用户名: 密码: 验证码:
外源物质对煤矸石碎屑上植物生长的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤矸石山的立地条件极端困难,直接进行植物栽植很难成活,即使成活也难以养护管理。前人在煤矸石废弃地的基质改良和植物种选择与植被演替等方面进行了大量的研究,取得了很多成果。但煤矸石山植被恢复的一些理论和技术问题还远远没有解决,对生态恢复中的新方法、新技术的应用缺乏理论上的总结和提高。本研究探索外源物质对煤矸石基质的改良及其对植物生长的影响,将煤矸石与土壤按不同的比例混合形成不同基质,并用玉米秸秆对基质进行改良。各基质分别设置添加保水剂、硝酸稀土拌种、接种根瘤菌、接种丛枝菌根真菌等不同处理,研究白三叶草、高羊茅、紫穗槐等植物在改良煤矸石基质上的生长状况、光合生理特征、植株营养元素状况以及其对基质的改良作用等。探索硝酸稀土、保水剂、根瘤菌、丛枝菌根真菌等外源物质在煤矸石山植被恢复中的作用与用量,筛选适合煤矸石废弃地上植物生存的最优基质配比和基质改良方案,以期找出适合煤矸石废弃地基质改良与植被恢复的新配比、新方案,丰富煤矸石废弃地的植被恢复模式。
     研究结果显示,喷施硝酸镧能提高改良煤矸石基质上高羊茅的日均生长率,加快其高生长速度。基质改良和喷施硝酸镧能提高煤矸石基质上高羊茅的水分利用效率,减轻高温和干旱对植物的胁迫,高浓度的硝酸镧喷施会抑制净光合速率,但保水剂与硝酸镧合理组合能缓解高浓度硝酸镧喷施对净光合速率的抑制。本组试验的最优方案为A3B2C2D2,即土壤与煤矸石按500g:500g混合、每1kg基质中添加2g保水剂和30g玉米秸秆、出苗后用浓度为200mg/kg的硝酸镧喷施叶面三次效果最好。
     添加保水剂及硝酸镧拌种对白三叶生长的影响及其对煤矸石基质改良作用的研究表明:煤矸石基质中添加保水剂在一定程度上使基质结构和水热状况得到改善,提高白三叶的水分利用效率,促进白三叶草的高生长。添加保水剂和适宜浓度的硝酸镧溶液拌种能提高三叶草的净光合速率、调节蒸腾速率,避免高温对叶片造成灼伤,有效缓解高温胁迫,促进三叶草对温度较高的煤矸石基质的适应能力。本组试验的最优方案为A3B3C2D2,即煤矸石与土壤质量比为500g:500g、每1kg基质中添加2g保水剂和15g粉碎玉米秸秆、播种前用200mg/kg浓度硝酸镧溶液拌种。
     接种根瘤菌对改良煤矸石基质上单播白三叶生长影响的研究表明,接种根瘤菌能促进白三叶草生长和分蘖、增加生物量,接种根瘤菌的白三叶草株高比对照提高13.78%;接种根瘤菌能提高白三叶的结瘤率和固氮酶活性,同时能够促进基质中P和K的分解,从而改善煤矸石基质的营养状况。煤矸石与土壤质量比为500g:500g、接种浓度为1.0×109个/ml的根瘤菌菌液、每1kg基质中添加1g保水剂和15g粉碎玉米秸秆的组合最优,即A3B2C3D2。
     白三叶草和高羊茅混播的较优基质方案为A3B1C3D2,即煤矸石与土壤质量比为500g:500g、接种浓度为1.0×109个/ml的根瘤菌菌液、每1kg基质中添加15g粉碎玉米秸秆,不添加保水剂。接种根瘤菌后混播白三叶草和高羊茅的生物量分别比未接种提高30.19%和40.67%,这是因为接种根瘤菌能提高白三叶草的结瘤率和基质的固氮酶活性,使其为自身及伴生的禾本科植物提供氮素营养,而禾本科植物的竞争又刺激了豆科作物的固氮作用,从而促进了植物生长。混播条件下,白三叶与高羊茅的水分利用效率(WUE)日变化曲线呈此消彼长的趋势,这有利于两种植物对水分的合理利用。
     在煤矸石废弃地植被恢复中丛枝菌根也发挥着重要作用。研究表明,接种丛枝菌根真菌能增强煤矸石基质上紫穗槐的光合速率和水分利用效率。紫穗槐根系与丛枝菌根真菌形成的共生体,提高了根际土壤的固氮酶活性,促进煤矸石基质上紫穗槐的生长、增加其生物量。煤矸石与土壤按质量比为500:500混合并接种根内球囊霉(G1ZJ2C2),是适合非自燃煤矸石条件下紫穗槐生长的最佳方案。G2ZJ2C3,即煤矸石与土壤按质量比为500:500混合并接种摩西球囊霉,是适合自燃煤矸石基质条件下紫穗槐生长的最佳方案。
     总之,硝酸稀土、保水剂、根瘤菌、丛枝菌根真菌等几种外源物质均能不同程度的促进煤矸石基质上植物生长,在煤矸石废弃地植被恢复中具有广阔的应用前景。
The coal gangue dump is so hard to be re-habited that plants directly planted on it are difficult to survive, and is problematic to conserve and manage for those survived. Former researchers have taken great efforts in studying matrix improvement, plant species selection and vegetation succession on coal gangue wasteland and have come to great achievements in these fields. However, some theoretical and technical problems are far from being resolved, and the new methods and technology concerning ecological restoration need to be summarized and improved in a theoretical pattern. Effects of exogenous substances on matrix improvement and plant growth were explored in this work. Matrix in individual treatment was prepared through mixing gangue and soil at different proportion and the matrix were improved via adding corn stalks. Specifically, individual matrix was respectively treated through adding super absorbent polymer(SAP), seed dressing with rare earth nitrate, inoculating rhizobium and inoculating arbuscular mycorrhizal fungi (AMF). Then, growth conditions, photosynthetic physiology and nutrition elements of Trifolium repens L, Festuca arundinacea L. and Amorpha fruticosa L. on the improved gangue matrix, and their effects on matrix improvement were studied. What's more, function and amount applied of exogenous substances including rare earth nitrate, super absorbent polymer(SAP), rhizobium and arbuscular mycorrhizal fungi(AMF) in vegetation restoration of coal gangue wastelands were explored and the optimal matrix preparation pattern and matrix improvement plan were selected from those are suitable for plant survival on coal gangue dump for finding out new ratio or new plan for matrix improvement and vegetation restoration of coal gangue wasteland and further enrich the vegetation restoration mode on these wasteland.
