.
    [14]Y. W. Lee, Y. Yoon, and B. Lee, A simple fiber-optic current sensor using a long-period fiber grating inscribed on a polarization-maintaining fiber as a sensor demodulator. Sensors and Actuators A-Physical,2004,112 (2-3),308-312.
    [15]Y. T. Cho, M. Alahbabi, M. J. Gunning, and T. P. Newson,50-km single-ended spontaneous-Brillouin-based distributed-temperature sensor exploiting pulsed Raman amplification. Optics Letters,2003,28 (18),1651-1653.
    [16]H. H. Kee, G. P. Lees, and T. P. Newson, All-fiber system for simultaneous interrogation of distributed strain and temperature sensing by spontaneous Brillouin scattering. Optics Letters,2000,25 (10), 695-697.
    [17]K.O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, Photosensitivity in optical fiber waveguides-application to reflection filter fabrication. Applied Physics Letters,1978,32 (10),647-649.
    [18]G. Meltz, W. W. Morey, and W. H. Glenn, Formation of Bragg gratings in optical fibers by a transverse holographic method. Optics Letters,1989,14 (15),823-825.
    [19]K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask. Applied Physics Letters,1993,62 (10),1035-1037.
    [20]J. Jung, H. Nam, B. Lee, J. O. Byun, and N. S. Kim, Fiber Bragg grating temperature sensor with controllable sensitivity. Applied Optics,1999,38 (13),2752-2754.
    [21]A. D. Kersey, T. A. Berkoff, and W. W. Morey, High-resolution fibre-grating based strain sensor with interferometric wavelength-shift detection. Electronics Letters,1992,28 (3),236-238.
    [22]M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, Optical in-fiber grating high-pressure sensor. Electronics Letters,1993,29 (4),398-399.
    [23]N. E. Fisher, P. J. Henderson, and D. A. Jackson, The interrogation of a conventional current transformer using an in-fibre Bragg grating. Measurement Science & Technology,1997,8 (10), 1080-1084.
    [24]T. Guo, A. Ivanov, C. K. Chen, and J. Albert, Temperature-independent tilted fiber grating vibration sensor based on cladding-core recoupling. Optics Letters,2008,33 (9),1004-1006.
    [25]B. O. Guan, H. Y. Tam, and S. Y. Liu, Temperature-independent fiber Bragg grating tilt sensor. IEEE Photonics Technology Letters,2004,16(1),224-226.
    [26]T. Guo, L. Y. Shao, H. Y. Tam, P. A. Krug, and J. Albert, Tilted fiber grating accelerometer incorporating an abrupt biconical taper for cladding to core recoupling. Optics Express,2009,17 (23), 20651-20660.
    [27]W. S. Liu, T. A. Guo, A. C. L. Wong, H. Y. Tam, and S. L. He, Highly sensitive bending sensor based on Er(3+)-doped DBR fiber laser. Optics Express,2010,18 (17),17834-17840.
    [28]D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, Acousto-ultrasonic sensing using fiber Bragg gratings. Smart Materials & Structures,2003,12 (1),122-128.
    [29]Y. P. Wang and Y. J. Rao, Long period fibre grating torsion sensor measuring twist rate and determining twist direction simultaneously. Electronics Letters,2004,40 (3),164-166.
    [30]R. Falciai, A. G. Mignani, and A. Vannini, Long period gratings as solution concentration sensors. Sensors and Actuators B-Chemical,2001,74 (1-3),74-77.
    [31]H. Y. Meng, W. Shen, G. B. Zhang, X. W. Wu, W. Wang, C. H. Tan, and X. G. Huang, Michelson interferometer-based fiber-optic sensing of liquid refractive index. Sensors and Actuators B-Chemical, 2011,160(1),720-723.
    [32]A. Zhou, G. P. Li, Y. H. Zhang, Y. Z. Wang, C. Y. Guan, J. Yang, and L. B. Yuan, Asymmetrical twin-core fiber based Michelsoninterferometer for refractive index sensing. Journal of Lightwave Technology,2011,29 (19),2985-2991.
