用户名: 密码: 验证码:
植物根系抗拉特性的单根微观结构作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究为了更好的选择固坡植物种,采用木材学、生物学、材料力学等理论为研究基础,选取我国北方常见乔木(油松、白桦、落叶松、蒙古栎和榆树)、灌木(万花木、毛榛、刺玫果、锦带花和照山白)、草本(猪毛蒿、小蓟和万年蒿)的根系为研究对象,运用方差分析、多元回归分析等数学统计方法,比较了不同植物种间的单根抗拉特性,并从根系微观结构这个方面探讨了3大类、13个植物种单根抗拉特性与主要微观结构的关系,以期能全面的从根系微观结构这个角度揭示不同植物种类根系固土的内在机制。
     主要研究成果如下:
     (1)在相同根径条件下,单根最大抗拉力和抗拉强度从大到小依次为榆树>白桦>蒙古栎>万花木>油松>毛榛>落叶松>锦带花>刺玫果>猪毛蒿>照山白>小蓟>万年蒿,不同植物种间根系抗拉特性差异显著。
     (2)13个植物种单根的最大抗拉力与根径呈幂函数正相关,抗拉强度与根径呈幂函数负相关。
     (3)标据对灌木、草本根系抗拉特性的影响显著;拉伸速率只对灌木根系抗拉特性的影响显著,但对草本根系抗拉特性的影响不显著。
     (4)对阔叶树种榆树、白桦和蒙古栎根系微观结构的研究得出:木纤维面积百分比、韧皮部面积百分比、木纤维长度、木纤维壁腔比以及木纤维的长宽比对根系抗拉特性有影响且均呈正比,木纤维面积百分比对根系抗拉力的影响最为显著,韧皮部面积百分比对根系抗拉强度的影响最大:木纤维尺寸对根系抗拉力、抗拉强度都有影响,但木纤维壁腔比对抗拉特性的影响最大。
     (5)对针叶树种油松和华北落叶松根系微观结构的研究得出:管胞在根系横截面所占的面积比、管胞长度及其长宽比与单根抗拉特性呈正相关,但两个植物种根系中管胞面积百分比的差异不显著;管胞越长,长宽比越大,根系的抗拉强度越大,但在同一树种中,管胞尺寸与根系直径的大小没有实质上的联系;管胞微纤丝角是影响根系抗拉强度最主要的因素,两者呈负线性相关;管胞微纤丝角随根系直径的增加而增大。
     (6)对灌木根系微观结构的研究得出:木纤维面积百分比和木纤维壁腔比对灌木单根最大抗拉力有影响,且呈正相关;木纤维面积百分比、韧皮部面积百分比和木纤维壁腔比与单根抗拉强度呈正相关关系,其中韧皮部面积百分比对灌木单根抗拉强度的影响最大。
     (7)对草本根系微观结构的研究得出:木纤维面积百分比、木纤维壁腔与对草本单根最大抗拉力及抗拉强度有影响,呈正相关;但在同种植物内,随根系直径的增加,木纤维面积百分比和木纤维壁腔比变化不显著。
The mechanics of soil reinforced by tree roots is a multidisciplinary hot issue and vital to soil erosion prevention and slope protection. This study chose the roots of13common tree species of northern China, shrubs, herbal as research objects and used mathematical and statistical methods like variance analysis and multivariate statistical analysis to compare the single tensile properties among different species systematically based on the theories such as wood science, biology and materials mechanics in order for the better choice of species for slope stabilization; besides, this is the first time to discuss the relationship between of the single root tensile properties and the microstructure of13species in3broad categories from the microstructural perspectives so as to reveal the internal mechanism of different plant species reinforcing soil comprehensively.
     The main research results are as follows:
     (1) Ulmus pumila was the strongest in maximum tensile resistance and tensile strength of the13research species,and was successively followed by Betula platyphylla.Quercus mongolica,Myripnois dioica,Pinustabulaeformis,Corylus mandshurica,Larix principis-rupprechtii,Weigela florida,Rosa davurica,Cirsium setosum,Rhododendron micranthum,Artemisia scoparia, Artemisia sacrorum; the difference of roots tensile properties in different species is significant.