     Results showed that lanthanum nitrate spraying could improve average daily growth rate of Festuca arundinacea L. on improved gangue matrix and accelerate its height growth speed. Matrix improvement and lanthanum nitrate spraying help raise water use efficiency(WUE) of Festuca arundinacea L. on coal gangue, reduce the stress upon plant from high temperature and drought; though spraying lanthanum nitrate at a high concentration might inhibit the net photosynthetic rate, suitable mixing of super absorbent polymer(SAP) and lanthanum nitrate could dissolve inhibition of net photosynthetic rate from it. The optimal treatment pattern in this study was A3B2C2D2:weight ratio of soil/gangue500g:500g, adding2g/kg SAP and30g/kg crushed corn stalks into the matrix, and foliar spraying with lanthanum nitrate solution at200mg/kg3times after emergence.
     Effect of adding super absorbent polymer(SAP) and seed dressing with lanthanum nitrate on the growth of Trifolium repens L. and coal gangue matrix improvement was studied in this paper. The results showed that adding super absorbent polymer into coal gangue matrix could optimize matrix structure and hydrothermal conditions to a certain extent, and improve water use efficiency(WUE) of Trifolium repens L., which promoted its height growth. Adding super absorbent polymer(SAP) and seed dressing with lanthanum nitrate solution at optimum concentration could improve net photosynthetic rate, regulate the transpiration rate of Trifolium repens L., avoid foliar burns from high temperature, effectively alleviate the heat stress, which were beneficial to promoting the of adaptability of Trifolium repens L. to high temperature of coal gangue matrix. The optimal treatment in this study was A3B3C2D2:the weight ratio of gangue/soil500g:500g, adding2g/kg super absorbent polymer(SAP) and15g/kg crushed corn stalks in matrix, and seed dressing with lanthanum nitrate solution at200mg/kg before planting.
     Effect of rhizobium inoculation on single sown Trifolium repens L.on improved gangue matrix was also studied in this paper. Results showed that rhizobium inoculation helped promote growth and tillering of Trifolium repens L. and increase the biomass; height of Trifolium repens L. inoculated with rhizobium increased by13.78%than that of the CK; Rhizobium inoculation both advanced the nodulation rate and nitrogenase activity of Trifolium repens L. and promoted decomposition of P and K in the matrix, which helped improve the nutritional status of the coal gangue matrix. The optimal combination program was A3B2C3D2:weight ratio of coal gangue matrix and soil500g:500g, inoculating with rhizobium bacteria liquid at the concentration of1.0×109bacteria/ml, adding1g/kg super absorbent polymer(SAP) and15g/kg crush corn stalks into coal gangue matrix.
     The optimal matrix program for mixing sown Trifolium repens L. and Festuca arundinacea L. was A3B1C3D2:weight ratio of coal gangue matrix and soil500g:500g, inoculating with rhizobium bacteria liquid at the concentration of1.0×109bacteria/ml, adding15g/kg crush corn stalks and Og/kg super absorbent polymer(SAP) into coal gangue matrix. The biomass of mixed sowing Trifolium repens L. and Festuca arundinacea L. increased by30.19%and40.67%after rhizobium inoculation. This was because rhizobium inoculation could increase nodulation rate of Trifolium repens L. and nitrogenase activity of coal gangue matrix, which was helpful for providing itself and the accompanying gramineous plants with more nitrogen nutrition; and the competition between gramineous plants and leguminous plants stimulated the nitrogen fixation, so as to promote plant growth. When mixed sowing, curve of daily water use efficiency (WUE) of Trifolium repens L. and Festuca arundinacea L. showed a zero-sum trend, when rational water use(WUE) of the two plants can be achieved.