    [33]L. M. N. Amaral, O. Frazao, J. L. Santos, and A. B. L. Ribeiro, Fiber-optic inclinometer based on taper michelson interferometer. IEEE Sensors Journal,2011,11 (9),1811-1814.
    [34]D. W. Kim, Y. Zhang, K. L. Cooper, and A. B. Wang, In-fiber reflection mode interferometer based on a long-period grating for external refractive-index measurement. Applied Optics,2005,44 (26), 5368-5373.
    [35]T. Wei, X. W. Lan, and H. Xiao, Fiber inline core-cladding-mode Mach-Zehnder interferometer fabricated by two-point CO2 laser irradiations. IEEE Photonics Technology Letters,2009,21 (9-12), 669-671.
    [36]Z. B. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers. IEEE Photonics Technology Letters,2008,20 (5-8),626-628.
    [37]J. H. Lim, H. S. Jang, K. S. Lee, J. C. Kim, and B. H. Lee, Mach-Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings. Optics Letters,2004,29 (4), 346-348.
    [38]J. Zhang, X. G. Qiao, T. A. Guo, Y. Y. Weng, R. H. Wang, Y. Ma, Q. Z. Rong, M. L. Hu, and Z. Y. Feng, Highly sensitive temperature sensor using PANDA fiber Sagnac interferometer. Journal of Lightwave Technology,2011,29 (24),3640-3644.
    [39]K. Wada, H. Narui, D. Yamamoto, T. Matsuyama, and H. Horinaka, Balanced polarization maintaining fiber Sagnac interferometer vibration sensor. Optics Express,2011,19 (22),21467-21474.
    [40]H. P. Gong, C. C. Chan, L. H. Chen, and X. Y. Dong, Strain sensor realized by using low-birefringence photonic-crystal-fiber-based Sagnac loop. IEEE Photonics Technology Letters,2010,22 (16), 1238-1240.
    [41]O. Frazao, J. M. Baptista, J. L. Santos, and P. Roy, Curvature sensor using a highly birefringent photonic crystal fiber with two asymmetric hole regions in a Sagnac interferometer. Applied Optics, 2008,47(13),2520-2523.
    [42]K. M. Zhou, Z. J. Yan, L. Zhang, and I. Bennion, Refractometer based on fiber Bragg grating Fabry-Perot cavity embedded with a narrow microchannel. Optics Express,2011,19 (12), 11769-11779.
    [43]J. Liu, Y. Z. Sun, D. J. Howard, G. Frye-Mason, A. K. Thompson, S. J. Ja, S. K. Wang, M. Bai, H. Taub, M. Almasri, and X. D. Fan, Fabry-Perot cavity sensors for multipoint on-column micro gas chromatography detection. Analytical Chemistry,2010,82 (11),4370-4375.
    [44]W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, Note:Optical fiber milled by focused ion beam and its application for Fabry-Perot refractive index sensor. Review of Scientific Instruments, 2011,82(7).
    [45]J. C. Knight, T. A. Birks, P. S. Russell, and D. M. Atkin, All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters,1996,21(19),1547-1549.
    [46]B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter, and T. A. Strasser, Grating resonances in air-silica microstructured optical fibers. Optics Letters,1999,24 (21),1460-1462.
    [47]N. Groothoff, J. Canning, E. Buckley, K. Lyttikainen, and J. Zagari, Bragg gratings in air-silica structured fibers. Optics Letters,2003,28 (4),233-235.
    [48]A. P. Zhang, G. F. Yan, S. R. Gao, S. L. He, B. Kim, J. Im, and Y. Chung, Microfluidic refractive-index sensors based on small-hole microstructured optical fiber Bragg gratings. Applied Physics Letters,2011,98 (22),221109.
    [49]G. F. Yan, A. P. Zhang, G. Y. Ma, B. H. Wang, B. Kim, J. Im, S. L. He, and Y. Chung, Fiber-optic acetylene gas sensor based on microstructured optical fiber Bragg gratings. IEEE Photonics Technology Letters,2011,23 (21),1588-1590.