     (2)The maximum tensile strengths of all the13species increased with increasing diameter and showed a power function positive correlation, follow the power function; while their tensile strengths decreased with the increase of the diameter and were in negative correlation,followed the power function.
     (3) Gauge and stretching rate had a significant effect on the tensile characteristics of shrubs; while stretching rate had litter effect on the tensile characteristics of herbs.
     (4)The results showed the relationship between the single root tensile characteristics and the microstructure of single root of Ulmus pumila, Betula platyphylla, and Quercus mongolica-which were broad-leaf species:among the9possible factors that may affect the root system tensile properties, area percentage of wood fiber in secondary xylem, area percentage of phloem, length of wood fiber, wall cavity ratio and aspect ratio of wood fiber had a positive impact on the root system tensile properties, while the impact was different respectively; area percentage of wood fiber had the largest impact on root system tensile resistance; area percentage of phloem determined the value of single root tensile strength of different tree species; the size of wood fiber had an effect on both single root tensile resistance and tensile strength, therein aspect ratio of wood fiber was the most influential.
     (5) The result showed the relationship between the single root tensile characteristics and the microstructure of Pinus tabulaeformis and Larix principis-rupprechti which were coniferous species:area percentage of tracheid in cross section of root system, length and aspect ratio of tracheid were positively correlated with single tensile characteristics, while the area percentage of tracheid of the two species was indifferent; length of tracheid was a very important factor to determine the tensile strength of root system, which was that the longer the tracheid was, the larger the aspect ratio was, and the larger the maximum tensile strength of root system was, while the size of tracheid and the diameter of root were not link essentially in the same species; tracheid microfibril angle was the most significant factor that influenceed the root system tensile strength and there was a negative linear correlation between them, which was the smaller the tracheid microfibril angle was, the larger the single root tensile strength was; tracheid microfibril angle increased with the increasing of root diameter.
     (6) The result showed the relationship between the single root tensile characteristics and the microstructure of Myripnois dioica, Coiylus mandshurica, Rosa davurica, Weigela florida and Rhododendron micranthum-which were shrubs:area percentage and wall cavity ratio of wood fiber had a positive correlation with the maximum tensile resistance of shrubs; area percentage of wood fiber, area percentage of phloem and wall cavity ratio of wood fiber was positively correlated with the single root tensile strength, there in area percentage of phloem was the most significant.
     (7) The result showed the relationship between the single root tensile characteristics and the microstructure of Artemisia scoparia, Cirsium setosum and Artemisia sacrorum-which were herbs: area percentage and wall cavity ratio of wood fiber was positively correlated with the maximum tensile resistance and tensile strength of the single root of shrubs; however, because of the indifference of the increase of area percentage and wall cavity ratio of wood fiber with the increase of root diameter in the same species, they only can determine the difference of root system tensile properties among different species rather than explaining the cause of the change that the root tensile resistance and tensile strength with the largest diameter.
引文
[1]陈兵,李润生,甄晓云.云南元磨高速公路边坡生物防护设计[J].昆明理工大学学报,2002,27(6):151-157.
    [2]陈广胜.基于神经网络的人工落叶松木材材质预测研究[D];东北林业大学,2006,49.
    [3]陈丽华,余新晓,刘秀萍,等.林木根系本构关系[J].山地学报,2007,25(2):224-228.
    [4]程炳篙主编.土壤环境条件对植物根系生长发育的影响[M].植物生理与农业研究.北京.中国农业科技出版社,1995:96-98.
    [5]程洪,张新全.草本植物根系网固土原理的力学试验探究[J].水土保持通报,2002,22(5):20-23.
    [6]丁筠,钟鑫,薛平.木纤维改性对聚氯乙烯/木纤维力学性能的影响[J].北京化工大学学报:自然科学版,2004,31(1):76-78.
    [7]付志一,焦群英.植物细胞力学模型研究进展[J].力学进展,2005,35(3):404-410.