     Arbuscular mycorrhizal fungi (AMF) also plays a significant role in the vegetation restoration of coal gangue matrix. The study found that inoculation of arbuscular mycorrhizal fungi(AMF) could enhance photosynthetic rate and water use efficiency (WUE) of Amorpha fruticosa L. on coal gangue matrix. Symbionts formed from root of Amorpha fruticosa L. and arbuscular mycorrhizal fungi(AMF) improved the nitrogenase activity of rhizosphere soil, promoted the growth of Amorpha fruticosa L. on coal gangue matrix and increased the biomass. The optimal matrix program for Amorpha fruticosa L.to grow on non-spontaneous gangue was G1ZJ2C2:weight ratio of coal gangue matrix and soil500g:500g, inoculating with Glomus intraradices. The optimal matrix program for Amorpha fruticosa L.to grow on spontaneous gangue was G2ZJ2C3:weight ratio of coal gangue matrix and soil500g:500g, inoculating with Glomus mosseae.
     In conclusions, the exogenous substances including rare earth nitrate, super absorbent polymer(SAP), rhizobium and arbuscular mycorrhizal fungi(AMF) have a broad application prospect in the vegetation restoration of gangue wasteland as they promote plant growth at different degrees.
引文
1.鲍士旦.土壤农化分析(第三版)[M].北京:中国农业出版社,2007:263-271.
    2.毕银丽,胡振琪,司继涛.接种菌根对充填复垦土壤营养吸收的影响[J].中国矿业大学学报,2002,31(3):252-257.
    3.毕银丽,吴福勇,柳博会.AM真菌在煤矿废弃物中生态适应性的初步研究[J],菌物学报,2005,24(4):570-575.
    4.毕银丽,吴福勇,全文智.菌根与豆科植物组合在煤矿区废弃物的生态效应[J].中国矿业大学学报,2006,35(3):329-335.
    5.毕银丽,吴福勇.菌根对煤矿废弃物生态恢复的营养动力学影响[J].农业工程学报,2006,22(5):147-152.
    6.曾青,朱建国,谢祖彬,等.稀土元素La对油菜某些生理指标的影响及其临床浓度[J].农村生态环境,2001,17(3):26-29.
    7.曾文高,章亦民.稀土微肥在金针菇上的应用[J].江西农业大学学报,2001,23(5):145-147.
    8.陈宝玉,关楠,黄选瑞,等.水分胁迫下保水剂对爬山虎和廊坊杨苗木水分生理生态特性的影响[J].东北林业大学学报,2007,35(4):7-11.
    9.陈利云,张丽静,周志宇.耐盐根瘤菌对紫花苜蓿接种效果的研究[J].草业学报,2008,17(5):43-47.
    10.陈梅梅,陈保冬,王新军,等.不同磷水平土壤接种丛枝菌根真菌对植物生长和养分吸收的影响[J].生态学报,2009,29(4):1980-1986.
    11.陈民生,赵京岚,李军祥,等.稀土对小红萝卜产量和品质的影响[J].安徽农业科学,2007,35(20):6196,6204.
    12.陈正东,周丽,黄晓华,等.不同剂量稀土微肥与处理时间对大田辣根产量的影响[J].安徽农业科学,2007,35(14):4259,4261.
    13.程功林,陈永春.煤矸石山的危害及植被生态重建途径探讨[J].煤田地质与勘探,2009,37(4):54-56.
    14.慈恩,高明.环境因子对豆科共生固氮影响的研究进展[J].西北植物学报,2005,25(6):1269-1274.
    15.邓绍林,马锦林,农必昌,等.稀土不同配方对八角保花保果的应用效果[J].广西林业科学,2007,36(2):101-102,117.
    16.杜善周,毕银丽,王义,等.丛枝菌根对神东煤矿区塌陷地的修复作用与生态效应[J].科技导报2010,28(7):41-44.
    17.杜善周,毕银丽,吴王燕,等.丛枝菌根对矿区环境修复的生态效应[J].农业工程学报,2008,24(4):113-116.
    18.杜永吉,孙鑫博,韩烈保.内生真菌感染对高羊茅光合和形态特性的影响[J].中南林业科技大学学报,2010,30(1):41-47.
    19.段立珍,汪建飞,邢素芝.喷施稀土肥对辣椒产量和氮磷钾含量的影响[J].土壤通报,2007,38(3):613-615.
    20.樊利勤,庄培亮,马兰珍,等.厚荚相思根瘤菌对盆栽苗木生长及土壤肥力的影响[J].生态科学, 2004,23(4):289-291.
    21.方锋,黄占斌,俞满源.保水剂与水分控制对辣椒生长及水分利用效率的影响研究[J].中国生态农业学报,2004,12(2):73-76.
    22.房增国,赵秀芬,孙建好,等.接种根瘤菌对蚕豆/玉米间作系统产量及结瘤作用的影响[J].土壤学报,2009,46(5):887-893.
    23.冯耀祖,杨培林,钟新才,等.多功能保水剂在新海16号上的施用效果研究[J].新疆农业科学,2007,44(3):322-325.
    24.高静,刘强,王敏英.海南岛东部滨海砂矿废弃地植被恢复效应的比较研究[J].海南师范大学学报(自然科学版),2007,20(2):161-166.