    [50]L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Hoiby, and O. Bang, Photonic crystal fiber long-period gratings for biochemical sensing. Optics Express,2006,14(18),8224-8231.
    [51]L. Rindorf and 0. Bang, Sensitivity of photonic crystal fiber grating sensors:biosensing, refractive index, strain, and temperature sensing. Journal of the Optical Society of America B-Optical Physics, 2008,25(3),310-324.
    [52]J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing. Applied Physics Letters,2007,91 (9), 091109.
    [53]R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, Refractometry based on a photonic crystal fiber interferometer. Optics Letters,2009,34 (5),617-619.
    [54]X. Y. Dong, H. Y. Tam, and P. Shum, Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer. Applied Physics Letters, 2007,90(15),151113.
    [55]H. Y. Fu, H. Y. Tam, L. Y. Shao, X. Y. Dong, P. K. A. Wai, C. Lu, and S. K. Khijwania, Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer. Applied Optics,2008,47 (15),2835-2839.
    [56]H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer. Optics Letters,2008,33 (21),2455-2457.
    [57]L. B. Soldano and E. C. M. Pennings, Optical multi-mode interference devices based on self-imaging: principles and applications. Lightwave Technology, Journal of,1995,13 (4),615-627.
    [58]A. Mehta, W. Mohammed, and E. G. Johnson, Multimode interference-based fiber-optic displacement sensor. IEEE Photonics Technology Letters,2003,15 (8),1129-1131.
    [59]E. B. Li, X. L. Wang, and C. Zhang, Fiber-optic temperature sensor based on interference of selective higher-order modes. Applied Physics Letters,2006,89 (9),091119.
    [60]Q. Wang and G. Farrell, All-fiber multimode-interference-based refractometer sensor:proposal and design. Optics Letters,2006,31 (3),317-319.
    [61]T. H. Xia, A. P. Zhang, B. B. Gu, and J. J. Zhu, Fiber-optic refractive-index sensors based on transmissive and reflective thin-core fiber modal interferometers. Optics Communications,2010,283 (10),2136-2139.
    [62]J. J. Zhu, A. P. Zhang, T. H. Xia, S. L. He, and W. Xue, Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer. IEEE Sensors Journal,2010,10 (9),1415-1418.
    [63]A. P. Zhang, L. Y. Shao, J. F. Ding, and S. L. He, Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature. IEEE Photonics Technology Letters,2005,17 (11), 2397-2399.
    [64]Y. M. Wang, K. L. Cooper, and A. B. Wang, Microgap structured optical sensor for fast label-free DNA detection. Journal of Lightwave Technology,2008,26 (17-20),3181-3185.
    [65]Z. H. He, F. Tian, Y. N. A. Zhu, N. Lavlinskaia, and H. Du, Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor. Biosensors & Bioelectronics,2011,26 (12),4774-4778.
    [66]F. Long, C. Gao, H. C. Shi, M. He, A. N. Zhu, A. M. Klibanov, and A. Z. Gu, Reusable evanescent wave DNA biosensor for rapid, highly sensitive, and selective detection of mercury ions. Biosensors & Bioelectronics,2011,26 (10),4018-4023.
    [67]K. B. Blodgett and I. Langmuir, Built-up films of barium stearate and their optical properties. Physical Review,1937,51 (11),0964-0982.
    [68]G. Decher, Fuzzy nanoassemblies:Toward layered polymeric multicomposites. Science,1997,277 (5330),1232-1237.
    [69]R. K. Iler, Multilayers of colloidal particles. Journal of Colloid and Interface Science,1966,21 (6), 569-594.
    [70]K. Ariga, J. P. Hill, and Q. M. Ji, Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Physical Chemistry Chemical Physics, 2007,9(19),2319-2340.
    [71]W. B. Stockton and M. F. Rubner, Molecular-level processing of conjugated polymers.4. layer-by-layer manipulation of polyaniline via hydrogen-bonding interactions. Macromolecules,1997,30 (9), 2717-2725.