    [8]耿威,王林和,刘静,等.鄂尔多斯高原3种4龄-5龄灌木根系抗拉特性初步研究[J].内蒙古农业大学学报,2008,29(3):86-89.
    [9]拱祥生,林宏达.植生对边坡生态工法稳定性影响分析初探[J].技师月刊,31,60-68,2003.
    [10]郭明辉,闫丽.培育措施对人工林樟子松木材管胞形态特征的影响[J].北京林业大学学报,2005,27(3):80-87.
    [11]郭维俊,黄高宝,王芬娥,等.土壤—植物根系复合体本构关系的理论研究[J].中国农业大学学报,2006,11(2):35-38.
    [12]郭维俊,黄高宝,王芬娥,等.小麦根系力学性能及微观结构研究[J].农业机械学报,2010,41(1):92-95.
    [13]郭维俊,黄高宝,王芬娥,等.植物根系若干力学问题研究[J].中国农机化,2006:84-88.
    [14]郭维俊,王芬娥,黄高宝,等.小麦茎杆力学性能与化学组分试验[J].农业机械学报,2009,40(2):110-114.
    [15]郝彤琦,谢小妍,洪添胜.滩涂土壤与植物根系复合体抗剪强度的试验研究[J].华南农业大学学报,2000,21(4):78-80.
    [16]胡建忠.陇东黄土高原沟壑区沙棘根系的研究口[J].沙棘,1992,5(1):21-26.
    [17]黄艳辉,费本华.木材单根纤维力学性质研究进展[J].林业科学.2010,46(3):147-152.
    [18]黄艳辉,赵荣军,费本华,等.木材微纤丝角的测定方法及其进展[J].西北林学院学报,2006,21(4):184-188.
    [19]蒋必凤.几种草本植物护坡效果评价[D].哈尔滨:东北林业大学,2008.
    [20]江浩浩.基于灰色关联度和主成分分析的草本植物护坡效果评价[D].东北林业大 学,2009.
    [21]蒋挺大编著.木质素[M].北京化学出版社,2009,3-5.
    [22]解明曙.林木根系固坡力学机制研究[J].水土保持学报,1990,4(3):7-14.
    [23]康宁,汤仲埙.榧属分类学研究[J].植物研究,1995,15(3):349-362.
    [24]李柏年,高金城.1993.大花杓兰根结构的扫描电镜研究[J].甘肃科学学报,5(2):64-67.
    [25]李成凯,青藏高原黄土区四种草本植物单根抗拉特性研究[J].中国水土保持,2008(5),33-34.
    [26]李代琼,梁一民,黄瑾,等.半干旱黄土区沙棘的形态解剖学特性研究[J].沙棘,2004,17(1):8-13.
    [27]李国荣,毛小青,倪三川.浅析灌木与草本植物护坡效应[J].草业科学,2007,24(6),86-89.
    [28]李和平.植物显微技术[M].科学出版社,2009.
    [29]李红丽,董智,王林和,等.浑善达克沙地榆树根系分布特征及生物量研究[J].干旱区资源与环境,2002,16(4),99-105.
    [30]李会科,王忠林,贺秀贤.地埂花椒林根系分布及力学强度测定[J].水土保持研究,2000,7(1):38-41.
    [31]李孟春.氮素对两种杨树生理生化特性及木材品质的影响[D].杨凌:西北农林科技大学,2012.
    [32]李勉,姚文艺,李占斌.黄土高原草本植被水土保持作用研究[J].地球科学进展,2005,20(1),74-77.
    [33]李鹏,李占斌,郝明德,等.黄土高原天然草地根系主要参数的分布特征[J].水土保持研究,2003,10(1):144-145,149.
    [34]李任敏,常建国,吕皎,等.太行山主要植被类型根系分布及对土壤结构的影响[J].山西林业科技,1998(1):17-19.
    [35]李绍才,孙海龙,杨志荣,等.护坡植物根系与岩体相互作用的力学特性[J].岩石力学与工程学报,2006,25(10):2051-2057.
    [36]李晓凤.华北落叶松根系抗拉力学特性[J].中国水土保持科学,2012,10(1):82-90.