    25.高荣久,胡振琪.煤矿区固体废弃物:煤矸石的最佳利用途径[J].辽宁工程技术大学学报.2002,21(6):824-826.
    26.耿殿明,姜福兴.我国煤炭矿区生态环境问题分析[J].中国煤炭.2002,28(7):21-24.
    27.耿森,黄宝灵,吕成群,等.马占相思接种根瘤菌对根际微生物及其林下植被生物量的影响[J].中南林业科技大学学报,2010,30(3):41-45.
    28.耿晓东,文斌.稀土对红叶石楠幼苗光合效率及相关生理特性的影响[J].现代农业科技,2007,10:12-13.
    29.郭丽琢,马剑,黄高宝.根瘤菌接种对豌豆产量及根际微生物数量的影响[J].农业现代化研究,2010,31(5):630-633.
    30.何能学,朱朝壁.白三叶草种植技术及经济价值[J].四川畜牧兽医,2003,30(2):42.
    31.贺学礼,刘提,安秀娟,等.水分胁迫下AM真菌对柠条锦鸡儿(Caragana korshinskii)生长和抗旱性的影响[J].生态学报,2009,29(1):47-52.
    32.洪法水,魏正贵,赵贵文,等.镧元素与菠菜体内叶绿素的作用关系[J].中国科学:C辑,2001,31(5):392-400.
    33.胡振琪,纪晶晶,王幼珊,等.AM真菌对复垦土壤中苜蓿养分吸收的影响[J].中国矿业大学学报,2009,38(3):428-433.
    34.胡振琪,康惊涛,魏秀菊,等.煤基混合物对复垦土壤的改良及苜蓿增产效果[J].农业工程学报,2007,23(11):120-124.
    35.胡振琪,魏忠义,秦萍.矿山复垦土壤重构的概念与方法[J].土壤,2005,37(1):8-12.
    36.胡振琪.煤矸石山复垦[M].北京:煤炭工业出版社.2006.
    37.黄宝灵,吕成群,韦原莲,等.不同根瘤菌对马占相思苗木的影响——苗木的结瘤状况、生物量、叶片和土壤中营养元素含量及其相关分析[J].中南林学院学报,2004,24(2):33-36.
    38.黄荣韶,玉永雄,胡艳,等.接种根瘤菌对鸡骨草幼苗生长、结瘤和固氮能力的影响[J].广西农业生物科学2006,25(3):252-255.
    39.孔凡美,史衍玺,冯固,等.AM菌对三叶草吸收、累积重金属的影响[J].2007,15(3):92-96.
    40.劳秀荣,王文祥,郝艳如,等.外源稀土元素对花生增产效应的机理研究[J].植物营养与肥料学报,2002,8(4):473-477.
    41.李建华,郜春花,卢朝东,等.接种根瘤菌的三叶草在矿区复垦土壤中的生态效应[J].山西农业科学2010,38(2):55-56,67.
    42.李靖梅,梁蝉娟,周青.稀土铈对大豆幼苗光合作用影响[J].中国油料作物学报,2007,29(1):90-92.
    43.李鹏波,胡振琪,吴军,等.煤矸石山的危害及绿化技术的研究与探讨[J].矿业研究与开发,2006,26(4):93-96.
    44.李强.金沙江干热河谷生态环境特与植被恢复关键技术研究[D].西安理工大学,2008:67-69.
    45.李青盛,紫云英接种根瘤菌剂的效果[J].农技服务,2010,27(7):856.
    46.李若愚,侯明明,卿华,等.矿山废弃地生态恢复研究进展[J].矿产保护与利用,2007(1):50-54.
    47.李淑敏,李隆,张福锁.蚕豆/玉米间作接种AM真菌与根瘤菌对其吸磷量的影响[J].中国生态农业学报,2005,13(3):136-139.
    48.李文银,王治国,蔡继清.工矿区水土保持[M].北京:科学出版社,1996.
    49.李杨,王百田.高吸水性树脂对沙质土壤物理性质和玉米生长的影响[J].农业机械学报,2012,43(1): 76-82.
    50.李永庚,蒋高明.矿山废弃地生态重建研究进展[J].生态学报,2004,24(1): 95-100.
    51.李宇伟,王新民,连瑞丽,等.保水剂对先锋植物鬼针草生长发育的影响[J].安徽农业科学,2008,36(8):3120-3121,3131.
    52.李志芳,朱春茂,吴文良,等.白三叶草/根瘤菌共生固氮潜力及干旱限制因素[J].农业环境科学学报,2009,28(3):639-644.
    53.梁建强,段晓丹,崔广玲,等.西北地区金属尾矿地根瘤菌的重金属抗性及其系统发育研究[J].农业环境科学学报,2009,28(6):1120-1126.
    54.梁作,张源生,肖新华,等.高羊茅草皮生产、草坪铺建及越夏管理[J].江西园艺,2004,(3):32-33.
    55.林国林,马晓明,迟玉成,等.接种根瘤菌对花生生长及其根际土壤微生物数量的影响[J].山东农业科学,2010,6:63-65.
    56.林先贵,廖继佩,施亚琴.VA菌根真菌在退化红壤恢复重建中的应用[J].土壤与环境(台湾),2002,5(3):221-232.