    [72]L. Y. Wang, Z. Q. Wang, X. Zhang, J. C. Shen, L. F. Chi, and H. Fuchs, A new approach for the fabrication of an alternating multilayer film of poly(4-vinylpyridine) and poly(acrylic acid) based on hydrogen bonding. Macromolecular Rapid Communications,1997,18 (6),509-514.
    [73]Z. Liang, O. M. Cabarcos, D. L. Allara, and Q. Wang, Hydrogen-bonding-directed layer-by-layer assembly of conjugated polymers. Advanced Materials,2004,16 (9-10),823-827.
    [74]J. Y. Chen, L. Huang, L. M. Ying, G. B. Luo, X. S. Zhao, and W. X. Cao, Self-assembly ultrathin films based on diazoresins. Langmuir,1999,15 (21),7208-7212.
    [75]W. Muller, H. Ringsdorf, E. Rump, G. Wildburg, X. Zhang, L. Angermaier, W. Knoll, M. Liley, and J. Spinke, Attempts to mimic docking processes of the immune system:recognition-induced formation of protein multilayers. Science,1993,262 (5140),1706-1708.
    [76]H. Lee, L. J. Kepley, H. G. Hong, S. Akhter, and T. E. Mallouk, Adsorption of ordered zirconium phosphonate multilayer films on silicon and gold surfaces. Journal of Physical Chemistry,1988,92 (9), 2597-2601.
    [77]M. Wanunu, A. Vaskevich, S. R. Cohen, H. Cohen, R. Arad-Yellin, A. Shanzer, and I. Rubinstein, Branched coordination multilayers on gold. Journal of the American Chemical Society,2005,127 (50), 17877-17887.
    [78]M. Schutte, D. G. Kurth, M. R. Linford, H. Colfen, and H. Mohwald, Metallosupramolecular thin polyelectrolyte films. Angewandte Chemie-International Edition,1998,37 (20),2891-2893.
    [79]K. Emoto, M. Iijima, Y. Nagasaki, and K. Kataoka, Functionality of polymeric micelle hydrogels with organized three-dimensional architecture on surfaces. Journal of the American Chemical Society,2000, 122 (11),2653-2654.
    [80]X. Zhang, H. Chen, and H. Y. Zhang, Layer-by-layer assembly:from conventional to unconventional methods. Chemical Communications,2007, (14),1395-1405.
    [81]Y. Lvov, K. Ariga, M. Onda, I. Ichinose, and T. Kunitake, A careful examination of the adsorption step in the alternate layer-by-layer assembly of linear polyanion and polycation. Colloids and Surfaces A-Physicochemical and Engineering Aspects,1999,146 (1-3),337-346.
    [82]R. Steitz, V. Leiner, R. Siebrecht, and R. von Klitzing, Influence of the ionic strength on the structure of polyelectrolyte films at the solid/liquid interface. Colloids and Surfaces A-Physicochemical and Engineering Aspects,2000,163 (1),63-70.
    [83]R. Steitz, W. Jaeger, and R. von Klitzing, Influence of charge density and ionic strength on the multilayer formation of strong polyelectrolytes. Langmuir,2001,17 (15),4471-4474.
    [84]S. S. Shiratori and M. F. Rubner, pH-dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes. Macromolecules,2000,33 (11),4213-4219.
    [85]M. Salomaki, P. Tervasmaki, S. Areva, and J. Kankare, The Hofmeister anion effect and the growth of polyelectrolyte multilayers. Langmuir,2004,20 (9),3679-3683.
    [86]E. Donath, G. B. Sukhorukov, F. Caruso, S. A. Davis, and H. Mohwald, Novel hollow polymer shells by colloid-templated assembly of poly electrolytes. Angewandte Chemie-International Edition,1998,37 (16),2202-2205.
    [87]H. Lehmann, G. Schwotzer, P. Czerney, and G. J. Mohr, Fiber-optic pH meter using NIR dye. Sensors and Actuators B-Chemical,1995,29 (1-3),392-400.
    [88]P. A. Wallace, N. Elliott, M. Uttamlal, A. S. Holmes-Smith, and M. Campbell, Development of a quasi-distributed optical fibre pH sensor using a covalently bound indicator. Measurement Science & Technology,2001,12 (7),882-886.