    [37]李勇,吴钦孝,朱显谟,等.黄土高原植物根系提高土壤抗冲性能的研究[J].水土保持学报,1990,4(1):1-6.
    [38]李勇,徐晓琴,朱显谟,等.草类根系对土壤抗冲性的强化效应[J].土壤学报,1992,29(3):302-309.
    [39]刘本同,钱华,何志华.我国岩石边坡植被修复技术现状和展望[J].浙江林业科技,2004,24(3)47-54.
    [40]刘国彬,蒋定生,朱显谟.黄土区草地根系生物力学研究[J].土壤侵蚀与水土保持学报,1996,2(3):21-28.
    [41]刘唐兴.甘蓝型油菜抗倒伏机理及栽培因子和倒伏的关系研究[D].长沙:湖南农业大学,2011.
    [42]刘霞;两种柑橘体细胞杂种砧木资源与主要砧木类型根系解剖结构的比较研究[D].武汉:华中农业大学,2007.
    [43]刘秀萍,陈丽华,宋维峰.林木根系与黄上复合体的抗剪强度试验研究[J].北京林业大学报,2006,28(5):67-72.
    [44]刘秀萍,陈丽华,宋伟峰,等.油松根系抗拉应力与应变全曲线试验研究[J].中国水土保持科学,2006,4(2):66-70.
    [45]刘秀萍.林木根系固土有限元数值模拟[D],北京:北京林业大学,2008.
    [46]刘银帮,姜立春.落叶松微纤丝角的变异及其管胞特征的相关关系[J].中国科技论文在线2011.
    [47]卢孟柱,胡建军.我国转基因杨树的研究及应用现状[J].林业科技开发,2006:1-4.
    [48]吕春娟.不同乔木根系的抗拉力学特性研究[J].农业工程学报,2011,27(s1):329-335.
    [49]毛伶俐.生态护坡中植被根系的力学分析[D].武汉:武汉理工大学,2007.
    [50]蒲智.植物措施在公路工程护坡中的应用[J].甘肃水利水电技术,2003,20(4):124-127.
    [51]任宁,于海鹏,刘一星.应用数字图像处理技术测量木材显构造特征参数[C].中国林学会.中国林学会木材科学分会第10次学术研讨会论文集.广西:中国林学会,2005:576-577.
    [52]史敏华,王棣,李任敏.石灰区主要水保灌木根系分布特征与根抗拉力研究初报[J].山西林业科技,1994(1):17-19
    [53]史敏华,王棣,李任敏.石灰岩区封山后山地植被水土保持功能的研究[J].山西林业科技,1994(3):11-14.
    [54]宋维峰.林木根系与均质土间相互物理作用机理研究[D].北京:北京林业大学,2006.
    [55]孙剑.玉米根茬结构和力学特征及与土壤的摩擦学性能[D].长春:吉林大学,2011.
    [56]孙立达,朱金兆.水土保持林体系综合效益研究与评价[M].北京:中国科学技术出版社,1995,258-259.
    [57]陶祖莱,盂庆国.关于我国生物力学发展的几点意见[J].力学进展,2000,30(3):472-475.
    [58]佟永萍,赵广杰.杉木管胞具缘纹孔膜超微构造[J].林业科学,2007,43(8):151-158.
    [59]王剑敏,沈烈英,赵广琦等.中亚热带优势灌木根系对土壤抗剪切力的影响[J].南京林业大学学报(自然科学版),2011,35(2):47-50.
    [60]王礼先.森林水文学研究发展概况[D].北京:北京林业大学出版社,1990.
    [61]王敏杰,卢孟柱.林木基因工程育种现状与发展趋势[J].世界林业研究,2002:7-13.
    [62]王萍花,陈丽华,冀晓东等.华北地区4种常见乔木根系抗拉强度的力学综合模型[J].北京林业大学学报,2012,34(1):39-45.
    [63]王萍花,华北四种常见乔木根系固土的力学特性研究[D].北京:北京林业大学,2012.