    57.刘惠娜,钟东方,许良政.低温胁迫下镧对水稻种子萌发的影响[J].嘉应学院学报(自然科学),2007,25(3):72-76.
    58.刘彦江,胡汉民,罗军平,等.紫花苜蓿应用根瘤菌剂和稀土肥料效果试验[J].草业科学,2005,22(7):27-28.
    59.刘玉荣,党志,尚爱安.煤矸石风化土壤中重金属的环境效应研究.农业环境科学学报.2003,22(1):64-66.
    60.罗连光,黄若玲,何录秋,等.大豆施用含稀土生物有机肥应用效果研究[J].作物研究,2009,23(3):205-207.
    61.罗志桢,马静.稀土微肥在白兰瓜上的应用效果试验研究[J].土壤通报,2009,40(4):893-895.
    62.马祥庆,梁霞.植物高效利用磷机制的研究进展[J].应用生态学报,2004,15(4):712-716.
    63.穆军,李占斌,李鹏,等.保水剂在干热河谷水电站弃渣场植被恢复中的应用效果研究[J].西安理工大学学报,2009,25(2):151-155.
    64.穆军,李占斌,李鹏,等.干热河谷水电站弃渣场植被恢复技术研究[J].应用基础与工程科学学报,2010,18(、2):245-252.
    65.农业部北京克劳沃草业技术开发中心.草坪型高羊茅草坪的建植与管理技术[J].草业科学,2002,19(5):76.
    66.钱奎梅,王丽萍,李江,等.矿区废弃地生态修复中丛枝菌根真菌接种效应[J].环境科技,2010, 23(4):5-9.
    67.乔红霞.高分子树脂保水控肥料效应研究[D].哈尔滨:东北农业大学,2000:17-20.
    68.邱琳,周青.稀土对种子萌发影响的研究进展[J].中国生态农业学报,2008,16(2):529-533.
    69.沈守云,廖飞勇,王茂文,等.CS植被恢复技术对金竹山煤矸石矿区的影响[J].中南林业科技大学学报,2008,28(5):47-51.
    70.石前,黄宝灵,吕成群,等.不同根瘤菌接种厚荚相思幼苗的试验效果[J].浙江林学院学报,2009,26(4):544-548.
    71.时连辉,韩国华,张志国,等.秸秆腐解物覆盖对园林土壤理化性质的影响[J].农业工程学报,2010,26(1):113-117.
    72.束文圣,张志权,蓝崇钰.中国矿业废弃地的复垦对策研究(I)[J].生态科学,2000,19(2):24-29.
    73.孙永强,李富平,崔少东,应用生物修复技术治理矿区生态环境[J].矿业快报,2006(3):39-42.
    74.唐丽.安化县工矿废弃地植被恢复试验初报[J].林业调查规划,2006,31(6):114-116.
    75.滕萌,多立安,赵树兰,等.土培草坪植物对外源铈的生态响应特征[J].稀土,2008,29(1):32-36.
    76.王兵,赵广东,苏铁成,等.极端困难立地植被综合恢复技术研究[J].水土保持学报,2006,20(1): 151-154,180.
    77.王春明,孙辉,陈建中,等.保水剂在干旱河谷造林中的应用研究[J].应用与环境生物学报,2001,7(3):197-200.
    78.王红新,郭绍义,许信旺,等.接种丛枝菌根对复垦矿区玉米中重金属含量的影响[J].农业环境科学学报,2007,26(4):1333-1337.
    79.王立,贾文奇,马放,等.菌根技术在环境修复领域中的应用及展望[J].生态环境学报,2010,19(2):487-493.
    80.王:丽.岩壁复绿基质的持水性及土壤微生物活性[D].南京林业大学,2010.
    81.王平,周道玮.野大麦、羊草的光合和蒸腾作用特性比较及利用方式的研究[J].中国草地,2004,26(3): 8-12.
    82.王晓玲,冯永军,康惊涛,等.采煤沉陷地一种复垦基质植物生长试验研究[J].农业工程学报,2006,22(4):62-65.
    83.王晓英,王冬梅,陈保冬,等.丛枝菌根真菌群落对白三叶草生长的影响[J].生态学报,2010,30(6):1456-1462.
    84.王永刚,张宇生,张宏江.稀土保水剂在新疆杨育苗上的应用研究[J].稀土,2000,21(5):38-40.
    85.王忠.植物生理学[M].北京:中国农业出版社,2005.
    86.魏立君,夏秀英,徐品三,等.镧对越橘幼苗光合生理的影响[J].华北农学报,2009,24(增刊):163-167.
    87.魏嵬,刘方,向仰州.贵阳市花溪麦坪煤矿废弃地植被调查与分析[J].贵州大学学报(自然科学版),2009,26(2):132-135.
    88.魏忠义,胡振琪,白中科.露天煤矿排土场平台“堆状地面”土壤重构方法[J].煤炭学报,2001,26(1): 18-21.
    89.魏忠义,王秋兵.大型煤矸石山植被重建的土壤限制性因子分析[J].水土保持研究,2009,16(1):179-182.