    [89]O. B. Miled, H. Ben Ouada, and J. Livage, pH sensor based on a detection sol-gel layer onto optical fiber. Materials Science & Engineering C-Biomimetic and Supramolecular Systems,2002,21 (1-2), 183-188.
    [90]J. Goicoechea, C. R. Zamarreno, I. R. Matias, and F. J. Arregui, Optical fiber pH sensors based on layer-by-layer electrostatic self-assembled Neutral Red. Sensors and Actuators B-Chemical,2008,132 (1),305-311.
    [91]J. M. Corres, I. R. Matias, I. del Villar, and F. J. Arregui, Design of pH sensors in long-period fiber gratings using polymeric nanocoatings. IEEE Sensors Journal,2007,7 (3-4),455-463.
    [92]J. Goicoechea, C. R. Zamarreno,I. R. Matias, and F. J. Arregui, Utilization of white light interferometry in pH sensing applications by mean of the fabrication of nanostructured cavities. Sensors and Actuators B-Chemical,2009,138 (2),613-618.
    [93]K. Itano, J. Y. Choi, and M. F. Rubner, Mechanism of the pH-induced discontinuous swelling/deswelling transitions of poly(allylamine hydrochloride)-containing polyelectrolyte multilayer films. Macromolecules,2005,38 (8),3450-3460.
    [94]G. Sauerbrey, Verwendung von Schwingquarzen zur Wagung dunner Schichten und zur Mikrowagung. Zeitschrift fur Physik A Hadrons and Nuclei,1959,155 (2),206-222.
    [95]Q. Zhou, M. R. Shahriari, D. Kritz, and G. H. Sigel, Porous fiber-optic sensor for high-sensitivity humidity measurements. Analytical Chemistry,1988,60 (20),2317-2320.
    [96]B. D. Gupta and Ratnanjali, A novel probe for a fiber optic humidity sensor. Sensors and Actuators B-Chemical,2001,80 (2),132-135.
    [97]T. E. Brook, M. N. Taib, and R. Narayanaswamy, Extending the range of a fibre-optic relative-humidity sensor. Sensors and Actuators B-Chemical,1997,39 (1-3),272-276.
    [98]L. N. Xu, J. C. Fanguy, K. Soni, and S. Q. Tao, Optical fiber humidity sensor based on evanescent-wave scattering. Optics Letters,2004,29 (11),1191-1193.
    [99]X. F. Huang, D. R. Sheng, K. F. Cen, and H. Zhou, Low-cost relative humidity sensor based on thermoplastic polyimide-coated fiber Bragg grating. Sensors and Actuators B-Chemical,2007,127 (2), 518-524.
    [100]J. M. Corres, I. del Villar, I. R. Matias, and F. J. Arregui, Two-layer nanocoatings in long-period fiber gratings for improved sensitivity of humidity sensors. IEEE Transactions on Nanotechnology,2008,7 (4),394-400.
    [101]S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity. Sensors and Actuators B-Chemical,2005,104 (2),217-222.
    [102]L. Zhang, F. X. Gu, J. Y. Lou, X. F. Yin, and L. M. Tong, Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film. Optics Express,2008,16 (17), 13349-13353.
    [103]S. J. Lee, J. E. Lee, J. Seo, I. Y. Jeong, S. S. Lee, and J. H. Jung, Optical sensor based on nanomaterial for the selective detection of toxic metal ions. Advanced Functional Materials,2007,17 (17), 3441-3446.
    [104]I. M. Steinberg, A. Lobnik, and O. S. Wolfbeis, Characterisation of an optical sensor membrane based on the metal ion indicator Pyrocatechol Violet. Sensors and Actuators B-Chemical,2003,90 (1-3), 230-235.
    [105]N. Malcik, O. Oktar, M. E. Ozser, P. Caglar, L. Bushby, A. Vaughan, B. Kuswandi, and R. Narayanaswamy, Immobilised reagents for optical heavy metal ions sensing. Sensors and Actuators B-Chemical,1998,53 (3),211-221.