    [64]王喜华,赵志明,吴光.不同类型植被对边坡防护作用的探讨[J].路基工程,2007,3,147-148.
    [65]王政权,郭大立.根系生态学[J].植物生态学报,2008,32(6):1213-1216.
    [66]魏永胜,尹忠东,周心澄,等.边坡绿化中植物种选择的生理学依据[J].中国水土保持科学,2008,6(s):73-77.
    [67]吴万春.植物学(第二版)[M].华南理工大学,2004.
    [68]吴正雄.树根力与坡面稳定关系之研究[J].中华水土保持学报,1993,24(2):23-27.
    [69]武恒,查朝生,王传贵等.人工林杨树12个无性系木材纤维形态特征及变异[J].东北林业大学学报,2011,39(2):8-10,27.
    [70]洑香香,杨文忠,方升佐等.木材微纤丝角研究的现状和发展趋势[J].南京林业大学学报(自然科学版),2002,26(6):83-87.
    [71]辛华,曹玉芳,辛洪婵.山东滨海盐生植物根结构及通气组织的比较研究[J].植物学通报,2002,19(1):98-102.
    [72]熊燕梅,夏汉平,李志安,等.2007.植物根系固坡抗蚀的效应与机理研究进展[J].应用生态学报,18(4):895-904.
    [73]徐有明.油松木材管胞微纤丝角的变异及其解剖、抗拉强度和抗弯强度的关系[J].安徽农学院学报,1989(2):141-151.
    [74]徐有明,唐万鹏.荆州引种火炬松木材基本密度的变异[J].东北林业大学学报,1999,27(4):33-37.
    [75]徐有明主编.木材学[M].北京:中国林业出版社,2006.
    [76]杨维西,赵廷宁,李生智,等.人工刺槐林采伐后根系固土作用的衰退状况[J].水土保持学报,1990,4(1):6-10.
    [77]杨永红,刘淑珍,王成华,等.不同植被类型根系提高浅层滑坡土体抗剪强度的试验研究[J].水土保持研究,2007,14(1):138-140.
    [78]杨永红,刘淑珍,王成华等.浅层滑坡生物治理中的乔木根系抗拉实验研究[J].水土保持研究,2007,14(1):138-140.
    [79]杨忠,吕斌,黄安民等.近红外光谱技术快速识别针叶材和阔叶材的研究[J].光谱学与光谱分析,2012,32(7):1785-1789.
    [80]野久田捻郎,林拙郎,等.由根系抗拉强度推算根系固坡效果[J].水上保持科技情报,1997(1):25-28.
    [81]尹思慈.木材学[M].北京:中国林业出版社,1996.
    [82]于明革,杨洪强,翟衡.植物木质素及其生理学功能[J].山东农业大学学报(自然科学版),2003:124-128.
    [83]余雁.人工林杉木管胞的纵向力学性质及其主要影响因子研究[D].中国林业科学研究院,2003.
    [84]苑淑娟,牛国权,邢会文等.瞬时拉力下2个生长期2种植物单根抗拉力与抗拉强度的研究[J].内蒙古水利,2008,6:77-79.
    [85]张波.马尾松木材管胞形态及微力学性能研究[D].北京:中国林业科学研究院,2007.
    [86]张超波,陈丽华,刘秀萍.黄土高原刺槐根系固土的力学增强效应评价[J].水土保持学报,2009,23(2):57-60.
    [87]张超波,陈丽华,刘秀萍.林木根系黄土复合体的非线性有限元分析[J].北京林业大学学报,2008,30(s2):221-227.
    [88]张超波.植物根系固土护坡力学基础研究[D].北京:北京林业大学,2011.
    [89]张东升.长江上游暗针叶林林木根系抗拉力学特性研究[D].北京:北京林业大学,2002.
    [90]张金池,康立新,卢义山,等.苏北海堤林带树木根系固土功能研究[J].水土保持学报,1994,8(2):43-48.
    [91]张述银.辽东栎木材解剖特征与物理力学性质的关系[J].安徽农学院学报,1987,14(2):26-38.
    [92]张耀丽.不同施肥处理对尾叶桉纤维形态的影响[J].南京林业大学学报,2000,24(1):41-44.