    90.文晓萍,黄宝灵,吕成群,等.巨尾桉接种根瘤菌试验效果初探,西北林学院学报,2008,23(6): 118-121.
    91.吴代赦,郑宝山,康往东,等.煤矸石的淋溶行为与环境影响的研究:以淮南潘谢矿区为例[J].地球与环境.2004,32(1):55-59.
    92.吴宇芬,陈晟.镧对嫁接西瓜叶片生理指标及产量和品质的影响[J].西北农林科技大学学报(自然科学版),2008,36(9):145-150.
    93.武帆,李淑敏,孟令波,菌根真菌、根瘤菌对大豆/玉米氮素吸收作用的研究[J].东北农业大学学报,2009,40(6):6-10.
    94.夏建国,李静.利用丛枝菌根真菌(AMF)提高植物抗旱性的研究进展[J].中国农学通报,2005,21(2):326-329.
    95.肖焱波,李隆,张福锁.小麦/蚕豆混作体系中的种间相互作用及氮转移研究[J].中国农业科学,2005,38(5):965-973.
    96.谢宏全,张光灿.煤矸石山对生态环境的影响及治理对策[J].北京工业职业技术学院学报,2002,1(3):27-30,62.
    97.邢勇,张小冰,李砧,等La(NO3)3对高粱种子活力的影响[J].安徽农业科学,2010,38(18):9448-9449,9516.
    98.徐建明,汪鑫,樊趁英,等.稀土镧对水稻幼苗生长及叶绿素荧光动力学参数的影响[J].江苏农业学报,2009,25(1):117-122.
    99.徐胜,李建龙,宋星刚,等.两种草坪型高羊茅光合生理生态机理的研究[J].中国草地,2005,27(3):26-30.
    100.许大全,丁勇.田间小麦叶片光合效率日变化与光合“午睡”的关系[J].植物生理学报,1992,18(3):279-284.
    101.许大全.光合作用气孔限制分析中的一些问题[J].植物生理学通讯,1997,33(4):241-244.
    102.许丽,周心澄,王冬梅.煤矸石废弃地复垦研究进展[J].中国水土保持科学,2005,3(3):117-122.
    103.许永利,李富平,张俊英,等.铁尾矿直接植被恢复中丛枝菌根真菌的应用[J].金属矿山,2010,411(9):126-129.
    104.荀兰平.煤矸石山自燃防治对策探析[J].山西焦煤科技,2006,(2):3-5.
    105.杨海洋,陈建宏,刘霁,等.菌根技术在喀斯特岩溶矿区生态恢复中的应用[J].中南林业科技大学学报,2010,30(1):84-89.
    106.杨宏宇,赵丽莉,贺学礼,丛枝菌根在退化生态系统恢复和重建中的作用[J].干旱区地理,2005,28(6):836-842.
    107.杨秀梅,陈保冬,朱永官,等.丛枝菌根真菌(Glomus intraradices)对铜污染土壤上玉米生长的影响[J].生态学报,2008,28(3):1052-1058.
    108.杨永辉,吴普特,武继承,等.复水前后冬小麦光合生理特征对保水剂用量的响应[J].农业机械学报,2011,42(7):116-123.
    109.杨主泉,胡振琪,王金叶,等.煤矸石山复垦的恢复生态学研究[J].中国水土保持,2007(6):35-36.
    110.余高镜,林奇田,柯庆明,等.草坪型高羊茅的研究进展与展望[J].草业科学,2005,22(7):77-82.
    111.俞艳春,文定良,罗心平,等.接种根瘤菌对豆科绿肥的固氮效果研究[J].云南农业科学,2006(2):21-22.
    112.岳征文,王百田,王红柳,等.复合营养长效保肥保水剂应用及其缓释节肥效果[J].农业工程学报,2011,27(8):56-62.
    113.张杰,刘登义,黄永杰,等.镧浸种对水稻种子萌发及幼苗生长的影响[J].生态学杂志,2005,24(8):893-896.
    114.张成才,陈奇伯,张先平.北方煤矸石山生态修复植物筛选初报[J].黑龙江农业科学,2008(5):96-98.
    115.张成梁,杜永吉.自燃矸石山植被恢复与生态构建影响因素分析[J].煤炭科学技术,2009,37(7): 120-125.
    116.张翠青,毕银丽,于淼,等.不同丛枝菌根真菌对铁尾矿基质的改良效果[J].金属矿山,2010,410(8): 171-174.
    117.张凤辰.煤矸石及其综合利用[J].中国环保产业.2004,10:14-15.
    118.张虎天,郭丽琢,柴强,等.接种根瘤菌对豌豆/玉米体系生长状况的影响[J].干旱地区农业研究,2010,28(5):92-96,103.
    119.张树光.闭坑后矿区空气污染特征的研究[J].中国地质灾害与防治学报,2004,15(2):71-73,77.
    120.张玮玮,王丽萍,郭光霞.煤系固体废物与污泥混合用于矿区复垦的试验研究[J].环境科技,2009,22(3):8-11.
    121.张文敏,张美庆,孟娜等.VA菌根用于矿山复垦的基础研究[J].矿冶,1996,5(3):17-21.