    [106]M. A. Palacios, Z. Wang, V. A. Montes, G. V. Zyryanov, and P. Anzenbacher, Rational design of a minimal size sensor array for metal ion detection. Journal of the American Chemical Society,2008, 130(31),10307-10314.
    [107]P. Zuo, B. C. Yin, and B. C. Ye, DNAzyme-based microarray for highly sensitive determination of metal ions. Biosensors & Bioelectronics,2009,25 (4),935-939.
    [108]B. B. Rodriguez, J. A. Bolbot, and I. E. Tothill, Development of urease and glutamic dehydrogenase amperometric assay for heavy metals screening in polluted samples. Biosensors & Bioelectronics,2004, 19(10),1157-1167.
    [109]B. Kuswandi, Simple optical fibre biosensor based on immobilised enzyme for monitoring of trace heavy metal ions. Analytical and Bioanalytical Chemistry,2003,376 (7),1104-1110.
    [110]T. J. Lin and M. F. Chung, Detection of cadmium by a fiber-optic biosensor based on localized surface plasmon resonance. Biosensors & Bioelectronics,2009,24 (5),1213-1218.
    [111]I. P. Kaminow and V. Ramaswamy, Single-polarization optical fibers:slab model. Applied Physics Letters,1979,34 (4),268-270.
    [112]O. Frazao, J. M. Baptista, and J. L. Santos, Recent advances in high-birefringence fiber loop mirror sensors. Sensors,2007,7 (11),2970-2983.
    [113]J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russel, Photonic band cap guidance in optical fibers. Science,1998,282 (5393),1476-1478.
    [114]R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, Single-mode photonic band gap guidance of light in air. Science,1999,285 (5433),1537-1539.
    [115]A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. S. J. Russell, Highly birefringent photonic crystal fibers. Optics Letters,2000,25 (18),1325-1327.
    [116]T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, Highly birefringent index-guiding photonic crystal fibers. IEEE Photonics Technology Letters,2001, 13 (6),588-590.
    [117]C. Kerbage, P. Steinvurzel, P. Reyes, P. S. Westbrook, R. S. Windeler, A. Hale, and B. J. Eggleton, Highly tunable birefringent microstructured optical fiber. Opt. Lett.,2002,27 (10),842-844.
    [118]J. B. Du, Y. G. Liu, Z. Wang, B. Zou, B. Liu, and X. Y. Dong, Electrically tunable Sagnac filter based on a photonic bandgap fiber with liquid crystal infused. Optics Letters,2008,33 (19),2215-2217.
    [119]S. A. Cerqueira, F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, Hybrid photonic crystal fiber. Optics Express,2006,14 (2),926-931.
    [120]J. K. Lyngso, B. J. Mangan, C. B. Olausson, and P. J. Roberts, Stress induced birefringence in hybrid TIR/PBG guiding solid photonic crystal fibers. Optics Express,2010,18(13),14031-14040.
    [121]A. Govind P, in Nonlinear Fiber Optics (Fourth Edition), ed San Diego:Academic Press,2006.
    [122]M. H. Frosz, A. Stefani, and O. Bang, Highly sensitive and simple method for refractive index sensing of liquids in microstructured optical fibers using four-wave mixing. Optics Express,2011,19 (11), 10471-10484.
    [123]J. R. Ott, M. Heuck, C. Agger, P. D. Rasmussen, and O. Bang, Label-free and selective nonlinear fiber-optical biosensing. Optics Express,2008,16 (25),20834-20847.
    [124]A. Bertholds and R. Dandliker, Determination of the individual strain-optic coefficients in single-mode optical fibres. Journal of Lightwave Technology,1988,6 (1),17-20.
    [125]L. Yuan, White-light interferometric fiber-optic strain sensor from three-peak-wavelength broadband LED source. Applied Optics,1997,36 (25),6246-6250.
    [126]N. F. Borrelli and R. A. Miller, Determination of the individual strain-optic coefficients of glass by an ultrasonic technique. Applied Optics,1968,7 (5),745-750.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700