    [93]赵丽兵,张宝贵,苏志珠,等.草本植物根系增强土壤抗剪切强度的量化研究[J].中国生态农业学报,2008,16(3):718-722.
    [94]赵丽兵,张宝贵.紫花苜蓿和马唐根的生物力学性能及相关因素的试验研究[J].农业工程学报,2007,23(9):7-12.
    [95]郑万钧,傅立国.中国植物志:第7卷[M].北京:科学出版社,1978.
    [96]郑湘如.植物学[M].北京:中国农业大学出版社.2001,9(1):58-59.
    [98]中国科学院中国植物志编辑委员会,2006.
    [99]周朔.林木根系拉伸力学特性研究[D].北京:北京林业大学,201].
    [100]周跃,张军,林锦屏,等.西南地区松属侧根的强度特征对其防护林固土护坡作用的影响[J].生态学杂志,2002,21(6):14.
    [101]周跃,张军,骆华松等.松属、青冈属乔木侧根的强度在防护林固土护坡作用中的意义[J].植物生态学报,2001,25(1):105-109.
    [102]朱海丽,胡夏嵩,毛小青,等.青藏高原黄土区护坡灌木植物根系力学特性研究[J].岩石力学与工程学报,2008,27(s2):3445-3452.
    [103]朱清科,陈丽华,张东升,等.贡嘎山森林生态系统根系固土力学机制研究[J].北京林业大学学报,2002,24(4):64-67.
    [104]朱钟麟,卿明福,刘定辉,等.蓑草根系特征及蓑草经济植物埂的水土保持功能[J].土壤学报,2006,43(1),164-167.
    [105]Abe K,Iwamoto M.An evaluation of tree-root effect on slope stability by tree-rootstrength[J]. Journal of Japanese Forestry Science,1986,69:505-510.
    [106]Anderson C.J.,CouttsM.P.,RitchieR.M.,et al. Root extraction force measurements for Sitka Spruce[J]. Forestry,1989,62,127-137.
    [107]Barnett J R, Jeronimidis G (Eds)2003. Wood Quality and its Biological Basis. Blackwell Publishing Ltd,Oxford.
    [108]Baucher M,Bernard Vailhe MA,Chabbert B,et al.Down-regulation of cinnamyl alcohol dehydrogenase in transgenic alfalfa(MedicagosativaL.)and the effect on lignin composition and digestibility[J]. PlantMolecular Biology,1999,39(3):437-447.
    [109]Bischetti G B,Chiaradia E A,SimonatoT,et al. Root strength and root area ratio of forest species in Lombardy:NorthernItaly[J].Plant and Soil,2005,278:11-22.
    [110]Bishop, D.M., Stevens, M.E. Landslides on logged areas in southeast Alaska:Northern Forest Experiment Station [J]. U. S. Forest Service,1964, NOR-1:18.
    [111]Booker R E,Sell J.The nanostructure of the cell wall of softwoods and its functions in a living tree.Holz als Roh-und Werkstoff,1998,58:1-8.
    [112]Bowyer L,SHMULSKY JR&HAYGREEN GJ. Forest Products and Wood Science:An Introduction. Fourth edition. Blackwell Publishing Professionarl,Ames.2003.
    [113]Burroughs E R,Thomas B R. Declinging root strength in Douglas fir after felling as a factor in slope stability[J].USDAFor.Serv.Res Paper INT-190,1977,27.
    [114]Cammeraat E, van Beek R, Kooijman A.Vegetation succession and its consequences for slope stability in SE Spain[J]. Plant Soil,2005,278,135-147.
    [115]Chao-Bo Zhang,Li-HuaChen,Ya-Ping Liu,et.Triaxial compression test of soil-root composites to evaluate influence of roots on soil shear strength[J].Ecological Engineering,2010,(36):19-26.
    [116]Chiara Mattia, Bischetti G B, Francesco Gentile. Biotechnical characteristics of rootsystems of typical Mediterranean species[J].Plant and Soil,2005,278:23-32.