    122.张祥胜,于家峰.喷施稀土对固沙体系中甘草生长发育的促进作用[J].榆林学院学报,2007,17(4): 12-15.
    123.张艳,马洪义.不同剂量保水剂对小麦光合及产量的影响[J].青岛农业大学学报(自然科学版),2008,25(4):32-36.
    124.赵方莹,孙保平.矿山生态植被恢复技术[M].北京:中国林业出版社,2009:114-120.
    125.赵志文,崔德才.生物技术在三叶草遗传育种中的应用[J].山东农业科学,2005,2:74-77.
    126.郑虎哲,张玉廷,崔春兰,等.接种菌根菌和/或根瘤菌对紫花苜蓿的生长及N·P的吸收效果研究[J].安徽农业科学,2006,34(3):540-542.
    127.钟增涛,沈其荣,孙晓红,等.根瘤菌在小麦与紫云英混作中的作用[J].应用生态学报,2003,14(2):187-193.
    128.周锦华,胡振琪.固体废弃物煤矸石室内击实试验研究[J].金属矿山,2003,330(12):53-55.
    129.周连碧,王琼,代宏文等.矿山废弃地生态修复研究与实践[M].北京:中国环境科学出版社,2010.
    130.周相娟,梁宇,沈世华,等.接种根瘤菌和遮光对大豆固氮和光合作用的影响[J].中国农业科学,2007,40(3):478-484.
    131.朱铁霞,高凯,张永亮,等.不同根瘤菌接种量对紫花苜蓿的影响[J].作物杂志,2008,4:37-38.
    132.庄文化,吴普特,冯浩,等.土壤中施用聚丙烯酸钠保水剂对冬小麦生长及产量影响[J].农业工程学报,2008,24(5):37-41.
    133.左广玲,叶红勇,杜朝军,等.大豆秸秆基保水剂对南阳烟田土壤物理性状及烟叶生长的影响[J].农业工程学报,2011,27(2):15-19.
    134. Abdelhamid M, Horiuchi T, Oba S. Evaluation of the SPAD value in Faba bean (Vicia faba L.) leaves in relation to different fertilizer applications[J]. Plant Production Science,2003,6:185-189.
    135. ANDRADE S A L,GRATAO P L,SCHIAVINAO M A,et al.Zn up-take,physiological response and stress attenuation in mycorrhizal jack bean growing in soil with increasing Zn concentrations[J].Chemosphere,2009,75:1363-1370.
    136. Arias-Fernandez R, Lopez-Mosquera ME, Seoane S.Coal-mine spoil reclaiming as substrate for "cultivation without soil"in Petunia[J].Acta Horticulturae.2001,559(2):619-625.
    137. Berdahl J D, Karn J F, Hendrickson J R. Dry matter yield of cool-season grass monocultures and grass-alfalfa binary mitures. Agron. J.,2001,93:463-467.
    138. Cuenca G, Lovera M.Vesicular-arbuscular mycorrhizae in disturbed and revegetated sites from La Gran Sabana[J]. Venezuela.Can.J.Bot.,1992,70:73-79.
    139. De S, Mitra A K.Reclamation of mining-generated wastelands at Alkusha-Gopalpur abandoned open cast project, Raniganj Coalfield, Eastern India[J].Environmental Geology,2002,43(1/2):39-47.
    140. Dutta RK, Madhoolika Agrawal, Litterfall.Litter decomposition and nutrient release in five exotic plant species planted on coal mine spoils[J].Pedobiologia,2001,45(4):298-312.
    141. Fedkenheuer A W, Macyk T M.Reclamation of surface mined coal lands in western Canada//Barnhisel R 1, Darmody R G,Daniels W L.Reclamation of drastically disturbed lands[J].Madison:American Society of Agronomy,2000:567-594.
    142. GIASSON P,JAOUICH A,GAGNE S,et al.Arbuscular mucorrhizal fungi involvement in znic and cadmium speciation change and phytoaccumulation[J]. Remediation,2005,15:75-81.
    143. Gitt M J, Dollhopf D J.Coal waste reclamation using automated weathering to prediet lime requirement J]. Journal of Environmental Quality,1991,20(1):285-255.
    144. GRAHAM J H. What do root pathogens see in mycorrhizas[J].New Phytologist,2001,148:357-359.
    145. Herrera MA,Salamanca CP,Barea JM.Inoculation of woody legumes with selected arbuscular mycorrhizal fungi and rhizobia to recover desertified Mediterranean ecosystems[J].Appl.Environ.Microbiol.,1993,59:129-133.
    146. HUANG C M,CUNNINGHAM S D.Lead phytoremediation:Species variation in lead uptake and translocation[J].New phytologist,1996,134:75-84.
    147. Jochimsen ME.Vegetation development and species assemblages in along-term reclamation project on mine spoil[J].Ecological Engineering,2001,17(2/3):187-198.
    148. Lawlor D W. Carbon and nitrogen assimilation in relation to yield:mechanism are the key to understanding production systems[J] Journal of Experimental Botany,2002,531:773-787.
    149. LEUNG H M,YE Z H,WONG M H.Survival strategies of plants associated with arbuscular mycorrhizal fungi on toxic mine tailings[J].Chemosphere,2007,66:905-915.
    150. Lindsey DL,Cress WA,Aldon AF.The effects of endomycorrhizae on growth of rabbit brush,four-wing salt brush,and corn in coal mine spoil material[J].USDA Forest Service Research Note RM,1977,343:1-6.
    151. Liu Chao, Hong Fashui, Zheng Lei, et al. Effects of rare earth elements on vigor enhancement of aged spinach seeds[J]. Journal of Rare Earths,2004,22 (4):547-551.
    152. Lum M.R.,Hirsch A.M.2003.Roots and their symbiotic microbes:strategies to obtain nitrogen and phosphorus in a nutrient-limiting environment[J].Plant Growth Regul.21:368-382.
    153.Marumoto T,Kohno N,Ezaki T,Okabe H.Reforestation of volcanic devastated land using the symbiosis with mycorrhizal fungi[J].Soil Microorganisms,1999,53:81-90.
    154. Minolta Camera Co.Ltd.1989. Manual for chlorophyll meter SPAD-502 [Z] Japan:Osaka.
    155.NOYD R K,PFLEGER F L,NORLAND M R.Field response to added organic matter,arbuscular mycorrhizal fungi,and fertilizer in reclamation of taconite iron ore tailing[J].Plant and Soil,1996,179:89-97.
    156. Perry DA,Amaranthus MP.The use of mycorrhizal fungi and associated organisms in forest restoration.InrPilarski M.ed.Restoration Forestry,an International Guide to Sustainable Forestry Practices[J].Kivaki Press,Durango,1994,525:87-91.
    157. Pinkard EA, Patel V, Mohammed C. Chlorophyll and nitrogen determination for plantation-grown Eucalyptus nitens and E. globulus using a non-destructive meter[J]. Forest Ecology and Management,2006,223:211-217.
    158. Shen Fangke, Wei Zhong, Wang Lei, et al. Effects of Plant Growth Regulator on Absorption, Circulation and Contents of Potassium in Flue-cured Tobacco[J]. Agricultural Science & Technology,2011,12(12):1877-1880,1982.
    159. Smit S, Miletic Z.Land protection and erosion control of lignite mine areas//Pipkov N, Zhelev P, Draganova I.Yubileen sbornik nauchni dokladi:75 godini visshe lesotekhnichesko obrazovanie v B lgariya.Sektsiya Ekologiya i opazvane na okolnata sreda.Bulgaria:University of Forestry, Sofia, 2000:462-467.
    160. Szegi J,V I.Research on the VAMs during the recultivation of mining spoils in Hungary and Poland-The role of VAM fungi in biological reclamation using crops and trees[J].Int.Symp.EC"Open Cut Coal Mining and the Environment"Nottingham, 12-16.Oct.,1992,9-13.
    161. Tian C.J.,He X.Y.,Zhong Y.,et al.,2003.Effect of inoculation with ecto and arbuscular mycorrhizae and Rhizobiumon the growth and nitrogen fixation by black locust,Robinia pseudoacacia[J].New Forest.,25:125-131.
    162. ULTRA V U,TANAKA S,SAKURAI K,et al.Effects of arbuscular mycorrhiza and phosphorus application on arsenic toxicity in sunflower(Helianthus annuus L.) and on the transformation of arsenic in the rhizosphere[J].Plant and Soil,2007,290:29-41.
    163. VAN DER HEIJDEN M G A, KLIRONOMOS J N, URSIC M, et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosstem variability and productivity [J]. Nature,1998,396:69-72.
    164. Vangronsveld J,Colpaert JV,Van Tichelen KK.Reclamation of a bare industrial area contaminated by nonferrous metals:physicochemical and biological evaluation of the durability of soil treatment and revegetation[J].Environ.Pollut.,1996,94(2):131-140.
    165. WANG FAYUAN,LIN XIANGUI,YIN RUI.Inoculation with arbuscular mycorrhizal fungus Acaulospora mellea decreses Cu phytoextraction by maize from Cu-contaminated soil[J].Pedobiologia,2007,51 (2):99-109.
    166. WEISSENHORN C,LEYVAL C,BERTHELIN J.Arbuscular mycorrhizal contribution to heavy metal uptake by maize(Zea mays L.)in pot culture with contaminated soil[J].Mycorrhiza,1995,5:245-251.
    167. XU Hui, ZHANG Jie.Effects of Arbuscular Mycorrhizal Fungi on Plant Growth[J].BULLETIN OF BOTANICAL RESEARCH,2007,27(5):636-640.
    168. Yamamoto A, Nakamura T, Adu-Gyamfi JJ, et al. Relationship between chlorophyll content in leaves of sorghum and pigeon pea determined by extraction method and by chlorophyll meter (SPAD-502)[J].Journal of Plant Nutrition,2002,25:2295-2301.
    169. Zemenchik R A, Albrecht K A, Shaver R D. Improved nutritive value of kura clover and birdsfoot trefoil-grass mixtures compared with grass monocultures. Agron J,2002,94:1131-1138.
    170. Zier N, Schiene R, Koch H.Agricultural reclamation of disturbed soils in a lignite mining area usingmunicipal and coal wastes:The humus situation at the beginning of reclamation[J].Plant&Soil, 1999,213(12):241-250.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700