    [117]Coppin N J, Richards I G. Use of vegetation in civil engineering[J].London:Construction Industry Reasearch&Information Assoiation Butterworth:1990,5-10.
    [118]Cruden, D M, Varnes D J. Landslide types and processes[J]. In:Turner A K and Shuster R L (eds) Landslides:Investigation and mitigation. Transp Res Board, Spec Rep,1996,247, 36-75.
    [119]E Uetimane Jr. Relationship between mechanical properties and selected anatomical features of ntholo[J].Journal of Tropical Forest Science,2011,23(2):166-176.
    [120]ERIKSSON D.2008.Wood-an anatomical structure in the tree and an engineering material in industry.Prediction of material properties in managed Scots pine.PhDthesis,Swedish University of Agricultural Sciences,Uppsala.
    [121]EZELL AW. Variation of cellular proportion in sweet gum and their relation to other wood properties[J].Wood and Fibre Science,1979,11:136-143.
    [122]F Danjon, DH Barker, M Drexhage.A Stokes-Annals of Botany,2008-Annals Botany Co Using three-dimensional plant root architecture in models of shallow-slope stability[J]. 2008,101 (8):1281-1293.
    [123]Fogel R. Root turnover and productivity of coniferous forests[J].Plant and Soil,1983,71: 75-85
    [124]Fu Liguo, Li Nan,Robert R.Mill.Taxaceae-hongdoushanke[M].Flora of China.1999;4:89-96.
    [125]Fung Y C.Biomechanies:Mechanical properties of living tissues[M]. Germany: Springer-Verlag,1993:100-103.
    [126]Genet M, Stokes A, Salin F, et al.The influence of cellulose content on tensile strength in tree roots[J]. Plant Soil,2005,278:1-9.
    [127]Gian Battista Bischetti, Root cohesion of forest species in the Italian Alps[J]. Plant and Soil, 2009,324(2):71-89.
    [128]Gray D H, Leiser A T. Biotechacal slope protection and erosion control:New York, Van Nostrand Reinhold Co,1982,271.
    [129]Gray D H, Ohashi H. Mechanics of fiber reinforcement in sands[J]. Journal of Geotechnical Engineering,ASCE,1983,109(3):335-353.
    [130]Gray D H, Sotir B R. Biotechnical and Soil Bioengineering Slope Stabilizations Practical Guide for Erosion Control. Toronto:John Wiley & Sons,1996.
    [131]Gray D H,Sotir R B. Biotechnical and soil bioengineering Slope stabilization:a practical guide for erosion control[J].Chichester:John Wiley and Sons,1996,64-70.
    [132]Gray D.H. Effects of forest clear-cutting on the stability of natural slopes:results of field studies[R]. University of Michigan, Dept. of Civil Engineering Report,1973,119.
    [133]Greenway D R.Vegetation and slope stability [J].In:AndersonMG,RichardsKS(eds) Slope Stability. Wiley,Chichester,1987,187-230.
    [134]Gyssels G, Poesen J, Bochet E, Li Y. Impact of plant roots on the resistance of soils to erosion by water:a review[J]. ProgPhysGeog,2005,29,189-217.
    [135]Hathaway R L,Penny D.Root strength in some Populs and Salt clones[J].N Z J Bot, 1975,13,333-344.
    [136]IFJU G&MCLAIN TM.Quantitative wood anatomy-relating anatomy to transverse tensile strength[J].Wood and Fibre Science,1983,15:395-407.
    [137]Lawrance CJ, Rickson RJ, Clark JE. The effect of grass roots on the shear strength of colluvial soils in Nepal//AndersonMG, Brooks SM, eds[J]. Advances in Hillslope Processes. Vo.l 2.Chichester:JohnWiley& Sons,1996,857-868.
    [138]Luo ZB, Calfapietra C, Liberloo M. Carbon partitioning to mobile and structural fractions in poplar wood under elevated CO2(EUROFACE)and N fertilization[J]. Global Change Biology.2006,12:272-283.
    [139]Maeglin R R. National variation of tissue proportions and vessel and fiber length in mature northern red oak[J]. SilvaeGenetica,1976,25:122-126.
    [140]Mickovski S B. Uprooting resistance of vetivergrass(Vetiveriazizanioides)[J]. Plant and Soil,2005,278,33-41.
    [141]Nilaweera N S, Nutalaya P. Role of tree roots in slope stabilization [J]. Bull. Eng.Geol, 1999,57:337-342.
    [142]Norris J E.Root reinforcement by hawthorn and oak roots on a highway cut-slope in Southern England[J].Plant Soil,2005,278(1-2):43-53.
    [143]OCLOO JK&LAING E. Correlation of relative density and strength properties with anatomical properties of the wood of Ghanaian Celtisspecies[J].Discovery and Innovation, 2003,15:186-196.
    [144]OPerstein V, Frydman S. The influence of vegetation on soil strength[J].Ground lmpro,2000,4:81-89.
    [145]Oren R,Ellsworth DS,Johnsen KH. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere[J]. Nature,2001,411:469-472.
    [146]PerssonH. Root dynamics in a young Scots pine stand in centralSweden.Oikos,1978,30: 508-519.
    [147]Pitre FE,Pollet B,Lafarguette F. Effects of increased nitrogen supply on the lignification of poplar wood[J]. Journal of Agricultural and Food Chemistry,2007,55:10306-10314.
    [148]Pregitzer KS, Deforest JL, Burton AJ, Allen ME, Ruess RW, Hendrick RL. Fine root architecture of nine North American trees[J]. Ecological Mongraphs,2002,72:283-309.
    [149]Pregitzer KS, Kubiske ME, Yu CK, Hendrick RL. Relationship among root branch order, carbon, and nitrogen in four temperate species[J].Oecologia,1997,111:302-308.
    [150]RAHMAN MM,FUJIWARA S&KANAGAWA Y. Variations in volume and dimensions of rays and their effect on wood properties of teak[J].Wood and Fibre Science,2005.,37:497-504.
    [151]S. De Baets. Jpoesen, B. Reubens:B. Muys, J. De Baerdemaeker. Root tensile strengthand root distribution of typical Mediterranean plant species and their contributionto soil shear strength[J]. Plant and Soil,2008,305:207-226.
    [152]SALMEN L&BURGET I. Cell wall features with regard to mechanical performance[J]. Areview.Holzforschung,2009,63:121-129.
    [153]Sidle R C,OchiaiH. Landsildes:processes, prediction, and land use.Am Geophysical Union[J]. Water Resour Monogr,2006,18:312.
    [154]Stokes A, Lucas A. Plant biomechanical strategies in response to frequent disturbance: uprooting of phyllostachys nidularia(Poaceae) growing on landslide prone slopes in Sichuan, China[J]. American Journal of Botany,2007,94,1129-1136.
    [155]Turmanina V. On the strength of tree roots[J]. Bull.Moscow Soc. Naturalists, Biol.Sec.1965, 70:36-45.
    [156]Vidal H. The principle of reinforced earth[J]. Highway Research Record.1969, No.282: 1-16.
    [157]Waldron L J, Dakessin S. Soil Reinforcement by roots:calculation of increased soil shear resistance from root property[J].Soil science,1981,132(6):427-435.
    [158]Waldron L J. The shear resistance of root-permeated homogenous and stratified soil[J]. Soil Science Society of America Journal,1977,41:843-849.
    [159]Wu T H, Beal P E, Lan C. In-situ shear test of soil-root systems[J].Joumal of Geotechnical Engineering, ASCE,1988a,114(12):1376-1394.
    [160]Wu T H, Macomber R M, Rt Erb, et al., Study of soil-root interaction[J]. Journal of Geotechnical Engineering,ASCE,1988b,I14(12):1351-1357
    [161]Zaruba R, Mencl V. Landslides and their Control[M].America:Elsevier Scientific, 1982,324.
    [162]Ziemer, R.R., Swanston, D.N. Root strength changes after logging in southeast Alaska[M]. Forest Service,US Department of Agriculture, Research Note,1977, PNW-306,10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700